Adec Preview Generated PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Adec Preview Generated PDF File I<<'(ord, of th( W<'.,lall /\/1,111//11111 Ivl 11,<'11 III 5uPl11el11('nt No. 67: 109-137 (2004). Biogeographic patterns in small ground-dwelling vertebrates of the Western Australian wheatbelt J J J 2 Allan H. Burbidge , J.K. Rolfe , N.t. McKenzie and J.D. Roberts I Department of Conservation and I.and Management, Science Division PO Box) I Wanneroo, Western Australia 6946, Australia School of Animal Biology M092, Universitv of Western Australia, 35 Stirling Highway, Crawley, Wl'stern Australia 6009, Australia Abstract - Cround-dwelling frogs, reptiles and small mammals were sampled at 252 quadrats chosen to represent the geographical extent and diversity of uncleared terrestrial environments across the WestE'rn Australian wheatbelt. These sitE's were not overtlv affected by secondarv salinisation, but did include sites that were 'natu~ally' saline. We recorde~i a total of 144 species from 74 genera and 15 families. There was an average of 10.4 species per quadrat with a range from one to 19. Vertebrate species richness was highest on dissection valley floors and sandy depositional surfaces of the 'old plateau' but lowest on saltflats. Total species richness was positively correlated with high levels of sand, with low levels of soil nutrients and with good soil drainage. When frogs, reptiles and mammals were considered separately, temperature and rainfall attributes were also shown to exhibit correlations with species richness. Patterns in species composition could be explained in terms of climatic and substrate variables, including salinity. Two distinct faunas were identified - one concentrated in the semi-arid northern and inland parts of the study area, and one concentrated in the more mesic south and south-east. Further patterning could be discerned within this dichotomy, including the existence of a small group of species that arc associated with saline areas. Correlations between climatic and substrate variables could be discerned even at very low levels in the classification analysis, suggesting strong deterministic patterns in vertebrate species composition across the study area. Integrated management programs over entire catchments will be necessary in order to maintain conservation values, but there is doubt that the impacts ~)f salinisation and fragmentation can be mitigated quickly enough to allow the small, ground-dwelling vertebrate fauna to withstand the effects of these processes in the Western Australian wheatbelt. INTRODUCTION rainfall and dry fallout, and consisting mainly of Much of the native vegetation in south-western sodium chloride (Hingston and Gailitis, 1976). As a Australia has been removed in the pursuit of result of this, together with the subdued agricultural enterprises, just as in many other parts topography and hot climate, there are parts of the of temperate Australia. In parts of the Western landscape that are 'naturally' saline (Salama, 1994). Australian wheatbelt more than 95% of native In a terrestrial context, salinisation is a pedogenic vegetation has been replaced by annual cereals or process that concentrates salts at or near the soil herbaceous pasture plants. Removal of native surface when evapo-transpiration greatly exceeds vegetation in this area began before 1900 (Sau nders water inputs from precipitation. This can occur as a 1'/ 17/., 191'\5) and has contimlL'd to the present time. result of natural physical or chemical processes or Unfortunately, this has occurred in an area that is as a result of human activities, such as clearance of susceptible to salinisation. Not surprisingly, there native vegetation, in whid1 case it is termed has also been preferential clearing of the soils more salinisation (Chasserni cl 17/., 1995). In suited for agriculture, which are primarilv on the sou th western Australia, as in some other vallev floors and lower Such areas arc less agricultural areas in Australia and elsewhere in the well repn'sl'nted in the reserve system than, for world, replacement of native woody perennial example, areas around rock outcrops or plants with short lived herbaceous plants has breakawavs. n'sulled in major alterations to the hydrological In south-wesll'rn Australia the regolith, because cvcle, with rising water tables bringing d significant of its antiquity, contains a store of sdlt derived trum salt load near the land surface. This secondarv 110 A. H. Burbidge,]. K. Rolfe, N. L. McKenzie,]. D. Roberts salinisation has obvious deleterious consequences, structure and quality. However, even though not only for agricultural production, water quality awareness of the 'salinity crisis' is now widespread and infrastructure maintenance, but also for (Beresford et al., 2001; Sexton, 2003) little is known conservation of native plant and animal about the effects of salinisation on the native communities in the remaining remnants of the terrestrial biota, particularly on native animals original vegetation (George et al., 1995; ANZECC, (Cramer and Hobbs, 2002; Briggs and Taws, 2003). 