A Molecular Phylogenetic Study of Ecological Diversification in the Australian Lizard Genus Ctenophorus

Total Page:16

File Type:pdf, Size:1020Kb

A Molecular Phylogenetic Study of Ecological Diversification in the Australian Lizard Genus Ctenophorus JEZ Mde 2035 JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 291:339–353 (2001) A Molecular Phylogenetic Study of Ecological Diversification in the Australian Lizard Genus Ctenophorus JANE MELVILLE,* JAMES A. SCHULTE II, AND ALLAN LARSON Department of Biology, Washington University, St. Louis, Missouri 63130 ABSTRACT We present phylogenetic analyses of the lizard genus Ctenophorus using 1,639 aligned positions of mitochondrial DNA sequences containing 799 parsimony-informative charac- ters for samples of 22 species of Ctenophorus and 12 additional Australian agamid genera. Se- quences from three protein-coding genes (ND1, ND2, and COI) and eight intervening tRNA genes are examined using both parsimony and maximum-likelihood analyses. Species of Ctenophorus form a monophyletic group with Rankinia adelaidensis, which we suggest placing in Ctenophorus. Ecological differentiation among species of Ctenophorus is most evident in the kinds of habitats used for shelter. Phylogenetic analyses suggest that the ancestral condition is to use burrows for shelter, and that habits of sheltering in rocks and shrubs/hummock grasses represent separately derived conditions. Ctenophorus appears to have undergone extensive cladogenesis approximately 10–12 million years ago, with all three major ecological modes being established at that time. J. Exp. Zool. (Mol. Dev. Evol.) 291:339–353, 2001. © 2001 Wiley-Liss, Inc. The agamid lizard genus Ctenophorus provides ecological categories based on whether species abundant opportunity for a molecular phylogenetic shelter in rocks, burrows, or vegetation. Eight spe- study of speciation and ecological diversification. cies of Ctenophorus are associated with rocks: C. Agamid lizards show a marked radiation in Aus- caudicinctus, C. decresii, C. fionni, C. ornatus, C. tralia, where there are 64 recognized species in rufescens, C. tjantjalka, C. vadnappa, and C. 13 genera (Cogger, 2000). Within this group, the yinnietharra. Eight species spend much of their large endemic genus Ctenophorus contains 23 active time on open ground of sand plains or sand largely terrestrial species, and is widespread dunes covered with shrubs or hummock grasses throughout the continent, particularly in semi-arid and flee to these shrubs and grass hummocks: C. to arid areas. Monophyly of Ctenophorus has not cristatus, C. femoralis, C. fordi, C. isolepis, C. been established with certainty, and phylogenetic maculatus, C. mckenziei, C. rubens, and C. scut- relationships among species within this genus are ulatus. Pianka (’71, personal communication) de- largely unknown. Microcomplement fixation of al- scribes C. cristatus and C. scutulatus as moving bumin (Baverstock and Donnellan, ’90), chromo- and foraging in open spaces between plants, and somal and immunogenetic data (King, ’90), and in a 15-month study by Pianka (’71), they were mitochondrial DNA sequences (Honda et al., 2000; never observed to use burrows during their daily Macey et al., 2000) have been used to evaluate activity. Ctenophorus mckenziei is very similar to higher-level phylogenetic relationships within C. scutulatus in habitat and morphology, differ- Agamidae and have included single species of ing only in adult size and subtle color modifica- Ctenophorus, but no previous molecular study has tions (Storr et al., ’83; Peterson et al., ’94). examined relationships within this genus. Previous Consequently, we have included C. cristatus, C. studies have divided Ctenophorus into species scutulatus, and C. mckenziei in the shrub/grass groups based primarily on ecological and morpho- logical data (Moody, ’80; Wilson and Knowles, ’88; Grant sponsor: National Science Foundation; Grant number: DEB- Greer, ’89), but the phylogenetic significance of 9318642; Grant sponsor: National Science Foundation; Grant num- these groupings is uncertain. ber: DEB-9726064; Grant sponsor: National Science Foundation; Grant number: DEB-9982736; Grant sponsor: Australian Research Ecological differentiation among species of Council; Grant number: ARC00104045. Ctenophorus is most evident in the kinds of habi- *Correspondence to: Jane Melville, School of Biological Sciences (A08), University of Sydney, Sydney NSW 2006, Australia. tats that lizards use for shelter. Greer (’89) sug- E-mail: [email protected] gested that Ctenophorus falls into three