Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons 0022-3565/08/3262-604–613$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 326, No. 2 Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics 138230/3358916 JPET 326:604–613, 2008 Printed in U.S.A. Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons Zhengyu Cao, Joju George, William H. Gerwick, Daniel G. Baden, Jon D. Rainier, and Thomas F. Murray Creighton University, School of Medicine, Department of Pharmacology, Omaha, Nebraska (Z.C., J.G., T.F.M.); Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California (W.H.G.); University of North Carolina, Center for Marine Science Research, Wilmington, North Carolina (D.G.B.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.) Received February 20, 2008; accepted April 25, 2008 Downloaded from ABSTRACT The electrical signals of neurons are fundamentally dependent tridine and aconitine, and the pyrethroid deltamethrin were ϩ on voltage-gated sodium channels (VGSCs), which are respon- somewhat lower with maximal [Na ]i increments of less than 40 sible for the rising phase of the action potential. An array of mM. The rank order of efficacy of sodium channel gating mod- jpet.aspetjournals.org naturally occurring and synthetic neurotoxins have been iden- ifiers was brevetoxin (PbTx)-1 Ͼ PbTx-desoxydioxolane Ͼ tified that modify the gating properties of VGSCs. Using murine batrachotoxin Ͼ antillatoxin Ͼ PbTx-2 ϭ PbTx-3 Ͼ PbTx- neocortical neurons in primary culture, we have compared the 3␣-naphthoate Ͼ veratridine Ͼ deltamethrin Ͼ aconitine Ͼ ability of VGSC gating modifiers to evoke Naϩ influx. Intracel- gambierol. These data demonstrate that the ability of sodium ϩ lular sodium concentration ([Na ]i) was monitored using the channel gating modifiers to act as partial agonists is shared Naϩ-sensitive fluorescent dye, sodium-binding benzofuran by compounds acting at both neurotoxin sites 2 and 5. The isophthalate. All sodium channel gating modifier compounds concentration-dependent increases in [Naϩ] produced by i at ASPET Journals on January 19, 2020 tested produced a rapid and concentration-dependent eleva- PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and ϩ ϩ tion in neuronal [Na ]i. The increment in [Na ]i exceeded 40 gambierol were all abrogated by tetrodotoxin, indicating that mM at high concentrations of brevetoxins, batrachotoxin, and VGSCs represent the sole pathway of Naϩ entry after exposure the novel lipopeptide, antillatoxin. The maximal increments in to gating modifier neurotoxins. ϩ neuronal [Na ]i produced by neurotoxin site 2 alkaloids, vera- The electrical signals of neurons are fundamentally depen- and ciguatoxins originating from the marine dinoflagellates dent on voltage-gated sodium channels (VGSCs), which are Karenia brevis and Gambierdiscus toxicus, respectively (recep- responsible for the rising phase of the action potential. These tor site 5); and ␦-conotoxins (receptor site 6). In addition, pyre- ion channels represent the molecular target for an array of throid insecticides act at a site distinct from these better char- naturally occurring and synthetic neurotoxins that specifi- acterized neurotoxin receptor sites on the sodium channel cally bind to at least six distinct receptor sites on the sodium ␣-subunit to enhance channel activity by shifting activation to ␣ channel -subunit (Catterall et al., 2007). These toxins in- more negative membrane potentials as well as by inhibiting clude hydrophilic toxins such as tetrodotoxin, saxitoxin, and inactivation (Ruigt et al., 1987). More recently, a structurally ␮ -conotoxin (receptor site 1); lipid-soluble alkaloid