2001; Cramer and Hobbs, 2002). In such an environment, an important first step in The link between removal of woody plants and conservation management is to document the increasing salinity levels in groundwater has been geographic distribution of plants and animals in the recognised in south-western Australia since the region and elucidate diversity patterns (e.g. Cody, early 1900s (Mann, 1907; Wood, 1924) and is now 1986). The present study was commenced as part of relatively well understood (e.g. Clarke et al., 2002). a broader study to identify biogeographic patterns Clearing of native vegetation has continued, amongst a range of plant and animal groups in the however, and nearly two million hectares (about south-western Australian wheatbelt, and to identify 10% of the wheatbelt) are now affected by regions of high conservation value. Elsewhere salinisation, with a high likelihood that the extent (McKenzie et al., 2003) we investigated the effects of could double within the next 20 years (Ferdowsian salinisation on small ground-dwelling animals in et al., 1996). The process of secondary salinisation is the Western Australian wheatbelt. In the present likely to pose a significant threat to many native paper, we explore geographic patterns in the plants and animals, through its impact on habitat communities of small ground-dwelling vertebrates 11 116 118 KAL8ARRI 120 2!1 18RA Regions o Gel'3ldton Sandplains 2 Be 3 o Pwon \fl.Iheatbelt 1 Be 2 o JarT3h Forest 1 Be 2 o Mallee 1 &2 o Espel'3nce Plains 1 Be 2 o 100 Kilometres 118 120 Figure 1 Wheatbelt study area, showing the 304 qlladrats, and relevant biogeographical region boundaries (Thackway and Cresswell1995). The different symbols indicate the 12 or 13 qlladrats in each of the 24 survey areas. Small ground-dwelling vertebrates 111 (frogs, reptiles and small marnrn,lls) at sites not sites not overtly affected by secondary salinisation. overtly affected by secondarv salinisation. Landform units were numbered from 1 to 12 Specifically, we examine patterns of species according to their position in the landscape profile richness, explore compositional variation among (Figure 2). In cases where a unit was particularly sample sites (quadrats), provide an overview of the extensive within a survey area, two quadrats were composition and distribution of specIes sampled. As well, most quadrats were pseudo­ assemblages and document relationships between replicated in the other survey areas to allow for the assemblage composition and characteristics of the internal heterogeneity of the stratification units physical environment. (hypothesised scalars) and to minimise any analytical circularity introduced by stratification (Taylor and Friend, 1984; McKenzie et aI., 1989). STUDY AREA AND METHODS Further details concerning quadrat selection are The study area extended from near Northampton provided in McKenzie et al. (2003). Locations of (latitude 28° S) to near the south coast, and from quadrats are given in Appendix 1. near the west coast east to just beyond Esperance Reptiles, frogs and mammals were pit-trapped at (longitude 123 0 E) (Figure 1). The area is each quadrat for a minimum of seven nights in both characterised by a Mediterranean climate with hot spring and autumn. The minimum of seven nights dry summers and most rainfall in winter. Annual was chosen to encompass a full weather cycle, with rainfall ranges from 300 mm in the north-east to 800 sampling in two seasons to optimise return for mm in the south-west, annual average maximum trapping effort (Moseby and Read, 2001; Read and temperature is between 24 and 37 QC and annual Moseby, 2001). Quadrats in the first third of survey average minimum temperature between 4 and 9 QC areas (central wheatbelt) were sampled from (Bureau of Meteorology, 2001). October 1997 to September 1998, while the northern The landscape is an ancient one, dating from the quadrats were sampled from September 1998 to Palaeozoic (McArthur, 1993). It is mantled with October 1999, and the southern ones, plus the sand over lateritic gravel, with dissection and Dandaragan Plateau, were sampled from October differential erosion of the old lateritic plateau 1999 to October 2000. surface resulting in a catenary of landforms and For the first 101 quadrats surveyed, the minimum soils of colluvial, alluvial, lacustrine and aeolian effort was 168 pit trap nights, using two lines of six origin and including sands, sandy loams and loams pits, 10 m apart, at each quadrat. For the remaining (sometimes over clay) low in the landscape.
