Exotic Frog Incursion Limnodynastes Dumerilii Is an Australian Frog Exotic to New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Exotic Frog Incursion Limnodynastes Dumerilii Is an Australian Frog Exotic to New Zealand Exotic frog incursion Limnodynastes dumerilii is an Australian frog exotic to New Zealand. It is an Notification of incursion aggressive coloniser and a In mid-October 1999 a member of the public took some unusual potential threat to New Zealand tadpoles to the Auckland Museum for identification, saying they had invertebrates and small been reared from a foamy egg-mass found in mid-August in a small vertebrates. A delimiting survey forested stream in the southern Waitakere Ranges. Once occurred in response to an metamorphosed, the tadpoles were identified as belonging to the incursion of the frog in Australian family Myobatrachidae – probably a species of Limnodynastes. Limnodynastes are exotic to New Zealand and their November 1999. presence was regarded as a biosecurity threat due to their predatory Tony Whitaker, co-author nature and their ability to rapidly colonise a variety of habitats. In during the day for egg-masses, tadpoles and frogs, and at night for the Waitakere Ranges they swere considered a particular threat to frogs and the sound of their highly distinctive ‘bonk’ call. Playback native Hochstetter’s Frogs (Leiopelma hochstetteri). tapes of calls were used to try to elicit a response. The survey covered The investigation, and identification all five catchments of the Waitakere Ranges (Fig. 1) During this period a consultant specialist(b) on Myobatrachid frogs arrived from At the home of the informant, were 15 outdoor aquaria containing Australia to advise on the ecology and reproductive cycles of several thousand tadpoles at various stages of development. These L. dumerilii and to comment on the suitability of the habitat in the appeared to be all of the same species and were said to have been Waitakere Ranges and west Auckland for establishment of this raised from the single egg-mass collected in August. At the site in the species. No further populations of L. dumerilii were located. Waitakere Ranges where the egg mass was found, there were tadpoles and two metamorphlings. The original site was examined closely by a group of herpetologists with the intention of mapping the extent of the exotic frog From these, a presumptive identification of Limnodynastes, probably incursion. However, no more Limnodynastes were found at either the L dumerilii, was made. This was confirmed by Australian original site or in adjacent catchments. Exceptionally high rainfall herpetologists after digital images of tadpoles and metamorphlings, early in November seemed likely to have destroyed any L. dumerilii followed by preserved specimens, were sent to Adelaide. There are tadpoles that might otherwise have been present. five subspecies of L dumerilii, and each has a different ecology and life history, with implications for likely place of origin, risk Eradication of the frogs assessment and control of the incursion. Four metamorphlings were Captive frogs: All known captive populations of Limnodynastes were therefore sent to an expert(a) , who had recently completed a eradicated. Vegetation and detritus were removed from aquaria, molecular phylogeny of the genus Limnodynastes using mtDNA. sealed in plastic bags and incinerated. All tadpoles that could Analyses clearly showed that the taxon in this case was L. dumerilii practicably be removed from tanks (>90%) were humanely killed by grayi, from coastal New South Wales (NSW). freezing, and any remaining tadpoles were killed by acidifying the water by addition of hydrochloric acid (33% at 10ml/litre). The tanks were then left for two hours before sterilisation for 2–3 days with sodium hypochlorite (12.5% at 20ml/litre). Frogs in the wild: In the preliminary survey Limnodynastes tadpoles were found in only two pools, both in the same stream and approximately 30m apart. All tadpoles seen in the upstream pool – the site where the egg-mass was allegedly collected – were removed and destroyed, as were two metamorphlings collected beneath stream-side vegetation. At the lower pool, most of the 20 or so tadpoles present escaped into deep mud when disturbed. The day after the visit torrential rain in the Waitakere Ranges caused widespread and serious flooding. When the stream was checked immediately following this storm the watercourse had been extensively modified and there was no evidence that any tadpoles Limnodynastes dumerilii - the Eastern Banjo Frog had survived. Nonetheless undetected adult frogs could have been A delimiting survey of the Waitakere Ranges was undertaken early in present in the area, or some metamorphlings could have dispersed November, in which suitable habitats for L. dumerilii were searched from the site. page 12 Surveillance 27(2) 2000 Extent of the incursion in the Waitakere Ranges and the known ecology and breeding The delimiting survey, the site survey and public response to biology of the species in its natural range. These facts suggested that widespread media coverage produced no evidence