toxins, unique lipopeptide toxin, antillatoxin, produced by the marine including batrachotoxin, veratridine, acotinine, and grayano- cyanobacterium, Lyngbya majuscula, has been demonstrated to toxin (receptor site 2); polypeptide toxins, such as ␣-scorpion be a potent VGSC activator at yet another distinct receptor site toxins, sea anemone toxins, and some spider toxins (receptor (Berman et al., 1999; Li et al., 2001). site 3); ␤-scorpion toxins (receptor site 4); brevetoxins (PbTxs) The lipid-soluble toxins acting at neurotoxin receptor sites 2 and 5 have been characterized as allosteric modulators of This study was supported in part by National Institutes of Health Grants ES10594 (to D.G.B.), GM56677 (to J.D.R.), and NS053398 (to W.H.G. and sodium channel function (Catterall et al., 2007). These toxins T.F.M.). bind at topologically distinct sites that favor the open state of Article, publication date, and citation information can be found at http://jpet.aspetjournals.org. the sodium channel and display complex allosteric interac- doi:10.1124/jpet.108.138230. tions. Batrachotoxin is a neurotoxin that activates site 2 on ABBREVIATIONS: VGSC, voltage-gated sodium channel; PbTx, brevetoxin; NMDA, N-methyl-D-aspartate; TTX, tetrodotoxin; SBFI, sodium- binding benzofuran isophthalate; DIV, day(s) in vitro. 604 Gating Modifier-Induced Sodium Influx 605 the ␣-subunit of VGSC. Batrachotoxin produces a shift in the Materials and Methods threshold for VGSC activation to more hyperpolarized mem- brane potentials, resulting in persistent channel opening at Materials. Trypsin, penicillin, streptomycin, heat-inactivated fe- tal bovine serum, horse serum, and soybean trypsin inhibitor were resting potential (Wang and Wang, 2003). Batrachotoxin and obtained from Atlanta Biologicals (Norcross, GA). Minimum essen- other site 2 ligands also inhibit VGSC inactivation, further tial medium, DNase, poly-L-lysine, cytosine arabinoside, veratridine, contributing to persistent channel opening (Wang and Wang, aconitine, and deltamethrin were from Sigma-Aldrich (St. Louis, 2003). MO), and batrachotoxin was from BIOMOL Research Laboratories The specific binding of [3H]batrachotoxin to neurotoxin site (Plymouth Meeting, PA). The fluorescent dye SBFI-acetoxymethyl 2 is sensitive to conformational changes induced by the bind- ester and Pluronic acid F-127 were obtained from Invitrogen (Carls- ing of toxins to other sites on the ␣-subunit (Catterall et al., bad, CA). Brevetoxins-1, -2, and -3 were isolated and purified from K. breve cultures at the Center for Marine Sciences at the University of 1981). The binding of [3H]batrachotoxin to neurotoxin site 2 North Carolina (Wilmington, NC). The semisynthetic brevetoxin an- is enhanced by the interaction of brevetoxins with site 5 alogs were synthesized as described elsewhere by Purkerson-Parker (Sharkey et al., 1987). Using reconstituted VGSC prepara- et al. (2000). Gambierol was synthesized as described by Johnson et tions, the most potent brevetoxin analog, PbTx-1, enhanced al. (2006). Antillatoxin was authentic natural (Ϫ)-antillatoxin, iso- [3H]batrachotoxin binding greater than 5-fold (Trainer et al., lated as described by Orjala et al. (1995). The structures of all gating 1993). It is noteworthy that the less toxic brevetoxin, PbTx-9, modifier toxins evaluated are depicted in Fig. 1. caused only a small increase in [3H]batrachotoxin binding. Neocortical Neuron Culture. Primary cultures of neocortical Downloaded from These results are consistent with brevetoxin analogs possess- neurons were obtained from embryonic day 16 Swiss-Webster mice (LePage et al., 2005). In brief, pregnant mice were