Recommended publications
  • This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 71 (2014) 149–156 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multi-locus molecular phylogeny for Australia’s iconic Jacky Dragon (Agamidae: Amphibolurus muricatus): Phylogeographic structure along the Great Dividing Range of south-eastern Australia ⇑ Mitzy Pepper a, , Marco D. Barquero b, Martin J. Whiting b, J. Scott Keogh a a Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia b Department of Biological Sciences, Macquarie University, Sydney, Australia article info abstract Article history: Jacky dragons (Amphibolurus muricatus) are ubiquitous in south-eastern Australia and were one of the Received 25 June 2013
    [Show full text]
  • Figure 8. Location of Potential Nest Trees As Classified According to Hollow-Score
    Bindoon Bypass Fauna Assessment Figure 8. Location of potential nest trees as classified according to hollow-score. See Appendix 11 for four finer scale maps. BAMFORD Consulting Ecologists | 41 Bindoon Bypass Fauna Assessment Figure 9. DBH profile of the potential black-cockatoo nesting trees surveyed. 4.3.1.1 Extrapolation of tree data The VSA areas presented in Table 7 were multiplied by the mean tree densities (Table 11) to estimate the total numbers of each (major) hollow-bearing tree species in the survey area. These values are presented in Table 13. Approximately 18 000 trees may support black-cockatoo nests within the entire survey area. Table 13. The estimated number of potential hollow-bearing trees (± SE) in the survey area. Note that not all VSAs were sampled. Vegetation and Substrate Jarrah Marri Wandoo Total Association > 500mm DBH > 500mm DBH >300mm DBH VSA 3. Marri-Jarrah woodland. 1664 ± 260 1366 ± 327 0 3030 ± 587 VSA 4. Marri-Jarrah woodland with little to no remnant 1702 ± 187 915 ± 46 0 2617 ± 233 understorey (e.g. grazed). VSA 5. Wandoo woodland (with 26 ± 26 1010 ± 616 2497 ± 700 3533 ± 1342 or without understorey). VSA 8. Paddocks with large 4535 ± 3354 3402 ± 1174 916 ± 916 8853 ± 5444 remnant trees. Overall 7927 ± 3827 6693 ± 2163 3413 ± 1616 18033 ± 7606 BAMFORD Consulting Ecologists | 42 Bindoon Bypass Fauna Assessment 4.3.2 Foraging The distribution of foraging habitat is mapped for Carnaby’s Black-Cockatoo and Forest Red-tailed Black-Cockatoo in Figure 10 and Figure 11 respectively (with finer scale maps presented in Appendix 12 and Appendix 13 respectively).
    [Show full text]
  • Level 2 Fauna Survey MEELUP REGIONAL PARK
    Level 2 Fauna Survey MEELUP REGIONAL PARK APRIL 2015 suite 1, 216 carp st (po box 470) bega nsw 2550 australia t (02) 6492 8333 www.nghenvironmental.com.au e [email protected] unit 18, level 3, 21 mary st suite 1, 39 fitzmaurice st (po box 5464) surry hills nsw 2010 australia wagga wagga nsw 2650 australia t (02) 8202 8333 t (02) 6971 9696 unit 17, 27 yallourn st (po box 62) room 15, 341 havannah st (po box 434) fyshwick act 2609 australia bathurst nsw 2795 australia t (02) 6280 5053 0488 820 748 Document Verification Project Title: MEELUP REGIONAL PARK Project Number: 5354 Project File Name: Meelup Regional Park Level 2 Fauna Survey v20150115 Revision Date Prepared by (name) Reviewed by (name) Approved by (name) DRAFT 27/03/15 Shane Priddle Nick Graham-Higgs Nick Graham-Higgs (SW Environmental) and Greg Harewood Final 17/04/15 Shane Priddle Shane Priddle Shane Priddle (SW Environmental) (SW Environmental) (SW Environmental) nghenvironmental prints all documents on environmentally sustainable paper including paper made from bagasse (a by- product of sugar production) or recycled paper. nghenvironmental is a registered trading name of NGH Environmental Pty Ltd; ACN: 124 444 622. ABN: 31 124 444 622 suite 1, 216 carp st (po box 470) bega nsw 2550 australia t (02) 6492 8333 www.nghenvironmental.com.au e [email protected] unit 18, level 3, 21 mary st suite 1, 39 fitzmaurice st (po box 5464) surry hills nsw 2010 australia wagga wagga nsw 2650 australia t (02) 8202 8333 t (02) 6971 9696 unit 17, 27 yallourn st (po box 62) room 15, 341 havannah st (po box 434) fyshwick act 2609 australia bathurst nsw 2795 australia t (02) 6280 5053 0488 820 748 Level 2 Fauna Survey MEELUP REGIONAL PARK CONTENTS LEVEL 2 FAUNA SURVEY .....................................................................................................................