distinct Received 7 February 2001; Accepted 11 June 2001 © 2001 WILEY-LISS, INC. 340 J. MELVILLE ET AL. dwelling group. The final group includes species species Physignathus cocincinus and Papua New that dig burrows in which they shelter from Guinean species Hypsilurus dilophus are also in- weather and predators: C. clayi, C. gibba, C. cluded as outgroups based on results of Macey et maculosus, C. nuchalis, C. pictus, C. reticulatus, al. (2000); other species of Hypsilurus (not sampled) and C. salinarum. Extensive work on C. macu- occur in Australia (Cogger, 2000). losus by Mitchell (’73) indicates that this is a bur- rowing species, sheltering below the crusty salt- MATERIALS AND METHODS layer of Lake Eyre, South Australia. Specimen information A major evolutionary question is whether these ecological categories represent stable characteris- Museum numbers and localities of voucher tics of ancient clades, or labile features that evolved specimens from which DNA was extracted and repeatedly in parallel among different communi- GenBank accession numbers are provided below. ties. Recent phylogenetic studies of the lizard ge- Acronyms are SAM for the South Australian Mu- nus Anolis in the Caribbean demonstrate the latter seum, Adelaide, Australia and ANWC for the Aus- situation, in which habitat specialists that share tralian National Wildlife Collection, CSIRO, characteristic morphological features appear to Canberra, Australia. Ctenophorus caudicinctus: have evolved in parallel on different islands (Losos SAMAR42752, GenBank# AF375623, Winton, et al., ’98; Jackman et al., ’99). The evolutionary Queensland. Ctenophorus clayi: SAMAR48593, history of anoles demonstrates ancient evolution- GenBank# AF375620, 12.2 km northwest of Mt. ary radiations, in which numerous lineages split Cheesman, South Australia. Ctenophorus crist- from a common ancestral population in a time in- atus: SAMAR31851, GenBank# AF375622, 17 km terval that was short relative to the subsequent east southeast of Mt. Christie Siding, South Aus- evolutionary history of the group (Jackman et al., tralia. Ctenophorus femoralis: SAMAR22803, ’99). Rapid radiation of evolutionary lineages com- GenBank# AF375627, 12 km south of Barradale, bined with highly labile morphological characters Western Australia. Ctenophorus fionni: SAMAR- makes phylogenetic reconstruction particularly dif- 38263, GenBank# AF375638, South Pearson, ficult. We suspect that this same combination of South Australia. Ctenophorus fordi: SAMAR- factors may be evident in the evolutionary diver- 31886, GenBank# AF375626, Mt. Finke, South sification of Ctenophorus, which is still in an early Australia. Ctenophorus gibba: SAMAR45990, phase of ecomorphological study. GenBank# AF375625, William Creek Rd., 20 km We present a molecular phylogenetic study of east of Coober Pedy, South Australia. Ctenophorus 22 of the 23 recognized species of Ctenophorus (all isolepis: SAMAR26194, GenBank# AF375629, 25 species except C. yinnietharra) to test the hypoth- km southwest of Mabel Creek homestead, South esis that ecological categories constitute phyloge- Australia. Ctenophorus maculatus: SAMAR29397, netic groups, and to estimate ages of diversification GenBank# AF375628, 34 km south of Denham, among species of Ctenophorus. Sequences re- Western Australia. Ctenophorus maculosus: SAM- ported here include a 1,799 base-pair segment of AR25909, GenBank# AF375621, Lake Eyre, South the mitochondrial genome extending from the pro- Australia. Ctenophorus mckenziei: SAMAR32266, tein-coding gene ND1 (subunit one of NADH de- GenBank# AF375631, Mitcherie Rockhole, South hydrogenase), through the genes encoding tRNAGln, Australia. Ctenophorus nuchalis: SAMAR42726, tRNAIle, tRNAMet, ND2 (NADH dehydrogenase sub- GenBank# AF375633, 18 km north of Muttaburra, unit two), tRNATrp, tRNAAla, tRNAAsn, tRNACys, Queensland. Ctenophorus ornatus: SAMAR29487, tRNATyr, to the protein-coding gene, COI (subunit GenBank# AF375624, Lort R., Western Austra- I of cytochrome c oxidase). These sequences are lia. Ctenophorus pictus: SAMAR28208, GenBank# homologous to those used in earlier phylogenetic AF375635, 73 km north of Oodnadatta, South Aus- studies of acrodont lizards (Macey et al., 2000; tralia. Ctenophorus reticulatus: SAMAR29373, McGuire and Heang, 2001), permitting phyloge- GenBank# AF375634, Nanga Rubbish Dump, netic comparisons of Ctenophorus species to other Western Australia. Ctenophorus rubens: SAMAR- Australian agamid genera, including Lophogn- 22844, GenBank# AF375630, 12 km south of athus, Amphibolurus, Chlamydosaurus, Caim- Barradale, Western Australia. Ctenophorus rufe- anops, Diporiphora, Pogona, Tympanocryptis, scens: SAMAR28276, GenBank# AF375636, Near Rankinia, Arua, Chelosonia, Physignathus, and Victory Well, South Australia. Ctenophorus salin- Moloch. This sampling allows an effective test of arum: SAMAR18178, GenBank# AF375640, north monophyly for Ctenophorus. The southeast Asian of Serpentine Lakes, South Australia. Ctenophorus EVOLUTION AND DIVERSIFICATION IN CTENOPHORUS 341 scutulatus: SAMAR29402, GenBank# AF375632, cations. Amplified products were purified on 2.5% 1 km south of Wanoo, Western Australia. Cteno- Nusieve GTG agarose gels