that L dumerilii the egg-mass had been placed at the site soon before discovery. was present beyond the original site in the southern Waitakere Potential for establishment Ranges, or that any still existed at the original site. L dumerilii was, therefore, found in the wild at just a single location. The original The natural range of L. d. grayi is coastal NSW, where it occupies a egg-mass had been hatched in uncovered, outdoor aquaria, and wide range of habitats and breeds in wetlands, ponds, and dams. some tadpoles had been distributed to other aquaculturists in urban The species could theoretically establish in parts of New Zealand. Auckland. These were recalled, but when the investigation began the The temperature, rainfall and relative humidity in Northland, first tadpoles had just metamorphosed and there remained a slight Auckland and parts of Coromandel, for example, are similar to those risk that a few metamorphlings may have dispersed from these tanks in coastal NSW. into the wild. Potential biological threats Origin of the incursion The main biological threats from this incursion were predation and The biology, ecology and behaviour of L dumerilii strongly suggested the introduction of chytrid fungi. L dumerilii is an aggressive that the population in the Waitakere Ranges was not the result of predator, presenting unacceptable risks to indigenous invertebrates dispersal from elsewhere in the region. The habitat in the southern and small vertebrates, including native frogs (Leiopelma spp.) and Waitakere Ranges is unsuitable for the maintenance of a viable wild skink species. L dumerilii also is one of the frog species known to population of Limnodynastes unsupported by immigration from carry chytrid fungi – a key factor implicated in amphibian decline in elsewhere in the district. The species is conspicuous because of its other countries – and it has itself suffered major fungal-related loud and characteristic call and because it usually congregates in mortalities in parts of Australia. No diseased or dying Limnodynastes pools to breed. It also breeds prolifically and occupies a wide range tadpoles or metamorphlings were found during this investigation. (3) of habitats. An established population in the area should therefore Nonetheless, the potential for Limnodynastes infection did exist . have already been detected. The original site was remote from the Monitoring programme usual accidental entry points (e.g. ports, freight yards). There were also serious discrepancies between the details surrounding the find The fact that tadpoles had been found at the original site in the Waitakere Ranges in November, and that an egg-mass had allegedly been laid there in mid-August, meant that at least a pair of adult frogs could theoretically have been present in the area and that some metamorphlings could have dispersed before flooding at the site. Monitoring of the site is therefore needed for a period of at least two years(4). The two most obvious and characteristic features of L dumerilii are its loud banjo-like call and its distinctive foamy egg-masses. These features are the focus of a two-pronged monitoring programme centred around potential breeding sites and scheduled to run until at least November 2001, and supplemented by a publicity campaign. If signs of frogs are detected, intensive site surveys would occur. • If any L dumerilii remain in the Waitakere Ranges their population density would likely be very low and consist mainly of young animals. Males do not begin calling until they reach adult size (>50mm SVL), usually at 2 years of age, so calling in the first year would probably be sporadic if it occured at all. Thus, the most cost- effective way of detecting the frogs by their calls is by use of remote recording devices. Several recorders will be installed at the original site and in adjacent catchments in April 2000, and will operate throughout the spring and autumn breeding seasons. This equipment plays a single call, followed by 5 seconds of recording to detect a response, repeated every 15 seconds during the three hours after dusk. In addition, field staff will listen at key locations at night during the height of the breeding season and when weather Fig 1: Waitakere Ranges - investigation sites parameters are optimum. page Surveillance 27(2) 2000 13 • At approximately fortnightly intervals between March–May and (4) Cogger HG.. Reptiles and amphibians of Australia. Reed, Chatswood NSW, August–November, field staff will visit potential breeding sites to pp775, 1992. search for the characteristic foamy egg-masses. These searches will (5) Hoser RT. Australian reptiles and frogs. Pierson, NSW, pp238, 1987. occur immediately after periods of high temperature (>20ºC) and (6) Martin AA. Studies in Australian Amphibia: III. The Limnodynastes dorsalis high rainfall, since these are the usual triggers for breeding. The complex (Anura: Leptodactylidae). Australian Journal of Zoology, 20, 165–211, foamy egg-masses laid by L d grayi are distinctive and highly visible. 1972. • A publicity campaign is planned for Spring 2000, and a fact sheet (7) Tocher M, Waldman B.