euthanized by ing distinct efficacies as activators of neurotoxin site 5 CO2 asphyxiation, and embryos were removed under sterile condi- (LePage et al., 2003). Lipophilic toxins, in addition to batra- tions. Neocortices were collected, stripped of meninges, minced by chotoxin, that act at neurotoxin site 2 include the alkaloids trituration with a Pasteur pipette, and treated with trypsin for 20 veratridine and aconitine (Ceste`le and Catterall, 2000). min at 37°C. The cells were then dissociated by two successive These ligands interact with neurotoxin site 2 in a mutually trituration and sedimentation steps in soybean trypsin inhibitor and jpet.aspetjournals.org exclusive manner and increase Naϩ permeability of neuro- DNase containing isolation buffer, centrifuged, and resuspended in blastoma cells to different extents at saturation (Catterall, Eagle’s minimal essential medium with Earle’s salt and supple- mented with 2 mM L-glutamine, 10% fetal bovine serum, 10% horse 1975). Sodium influx studies using rat brain synaptosomes serum, 100 IU/ml penicillin, and 0.10 mg/ml streptomycin, pH 7.4. have confirmed that batrachotoxin, veratridine, and aconi- Cells were plated onto poly-L-lysine-coated 96-well (9-mm) clear- tine activate VGSCs by an interaction with a common recep- bottomed, black-well culture plates (Corning Life Sciences, Acton, tor site 2, at which batrachotoxin is a full agonist, and aconi- MA) at a density of 1.5 ϫ 105 cells/cm2 and incubated at 37°C in a 5% CO and 95% humidity atmosphere. Cytosine arabinoside (10 ␮M) tine and veratridine are partial agonists (Tamkun and 2 at ASPET Journals on January 19, 2020 Catterall, 1981). These actions of sodium channel activators was added to the culture medium on day 2 after plating to prevent have been quantitatively described by an allosteric model proliferation of non-neuronal cells. The culture media was changed that assumes toxin high-affinity binding to activated sodium both on days 5 and 7 using a serum-free growth medium containing neurobasal medium supplemented with B-27, 100 IU/ml penicillin, channels with a shift
Recommended publications
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • 1 Gambierol 1 2 3 4 Makoto Sasaki, Eva Cagide, and 5 M
    34570 FM i-xviii.qxd 2/9/07 9:16 AM Page i PHYCOTOXINS Chemistry and Biochemistry 34570 FM i-xviii.qxd 2/9/07 9:16 AM Page iii PHYCOTOXINS Chemistry and Biochemistry Luis M. Botana Editor 34570 FM i-xviii.qxd 2/9/07 9:16 AM Page iv 1 2 3 Dr. Luis M. Botana is professor of Pharmacology, University of Santiago de Compostela, Spain. His group is a 4 world leader in the development of new methods to monitor the presence of phycotoxins, having developed 5 methods to date for saxitoxins, yessotoxin, pectenotoxin, ciguatoxins, brevetoxins, okadaic acid and dinophy- 6 sistoxins. Dr. Botana is the editor of Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection, 7 to date the only comprehensive reference book entirely devoted to marine toxins. 8 ©2007 Blackwell Publishing 9 All rights reserved 10 1 Blackwell Publishing Professional 2 2121 State Avenue, Ames, Iowa 50014, USA 3 4 Orders: 1-800-862-6657 5 Office: 1-515-292-0140 6 Fax: 1-515-292-3348 7 Web site: www.blackwellprofessional.com 8 Blackwell Publishing Ltd 9 9600 Garsington Road, Oxford OX4 2DQ, UK 20 Tel.: +44 (0)1865 776868 1 2 Blackwell Publishing Asia 3 550 Swanston Street, Carlton, Victoria 3053, Australia 4 Tel.: +61 (0)3 8359 1011 5 6 Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, 7 is granted by Blackwell Publishing, provided that the base fee is paid directly to the Copyright Clearance Cen- 8 ter, 222 Rosewood Drive, Danvers, MA 01923.