Recommended publications
  • Oochoristica Piankai Sp. N. (Cestoda: Linstowiidae) and Other Helminths of Moloch Horridus (Sauria: Agamidae) from Australia
    J. Helminthol. Soc. Wash. 63(2), 1996, pp. 215-221 Oochoristica piankai sp. n. (Cestoda: Linstowiidae) and Other Helminths of Moloch horridus (Sauria: Agamidae) from Australia CHARLES R. BURSEY,' STEPHEN R. GOLDBERG,2 AND DAVID N. WooLERY2 'Department of Biology, Pennsylvania State University, Shenango Campus, Sharon, Pennsylvania 16146 (e- mail: [email protected]), and 2Department of Biology, Whittier College, Whittier, California 90608 (e-mail: [email protected]) ABSTRACT: Oochoristica piankai sp. n., a new linstowiid cestode, discovered in the small intestine of the thorny devil, Moloch horridus, is described and illustrated. Sixteen specimens of Oochoristica piankai sp. n. were found in 8 of 104 (8%) Moloch horridus from Australia. Oochoristica piankai sp. n. differs from 3 other Australian species of Oochoristica from lizards in the number of testes and the shape of the ovary. The presence of the nematode Parapharyngodon kartana and an encysted larva of Abbreviata sp. are also reported. Moloch horridus represents a new host record for P. kartana. KEY WORDS: Oochoristica piankai sp. n., cestode, Parapharyngodon kartana, Abbreviata sp., nematode, Mo- loch horridus, lizard, Agamidae, Australia. Only 3 of 74 species of Oochoristica Luhe, Northern Territory (snout-vent length = 86.1 mm ± 1898, a cosmopolitan genus of cestodes, have 14.5 SD). These specimens had been collected between been reported previously from reptiles of Aus- October 1966 and January 1968 for use in an ecological study (Pianka and Pianka, 1970); collection data will tralia. Taenia trachysauri MacCallum, 1921, was be found in that report. Because the ecological study described from specimens discovered in the in- included stomach analysis, only small and large intes- testine of the Australian lizard Trachydosaurus tines remained with most of the carcasses, but 3 intact rugosus Gray, in the New York Zoological Gar- stomachs and 5 pyloric stomach regions were present.
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Western Australian Naturalist 30
    NOTES ON THE ECOLOGY AND NATURAL HISTORY OF CTENOPHORUS CAUDICINCTUS (AGAMIDAE) IN WESTERN AUSTRALIA By ERIC R. PIANKA Integrative Biology University of Texas at Austin Austin, Texas 78712 USA Email: [email protected] ABSTRACT Ecological data on the saxicolous agamid Ctenophorus caudicinctus are presented. These lizards never stray far from rocks. They forage on the ground but retreat to rock crevices when threatened. Most were above ground (mean = 83 cm, N = 41). Active early and late in the day during summer, they thermoregulate actively with an average body temperature of 37.2°C. They are dietary specialists eating mostly termites and ants, but also some vegetation. Clutch size varies from 3 to 7, averaging 5.36. Males are slightly larger than females. INTRODUCTION Strophurus wellingtonae, Rhynchoedura ornata and Varanus Ctenophorus caudicinctus is giganteus. These data were widespread in northern Western augmented with Ctenophorus Australia, the Northern Territory caudicinctus from a few other and eastern Queensland (Cogger localities. 2000, Storr 1967). During 1966– 1968, we sampled a population of these agamids on rock outcrops METHODS at a granitic tor area 71 km South of Wiluna on the west side of the We recorded air and body road to Sandstone (Lat. 27° 05' x temperatures, activity time, Long. 119° 37'). Ctenophorus microhabitat, fresh snout-vent caudicinctus was far and away the length (SVL), tail length, and most abundant species. Other weight for as many lizards as lizard species found at this site possible. Stomach contents were included Ctenophorus nuchalis, identified and prey volumes Ctenotus leonhardii, Ctenotus estimated for all lizards collected.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • E-Program DO NOT PRINT!