Recommended publications
  • Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
    Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency.
    [Show full text]
  • Managing Diversity in the Riverina Rice Fields—
    Reconciling Farming with Wildlife —Managing diversity in the Riverina rice fields— RIRDC Publication No. 10/0007 RIRDCInnovation for rural Australia Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields by J. Sean Doody, Christina M. Castellano, Will Osborne, Ben Corey and Sarah Ross April 2010 RIRDC Publication No 10/007 RIRDC Project No. PRJ-000687 © 2010 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 983 7 ISSN 1440-6845 Reconciling Farming with Wildlife: Managing Biodiversity in the Riverina Rice Fields Publication No. 10/007 Project No. PRJ-000687 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Toxicity of Glyphosate on Physalaemus Albonotatus (Steindachner, 1864) from Western Brazil
    Ecotoxicol. Environ. Contam., v. 8, n. 1, 2013, 55-58 doi: 10.5132/eec.2013.01.008 Toxicity of Glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil F. SIMIONI 1, D.F.N. D A SILVA 2 & T. MO tt 3 1 Laboratório de Herpetologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 2 Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 3 Setor de Biodiversidade e Ecologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Maceió, Alagoas, CEP 57072-970, Brazil. (Received April 12, 2012; Accept April 05, 2013) Abstract Amphibian declines have been reported worldwide and pesticides can negatively impact this taxonomic group. Brazil is the world’s largest consumer of pesticides, and Mato Grosso is the leader in pesticide consumption among Brazilian states. However, the effects of these chemicals on the biota are still poorly explored. The main goals of this study were to determine the acute toxicity (CL50) of the herbicide glyphosate on Physalaemus albonotatus, and to assess survivorship rates when tadpoles are kept under sub-lethal concentrations. Three egg masses of P. albonotatus were collected in Cuiabá, Mato Grosso, Brazil. Tadpoles were exposed for 96 h to varying concentrations of glyphosate to determine the CL50 and survivorship. The -1 CL50 was 5.38 mg L and there were statistically significant differences in mortality rates and the number of days that P. albonotatus tadpoles survived when exposed in different sub-lethal concentrations of glyphosate. Different sensibilities among amphibian species may be related with their historical contact with pesticides and/or specific tolerances.