    [Show full text]
  • The Fauna of Boonanarring Nature Reserve
    The Fauna of Boonanarring Nature Reserve. Tracey Moore, Tracy Sonneman, Alice Reaveley, Karen Bettink, Barbara Wilson. i Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, 6983 Western Australia Telephone: +61-8-9442 0300 Facsimile: +61-8-9386 6399 www.dpaw.wa.gov.au © Government of Western Australia, May 2015 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Parks and Wildlife. Project team: Karen Bettink, Nicole Godfrey, Ben Kreplins, Tracey Moore, Craig Olejnik, Tracy Sonneman, Alice Reaveley, Barbara Wilson Acknowledgements: Astron Environmental Consulting Project contact: Tracey Moore; [email protected] i Table of Contents The fauna of Boonanarring Nature Reserve. ........................................ Error! Bookmark not defined. Introduction and Background ................................................................................................................. 1 Methods .................................................................................................................................................. 2 Location and vegetation .....................................................................................................................
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Level 2 Fauna Survey.Pdf
    Fauna Survey (Level 2) Phase 1 (September 2016) and Phase 2 (April 2017) Lake Wells Potash Project Australian Potash Ltd September 2017 Report Number: 01-000017-1/2 VERSION 4 On behalf of: Australian Potash Limited PO Box 1941 WEST PERTH, WA 6872 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 E: [email protected] LAKE WELLS POTASH PROJECT – AUSTRALIAN POTASH LTD – L2 FAUNA SURVEY - PHASE 1 & 2 – SEPTEMBER 2017 – V4 TABLE OF CONTENTS SUMMARY .............................................................................................................. III 1. INTRODUCTION ............................................................................................... 1 1.1 BACKGROUND ................................................................................................ 1 1.2 SURVEY AREA ................................................................................................. 1 1.3 SURVEY SCOPE .............................................................................................. 1 2. METHODS ........................................................................................................ 3 2.1 FAUNA INVENTORY - LITERATURE REVIEW ............................................... 3 2.1.1 Database Searches .................................................................................................................. 3 2.1.2 Previous Fauna Surveys in the Area ........................................................................................ 3 2.2 FAUNA INVENTORY – DETAILED
    [Show full text]
  • Archived at the Flinders Academic Commons
    Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ This is the publisher’s version of an article published in The South Australian Naturalist. The original publication is available by subscription at: http://search.informit.com.au/ browseJournalTitle;res=IELHSS;issn=0038-2965 Please cite this article as: Smith AL, Bull CM and Driscoll DA (2013). Skeletochronological analysis of age in three “fire- specialist” lizard species. SA Naturalist 87, 6-17 Copyright (2013) the Field Naturalists Society of South Australia. Published version of the paper reproduced here with permission from the publisher. All rights reserved. Extract from The South Australian Naturalist 87(1): 6–17. SKELETOCHRONOLOGICAL ANALYSIS OF AGE IN THREE ‘FIRE-SPECIALIST’ LIZARD SPECIES Annabel L. Smith 1,2*, C. Michael Bull 2, Don A. Driscoll 1,2 1. ARC Centre of Excellence for Environmental Decisions and the NERP Environmental Decisions Hub, Fenner School of Environment and Society, Frank Fenner Building 141, Australian National University, Canberra ACT 0200, Australia. 2. School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia * Author for correspondence: Email: [email protected] Phone: +612 6125 9339, Fax: +612 6125 0757 ABSTRACT: Adverse fire regimes threaten the persistence of animals in many ecosystems. ‘Fire-specialist’ species, which specialise on a particular post-fire successional stage, are likely to be at greatest risk of decline under adverse fire regimes. Life history data on fire-specialists, including longevity, are needed to develop tools to assist fire management for conservation. We used skeletochronology to estimate the age of individuals of three South Australian fire-specialist lizard species: Amphibolurus norrisi (Agamidae), Ctenotus atlas (Scincidae) and Nephrurus stellatus (Gekkonidae).