    e-program DO NOT PRINT! You’ll receive a pocket program at registration, so no need to print this one. This e-program includes all presentation sessions and the associated abstracts, which are hyperlinked to the name of the presenter. Plenary abstracts are included in the pocket program. The plan on a page Tuesday June 20 Wednesday June 21 Thursday June 22 Friday June 23 7:30-8:30 am Breakfast: 7:30-8:30am Breakfast: 7:30-8:30am Breakfast: Dining Hall Dining Hall Dining Hall 8:50-10:00am Plenary: 8:50-10:00am Plenary: 8:50-10:00am Plenary: Rick Sabrina Fossette-Halot - Renee Catullo - Chapel. Shine - Chapel. Introduced Chapel. Introduced by Nicki Introduced by Scott Keogh by Ben Philips Mitchell 10:00-10:25 am Tea break 10:00-10:15am Tea break 10:00-10:25am Tea break 10:30-11:54am Short 10:20am -12:00pm Mike Bull 10:30-11:42am Short Talks: Talks: Session 1 - Symposium - Chapel Session 8 - Clubhouse: Clubhouse: upstairs and upstairs and downstairs downstairs 11:45 Conference close (upstairs) 12:00-2:00pm Lunch 12:00-1:00pm Conference 12:00-1:00pm Lunch: Dining (Dining Hall) and ASH photo and lunch Hall or Grab and Go, buses AGM (Clubhouse upstairs) depart for airport from midday High ropes course and 1:00-2:00pm Short Talks: climbing wall open. Book at Session 5 - Clubhouse: registration on Tuesday if upstairs and downstairs interested 2:00 -4:00pm 2:00-3:00pm Speed talks: 2:00-3:00pm Speed talks: Registration, locate Session 2 Clubhouse Session 6 Clubhouse accommodation, light upstairs upstairs fires, load talks, book activities 3:00-3:25pm
    [Show full text]
  • KENNETH A. NAGY PUBLICATIONS up to JUNE 2016
    KENNETH A. NAGY PUBLICATIONS Up to JUNE 2016 For Open Access pdf, click link. For copyrighted reprint pdfs, please email your request to Ken Nagy at [email protected]. I will be happy to share a copy of the article with individual colleagues, when permissible under copyright law. 2016 Nagy, K.A., G. Kuchling, L.S. Hillard, and B.T. Henen. (2016) Weather and sex ratios of head-started Agassiz’s desert tortoise Gopherus agassizii juveniles hatched in natural habitat enclosures. Endangered Species Research 30:145- 155. (Research article) (Link to pdf) Ellsworth, E., M.R. Boudreau, K. Nagy, J.L. Rachlow, and D.L. Murray. (2016). Differential sex-related winter energetics in free-ranging snowshoe hAres (Lepus americanus). Canadian Journal of Zoology 94:115-121. (Research article) (link to pdf) 2015 Nagy, K.A., S.Hillard, S. Dickson, and D.J. Morafka. (2015). Effects of artificial rain on survivorship, body condition, and growth of head-started desert tortoises (Gopherus agassizii) released to the open desert. Herpetological Conservation and Biology 10:535-549. (Research article) (Link to pdf) Nagy, K.A., L.S. Hillard, M.W. Tuma, and D.J. Morafka. (2015). Head-started desert tortoises (Gopherus agassizii): Movements, survivorship and mortality causes following their release. Herpetological Conservation and Biology 10:203-215. (Research article) (link to pdf) 2014 Gienger, C.M., C.R. Tracy, and K.A. Nagy. (2014). Life in the slow lane: GilA Monsters have low rates of energy use and water flux. Copeia 2014:279-287. (Research article) (email Nagy for pdf) 2012 Nagy, K.A., and G.G.