    [Show full text]
  • North Central Waterwatch Frogs Field Guide
    North Central Waterwatch Frogs Field Guide “This guide is an excellent publication. It strikes just the right balance, providing enough information in a format that is easy to use for identifying our locally occurring frogs, while still being attractive and interesting to read by people of all ages.” Rodney Orr, Bendigo Field Naturalists Club Inc. 1 The North Central CMA Region Swan Hill River Murray Kerang Cohuna Quambatook Loddon River Pyramid Hill Wycheproof Boort Loddon/Campaspe Echuca Watchem Irrigation Area Charlton Mitiamo Donald Rochester Avoca River Serpentine Avoca/Avon-Richardson Wedderburn Elmore Catchment Area Richardson River Bridgewater Campaspe River St Arnaud Marnoo Huntly Bendigo Avon River Bealiba Dunolly Loddon/Campaspe Dryland Area Heathcote Maryborough Castlemaine Avoca Loddon River Kyneton Lexton Clunes Daylesford Woodend Creswick Acknowledgement Of Country The North Central Catchment Management Authority (CMA) acknowledges Aboriginal Traditional Owners within the North Central CMA region, their rich culture and their spiritual connection to Country. We also recognise and acknowledge the contribution and interests of Aboriginal people and organisations in the management of land and natural resources. Acknowledgements North Central Waterwatch would like to acknowledge the contribution and support from the following organisations and individuals during the development of this publication: Britt Gregory from North Central CMA for her invaluable efforts in the production of this document, Goulburn Broken Catchment Management Authority for allowing use of their draft field guide, Lydia Fucsko, Adrian Martins, David Kleinert, Leigh Mitchell, Peter Robertson and Nick Layne for use of their wonderful photos and Mallee Catchment Management Authority for their design support and a special thanks to Ray Draper for his support and guidance in the development of the Frogs Field Guide 2012.
    [Show full text]
  • Hindmarsh Island Monitoring
    Hindmarsh Island Monitoring Spring 2015 and Summer 2016 Frog Monitoring Frog surveys are performed by recording the distinctive male frog calls on a digital voice recorder at night. As each species of frog has a unique call, it is possible to estimate the number of calling males for a given species. Two frog survey events took place in spring 2015, the first on 22 September 2015 and the latter on 12 November 2015. On each survey event a total of five sites with varying habitat characteristics were surveyed. The September survey recorded four species: brown tree frog (Litoria ewingii), common froglet (Crinia parinsignifera), eastern banjo frog (Limnodynastes dumerilii), and spotted Figure 1. Long-thumbed frog grass frog (Limnodynastes tasmaniensis), whilst the long- thumbed frog (Limnodynastes fletcheri); also known as the barking marsh frog, was also recorded on the November survey. The long-thumbed frog starts calling in late September around the Lower Lakes but becomes most vocal in late spring and early summer. As its name suggests, the common froglet was the most common species recorded, present at every site surveyed in both September and November, often in high abundances. Following the common froglet, the most to least common species were the brown tree frog (recorded at seven of 10 sites), banjo frog and spotted grass frog (five sites each), and lastly the long-thumbed frog (two sites). Figure 2. Brown tree frog Frogs were most abundant and diverse at sites that offered complex habitat. An ideal habitat for frogs consists of significant cover by submerged aquatic plants and emergent vegetation; such as typha and phragmties, while also offering areas of open water.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Origin of the Parasites of an Invading Species, the Australian Cane Toad (Bufo Marinus): Are the Lungworms Australian Or American?
    Molecular Ecology (2008) 17, 4418–4424 doi: 10.1111/j.1365-294X.2008.03922.x FASTBlackwell Publishing Ltd TRACK Origin of the parasites of an invading species, the Australian cane toad (Bufo marinus): are the lungworms Australian or American? SYLVAIN DUBEY and RICHARD SHINE School of Biological Sciences A08, University of Sydney, Sydney, NSW 2006 Australia Abstract Phylogeographical analyses that identify the geographical origin of parasites in invading species can clarify the parasites’ potential for biological control of the invader and the risks posed by the parasite to native species. Our data on nuclear and mitochondrial genetic sequences show that the nematode lungworms (Rhabdias spp.) in invasive Australian populations of cane toads (Bufo marinus) are Rhabdias pseudosphaerocephala, a South American species. We did not find this lungworm species in any Australian frogs sympatric with cane toads, suggesting that the parasite does not attack Australian frogs and hence may offer potential as a biocontrol agent of the toad. Keywords: amphibians, invasive species, mitochondrial gene, nuclear gene, parasite Received 14 July 2008; revision received 31 July 2008; accepted 7 August 2008 arises if the invader’s parasites are taxa from the introduced Introduction range, because in such cases the lack of host-specificity The process of biological invasion often modifies host- rules out use of the parasite as a biological control, and the parasite relationships. Invasive species may leave some or prior distribution of the parasite means that the invaders’ all of their ancestral (native-range) pathogens behind in the spread will not expose the native fauna to novel pathogens. process of translocation and may be infected by novel Unfortunately, distinguishing whether the parasite of an parasites from the introduced range (Mitchell & Power invading species is itself translocated vs.