    [Show full text]
  • A A–803467, 98 Absorption, Distribution, Metabolism, Elimination
    Index A Anxiety disorders, 55 A–803467, 98 APD. See Action potential duration Absorption, distribution, metabolism, Arrhythmias, 45, 46 elimination and toxicity Aryl sulfonamido indanes, 126–128, 130 (ADMET), 193 ATP-sensitive potassium channels (KATP Absorption, distribution, metabolism, channels), 61 excretion, and toxicity Atrial effective refractory period (AERP), 122, (ADMET), 68 124–126, 128, 129, 132, 138 Acetylcholine binding protein (AChBP), Autoimmune diseases, 254 61, 62, 64 AZD7009, 101 Acetylcholine receptor (AChR), 57, 64 Azimilide, 139 Action potential duration (APD), 120, 122, 123, 128, 132 B Action potentials, 243, 256, 259 Basis set, 69–70 ADME/T, 299, 304 b-Barrel membrane proteins AERP. See Atrial effective refractory period genome-wide annotation, 13 Agitoxin (AgTX), 60 machine-learning techniques Agonists, 59–61, 64 residue pair preference, 11 Alinidine, 40–42 TMBs, 10 ALS. See Amyotrophic lateral sclerosis pipeline, genomic sequences, 14 Alzheimer, 55, 61 statistical method, 9–10 AMBER, 61, 65 Bending hinge, 64 2-Amino–2-imidazolidinone, 123, 125 Benzanilide, 256–257 Ammi visnaga, 254 Benzimidazolone, 256–257 b-Amyloid peptide (Ab), 62–63, 65 Benzocaine, 140 Amyotrophic lateral sclerosis (ALS), 90, 94, Benzodiazepines, 245 101 Benzopyrane, 127–128 Anionic channel blockers Benzopyrans, 61, 246–251, 261 mechanism of action of, 329–330 Benzothiadiazine 1,1-dioxide, 252–254 Antagonists, 59, 60 Benzothiadiazines, 253 Antiarrhythmic, 65–66, 68, 99, 101 Benzothiazepine, 70 Antiarrhythmic agents Benzothiazine derivatives, 251–252 class I, 245 Benzotriazole, 256–257 class II, 245 Bestrophins, 321, 322, 330, 331 class III, 245 Big potassium channels (BK channels), Antidepressant, 65–67 256, 257 Antiepileptic, 46 Bupivacaine, 56, 58, 59, 64, 69, 140 S.P.
    [Show full text]
  • Marine Natural Products and Their Potential Application in the Future
    AJSTD Vol. 22 Issue 4 pp. 297-311 (2005) MARINE NATURAL PRODUCTS AND THEIR POTENTIAL APPLICATION IN THE FUTURE Chau Van Minh*, Phan Van Kiem, and Nguyen Hai Dang Institute of Natural Products Chemistry, Vietnamese Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam Received 04 November 2005 1. INTRODUCTION Oceans are the diverse resource, which cover more than 70% of the earth’s surface. No doubt, with 34 of 36 phyla of life represented, oceans are the greatest biodiversity in the world [1]. They are the extraordinary natural source of microorganism, algae, sponge, coelenterate, bryozoan, mollusk, and echinoderm… Especially, on coral reef, where shelter more than 1000 species per m2. Surprisingly, there is only a small number of researches in this field. Therefore increasing research on marine natural source may provide good results for exploiting and developing valuable natural products which benefit for human. Marine environment is a rich source of biological and chemical diversity. The diversity has been unique source of chemical compounds of potential for pharmaceuticals, cosmetics, dietary supplements, and agrochemicals. Ecological pressure, including competitions for food and space, the fouling of predator and surface, has led to the evolution of secondary metabolites with various biological activities. Many organisms are soft bodies and/or unmoved, hardly survive with the threat from around environment. Hence they have evolved the ability to synthesize toxic compounds or obtain them from microorganism to defense against predator or to paralyze their prey. The questions such as, why do fish not eat particular algae? Why do two sponges grow and expand until they reach but not grow over each other? may be explained by these reasons.