    [Show full text]
  • For Peer Review Journal: Biological Journal of the Linnean Society
    Biological Journal of the Linnean Society The evolution of Australasian agamid lizards based on nuclear and mitochondrial genes, and the affinities of the thorny devil (Moloch horridus). For Peer Review Journal: Biological Journal of the Linnean Society Manuscript ID: BJLS-0023 Manuscript Type: Original Manuscript Date Submitted by the 26-Jun-2006 Author: Complete List of Authors: Hugall, Andrew; University of Adelaide, Earth and Environmental Sciences Foster, Ralph; South Australian Museum Lee, Michael; South Australian Museum Hutchinson, Mark; South Australian Museum agamidae, phylogeny, partition support, congruence, convergence, Keywords: molecular clock, aridification Biological Journal of the Linnean Society Page 1 of 33 Biological Journal of the Linnean Society 1 2 3 4 The evolution of Australasian agamid lizards based on nuclear and 5 mitochondrial genes, and the affinities of the thorny devil (Moloch 6 horridus). 7 8 9 A.F. Hugall1*, R. Foster2, M. Hutchinson2 and M.S.Y. Lee1,2 10 11 12 13 1 School of Earth and Environmental Sciences, University of Adelaide, SA 5005 14 2 15 Natural Sciences Building, South Australian Museum, Adelaide, SA 5000, Australia 16 17 *Corresponding Author, E-mail [email protected], Fax +61 8 8303 4364 18 19 20 For Peer Review 21 Running title: Austral Agamid Phylogeny 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 2 of 33 Austral Agamid Phylogeny 2 1 2 3 ABSTRACT 4 5 6 7 Recent mtDNA phylogenies of Australasian agamid lizards are highly incongruent with 8 existing morphological views.
    [Show full text]
  • Testing the Relevance of Binary, Mosaic and Continuous Landscape Conceptualisations to Reptiles in Regenerating Dryland Landscapes
    Testing the relevance of binary, mosaic and continuous landscape conceptualisations to reptiles in regenerating dryland landscapes Melissa J. Bruton1, Martine Maron1,2, Noam Levin1,3, Clive A. McAlpine1,2 1The University of Queensland, Landscape Ecology and Conservation Group, School of Geography, Planning and Environmental Management, St Lucia, Australia 4067 2The University of Queensland, ARC Centre of Excellence for Environmental Decisions, St. Lucia, Australia 4067 3Hebrew University of Jerusalem, Department of Geography, Mt. Scopus, Jerusalem, Israel, 91905 Corresponding author: [email protected] Ph: (+61) 409 875 780 The final publication is available at Springer via http://dx.doi.org/10.1007/s10980-015-0157-9 Abstract: Context: Fauna distributions are assessed using discrete (binary and mosaic) or continuous conceptualisations of the landscape. The value of the information derived from these analyses depends on the relevance of the landscape representation (or model) used to the landscape and fauna of interest. Discrete representations dominate analyses of landscape context in disturbed and regenerating landscapes; however within-patch variation suggests that continuous representations may help explain the distribution of fauna in such landscapes. Objectives: We tested the relevance of binary, mosaic, and continuous conceptualisations of landscape context to reptiles in regenerating dryland landscapes. Methods: For each of thirteen reptile groups, we compared the fit of models consisting of one landscape composition and one landscape heterogeneity variable for each of six landscape representations (2 x binary, 2 x mosaic, and 2 x continuous), at three buffer distances. We used Akaike weights to assess the relative support for each model. Maps were created from Landsat satellite images.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Reintroducing the Dingo: the Risk of Dingo Predation to Threatened Vertebrates of Western New South Wales
    CSIRO PUBLISHING Wildlife Research http://dx.doi.org/10.1071/WR11128 Reintroducing the dingo: the risk of dingo predation to threatened vertebrates of western New South Wales B. L. Allen A,C and P. J. S. Fleming B AThe University of Queensland, School of Animal Studies, Gatton, Qld 4343, Australia. BVertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, Forest Road, Orange, NSW 2800, Australia. CCorresponding author. Present address: Vertebrate Pest Research Unit, NSW Department of Primary Industries, Sulfide Street, Broken Hill, NSW 2880, Australia. Email: [email protected] Abstract Context. The reintroduction of dingoes into sheep-grazing areas south-east of the dingo barrier fence has been suggested as a mechanism to suppress fox and feral-cat impacts. Using the Western Division of New South Wales as a case study, Dickman et al. (2009) recently assessed the risk of fox and cat predation to extant threatened species and concluded that reintroducing dingoes into the area would have positive effects for most of the threatened vertebrates there, aiding their recovery through trophic cascade effects. However, they did not formally assess the risk of dingo predation to the same threatened species. Aims. To assess the risk of dingo predation to the extant and locally extinct threatened vertebrates of western New South Wales using methods amenable to comparison with Dickman et al. (2009). Methods. The predation-risk assessment method used in Dickman et al. (2009) for foxes and cats was applied here to dingoes, with minor modification to accommodate the dietary differences of dingoes. This method is based on six independent biological attributes, primarily reflective of potential vulnerability characteristics of the prey.
    [Show full text]