    [Show full text]
  • Predation by Introduced Cats Felis Catus on Australian Frogs: Compilation of Species Records and Estimation of Numbers Killed
    Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed J. C. Z. WoinarskiA,M, S. M. LeggeB,C, L. A. WoolleyA,L, R. PalmerD, C. R. DickmanE, J. AugusteynF, T. S. DohertyG, G. EdwardsH, H. GeyleA, H. McGregorI, J. RileyJ, J. TurpinK and B. P. MurphyA ANESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. BNESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Research, University of Queensland, St Lucia, Qld 4072, Australia. CFenner School of the Environment and Society, Linnaeus Way, The Australian National University, Canberra, ACT 2602, Australia. DWestern Australian Department of Biodiversity, Conservation and Attractions, Bentley, WA 6983, Australia. ENESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia. FQueensland Parks and Wildlife Service, Red Hill, Qld 4701, Australia. GCentre for Integrative Ecology, School of Life and Environmental Sciences (Burwood campus), Deakin University, Geelong, Vic. 3216, Australia. HNorthern Territory Department of Land Resource Management, PO Box 1120, Alice Springs, NT 0871, Australia. INESP Threatened Species Recovery Hub, School of Biological Sciences, University of Tasmania, Hobart, Tas. 7001, Australia. JSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom. KDepartment of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia. LPresent address: WWF-Australia, 3 Broome Lotteries House, Cable Beach Road, Broome, WA 6276, Australia. MCorresponding author. Email: [email protected] Table S1. Data sources used in compilation of cat predation on frogs.
    [Show full text]
  • Cane Toads in Western Australia
    Safety checklist Cane toads in Keep kids and pets away Pick up the toad by its back legs, from the cane toad pointing its head away from you Western Australia Wear a glove or put a Wash your hands with soap plastic bag over the toad afterwards Poisons Information Line 13 11 26 Euthanasing cane toads – cooling and freezing Cooling and freezing is the widely-used and preferred method for members of the public to kill cane toads. The following five steps are recommended: 1.1 Check the ID (see over the page for ID checklist) to ensure it is a cane toad, take a picture and text or email it to Parks and Wildlife to confirm the ID (see details below) 1.2 Place cane toads in a container, such as a plastic bag or container with a secure lid. 2.3 Put the container in a refrigerator for a minimum of four hours (this will anaesthetise the toads). 3.4 Put the container in a freezer until the toads are frozen solid (at least 24 hours). 5 Dispose of the container in your big green bin on bin day. If plastic bags are used, toads should be wrapped first in paper to prevent their skin from freezing to cold surfaces. 1 24 hrs 2 4 5 Confirmed 4 hrs 3 For more information and assistance visit DOWNLOAD THE www.dpaw.wa.gov.au/canetoads. CANE TOAD APP If you think you have found a cane toad, take a clear photo and from the iTunes app store text it to 0400 693 807 or email [email protected] 20160107-0816-1M Is it a cane toad? Biodiversity facts As many native frogs can easily be mistaken for cane toads, it’s important to • Native species can be poisoned when they try to eat cane toads.