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Biological Survey Part 2.Pdf
    LEVEL 1 BIOLOGICAL ASSESSMENT OF RAVENSTHORPE GOLD PROJECT, WESTERN AUSTRALIA Page | 101 home ranges may overlap, there tends to be a smaller non-overlapping ‘core’ area defined by den locations. Core areas are approximately 4 km2 and 0.9 km2 for males and females, respectively (Serena & Soderquist, 1989). Females tend to be territorial, although some areas may be shared by a mother and her adult daughter (Serena & Soderquist, 1989). Male core areas are much larger and overlap broadly with other males as well as females. Both sexes occur at similar densities in the Jarrah forest. Home range size may be smaller in areas where foxes are effectively controlled, and where Chuditch population densities are higher (DEC, 2012b; Mathew, 1996). Chuditch are opportunistic feeders, foraging primarily on the ground at night. In the forest, insects and other large invertebrates comprise the bulk of their diet, though some mammals, birds and lizards are also included (DEC, 2012b; Serena et al., 1991). The Chuditch is primarily a nocturnal species, they may be diurnally active during the breeding season (April to July) or when cold, wet weather restricts nocturnal foraging (DEC, 2012b). The average life span of an established adult is two years, and wild Chuditch generally don’t live past four years (Soderquist, 1988). Factors contributing to Chuditch mortality include: ▪ Motor vehicle strike (Chuditch commonly forage along dirt roads and tracks making them more susceptible to this); ▪ Illegal shooting near roads; ▪ Predation by foxes, raptors and feral cats; ▪ Injury in rabbit traps; and ▪ Natural accidents and disease. The Chuditch has been recorded on camera within the Project Area during the two fauna surveys conducted by APM in 2016 and 2017.
    [Show full text]
  • Biodiversity Summary: Port Phillip and Westernport, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Adec Preview Generated PDF File
    V REPTILES AND FROGS OF MARCHAGEE NATURE RESERVE JOHN DELL & A. CHAPMAN Reptiles and frogs were collected opportunistically on Marchagee Nature Reserve (for location and details see Dell, Introduction this report). Collections were made during the dates mentioned by Dell (ibid.). In addition T.M.S. Hanlon and S. Wilson made additional collections on 21 August 1977. Specimens are in the Western Australian Museum and are registered R54479-85, R57775-57864 (May), R51137-54 (July), R57349-54 (August), and R57744-72 (September). In the annotated list we present data on numbers collected, habitat, breeding con­ dition and diet. Snout-vent length (SVL) is given in millimetres and vegetation location numbers and soils are from Muir (this report). ANNOTATED LIST LEPTODACTYLIDAE Heleioporus albopunctatus Three collected in May, 1 in September. Margins of saltlakes; loco 2.1, 7.1, and 7.3 in May, loco 7.8 in September. Males with pigmented spine in May and September. Collected at night. Heleioporus eyrei Seven collected in May, 1 in October. Margins of saltlakes; loco 2.1 and 7.3 in May, loco 7.8 in September. Collected at night. Limnodynastes dorsalis Five collected in May, 1 in July, 2 in September. Margins of saltlakes and in shrubland; loco 2.1 and 7.3 in May, loco 7.2 in July, loco 2.2 and 3.14 in September. July specimen was under hollow log among samphires, others were collected at night. Neobatrachus centralis Ten collected in May from margins of saltlakes. Neobatrachus pelobatoides Nine collected in May and 2 in July from margins of saltlakes.
    [Show full text]
  • (Reptilia: Squamata: Scincidae) Species Group and a New Species of Immediate Conservation Concern in the Southwestern Australian Biodiversity Hotspot
    Zootaxa 3390: 1–18 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot GEOFFREY M. KAY & J. SCOTT KEOGH 1 Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia 1 Corresponding author. E-mail: [email protected] Abstract Ctenotus is the largest and most diverse genus of skinks in Australia with at least 97 described species. We generated large mitochondrial and nuclear DNA data sets for 70 individuals representing all available species in the C. labillardieri species- group to produce the first comprehensive phylogeny for this clade. The widespread C. labillardieri was sampled extensively to provide the first detailed phylogeographic data set for a reptile in the southwestern Australian biodiversity hotspot. We supplemented our molecular data with a comprehensive morphological dataset for the entire group, and together these data are used to revise the group and describe a new species. The morphologically highly variable species C. labillardieri comprises seven well-supported genetic clades that each occupy distinct geographic regions. The phylogeographic patterns observed in this taxon are consistent with studies of frogs, plants and invertebrates, adding strength to emerging biogeographic hypotheses in this iconic region. The species C. catenifer, C. youngsoni, and C. gemmula are well supported, and despite limited sampling both C. catenifer and C. gemmula show substantial genetic structure.
    [Show full text]