    [Show full text]
  • ARAZPA YOTF Infopack.Pdf
    ARAZPA 2008 Year of the Frog Campaign Information pack ARAZPA 2008 Year of the Frog Campaign Printing: The ARAZPA 2008 Year of the Frog Campaign pack was generously supported by Madman Printing Phone: +61 3 9244 0100 Email: [email protected] Front cover design: Patrick Crawley, www.creepycrawleycartoons.com Mobile: 0401 316 827 Email: [email protected] Front cover photo: Pseudophryne pengilleyi, Northern Corroboree Frog. Photo courtesy of Lydia Fucsko. Printed on 100% recycled stock 2 ARAZPA 2008 Year of the Frog Campaign Contents Foreword.........................................................................................................................................5 Foreword part II ………………………………………………………………………………………… ...6 Introduction.....................................................................................................................................9 Section 1: Why A Campaign?....................................................................................................11 The Connection Between Man and Nature........................................................................11 Man’s Effect on Nature ......................................................................................................11 Frogs Matter ......................................................................................................................11 The Problem ......................................................................................................................12 The Reason
    [Show full text]
  • The Genome 10K Project: a Way Forward
    The Genome 10K Project: A Way Forward Klaus-Peter Koepfli,1 Benedict Paten,2 the Genome 10K Community of Scientists,Ã and Stephen J. O’Brien1,3 1Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation; email: [email protected] 2Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064 3Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida 33004 Annu. Rev. Anim. Biosci. 2015. 3:57–111 Keywords The Annual Review of Animal Biosciences is online mammal, amphibian, reptile, bird, fish, genome at animal.annualreviews.org This article’sdoi: Abstract 10.1146/annurev-animal-090414-014900 The Genome 10K Project was established in 2009 by a consortium of Copyright © 2015 by Annual Reviews. biologists and genome scientists determined to facilitate the sequencing All rights reserved and analysis of the complete genomes of10,000vertebratespecies.Since Access provided by Rockefeller University on 01/10/18. For personal use only. ÃContributing authors and affiliations are listed then the number of selected and initiated species has risen from ∼26 Annu. Rev. Anim. Biosci. 2015.3:57-111. Downloaded from www.annualreviews.org at the end of the article. An unabridged list of G10KCOS is available at the Genome 10K website: to 277 sequenced or ongoing with funding, an approximately tenfold http://genome10k.org. increase in five years. Here we summarize the advances and commit- ments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and futurevision of the landscape of Genome 10K.
    [Show full text]
  • Amphibia: Anura: Limnodynastidae, Myobatrachidae, Pelodryadidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 32 001–028 (2017) DOI: 10.18195/issn.0312-3162.32(1).2017.001-028 An annotated type catalogue of the frogs (Amphibia: Anura: Limnodynastidae, Myobatrachidae, Pelodryadidae) in the collection of the Western Australian Museum Ryan J. Ellis1*, Paul Doughty1 and J. Dale Roberts2 1 Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. 2 Centre of Excellence in Natural Resource Management, University of Western Australia, PO Box 5771, Albany, Western Australia 6332, Australia. * Corresponding author: [email protected] ABSTRACT – An annotated catalogue is provided for all primary and secondary type specimens of frogs (Amphibia: Anura) currently and previously held in the herpetological collection of the Western Australian Museum (WAM). The collection includes a total of 613 type specimens (excluding specimens maintained as possible paratypes) representing 55 species or subspecies of which four are currently considered junior synonyms of other species. The collection includes 44 holotypes, 3 lectotypes, 36 syntypes, 462 paratypes and 68 paralectotypes. In addition, the collection includes 392 specimens considered possible paratypes where paratype specimens could not be confrmed against specimens held in the WAM for fve species (Heleioporus barycragus, H. inornatus, H. psammophilus, Crinia pseudinsignifera and C. subinsignifera). There are 23 type specimens and seven possible paratypes that have not been located, some of which were part of historic disposal of specimens, and others with no records of disposal, loan or gifting and are therefore considered lost. Type specimens supposedly deposited in the WAM by Harrison of the Macleay Museum, University of Sydney, for Crinia rosea and Pseudophryne nichollsi were not located during the audit of types and are considered lost.
    [Show full text]