    [Show full text]
  • Concurrent Sessions Abstracts
    20th World Congress of the International Society on Toxinology "Toxinology in the 21st century: Public health impact from basic, translational and clinical sciences" CONCURRENT SESSION ABSTRACTS 08 – 13 September, 2019 Buenos Aires, Argentina INDEX Page Concurrent Session I 1A. Public Health and Toxinology 2 1B. New Developments in Basic Toxinology I. 7 Concurrent Session II 2A. New Developments in Antivenoms 14 2B. New Developments in Basic Toxinology II. 20 Concurrent Session III 3A. Emerging Technologies in Toxinology 28 3B. Organ Systems and Toxins I 35 Concurrent Session IV 4A. Non-antibody and Adjuvant – Based Therapeutics 41 4B. Organ Systems and Toxins II 47 Concurrent Session V 5A. North American Society on Toxinology 55 Concurrent Session VI 6A. North American Society on Toxinology 60 Concurrent Session VII 7A. Clinical I 66 Concurrent Session VIII 8A. New Biology and Evolution of Venomous Organisms I 77 8B. Clinical II. Emerging Clinical Topics: Safety and Effectiveness of Current Antivenoms; Clinical Presentations of Intoxication and Management; 83 Epidemiology. Concurrent Session IX 9A. New Biology and Evolution of Venomous Organisms II 89 9B. SBTX: Innovation in Clinical and Basic Research in Toxinology 96 1 Concurrent Session I 1A. Public Health and Toxinology. Chairs: José M. Gutiérrez/Fan Hui Wen 1. Abdulrazaq Habib (Bayero University, Nigeria): Burden of Snakebite and Antivenom Supply Challenges in Africa. [email protected] 2. Mohammad Afzal Mahmood: A framework for shifting the paradigm and developing coalitions to address neglected public health problems: Lessons from the Myanmar Snakebite Project. [email protected] 3. Fan Hui Wen: (Instituto Butantan, Brazil): Public health policies to better manage the burden of scorpion sting envenoming.
    [Show full text]
  • Innovative Mode of Action Based in Vitro Assays for Detection of Marine Neurotoxins
    Innovative mode of action based in vitro assays for detection of marine neurotoxins Jonathan Nicolas Thesis committee Thesis advisor Prof. Dr I.M.C.M. Rietjens Professor of Toxicology Wageningen UR Thesis co-supervisors Dr P.J.M. Hendriksen Project leader, BU Toxicology and Bioassays RIKILT - Institute of Food Safety, Wageningen UR Dr T.F.H. Bovee Expertise group leader Bioassays & Biosensors, BU Toxicology and Bioassays RIKILT - Institute of Food Safety, Wageningen UR Other members Prof. Dr D. Parent-Massin, University of Western Brittany, Brest, France Dr P. Hess, French Research Institute for Exploitation of the Sea (IFREMER), Nantes, France Prof. Dr A.J. Murk, Wageningen UR Prof. Dr A. Piersma, National Institute for Public Health and the Environment (RIVM), Bilthoven This research was conducted under the auspices of the Graduate School VLAG (Avanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Innovative mode of action based in vitro assays for detection of marine neurotoxins Jonathan Nicolas Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. ir. A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 07 October 2015 at 11 a.m. in the Aula. Jonathan Nicolas Innovative mode of action based in vitro assays for detection of marine neurotoxins, 214 pages, PhD thesis, Wageningen UR, Wageningen, NL (2015) With references, with summary in
    [Show full text]
  • Ciguatera Mini Review: 21St Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them
    International Journal of Environmental Research and Public Health Review Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them Christopher R. Loeffler 1,2,* , Luciana Tartaglione 2,3, Miriam Friedemann 4, Astrid Spielmeyer 1, Oliver Kappenstein 1 and Dorina Bodi 1 1 National Reference Laboratory of Marine Biotoxins, Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; [email protected] (A.S.); [email protected] (O.K.); [email protected] (D.B.) 2 Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; [email protected] 3 CoNISMa—National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy 4 Department Exposure, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; [email protected] * Correspondence: Christopher.Loeffl[email protected] Abstract: Globally, the livelihoods of over a billion people are affected by changes to marine ecosys- tems, both structurally and systematically. Resources and ecosystem services, provided by the Citation: Loeffler, C.R.; Tartaglione, marine environment, contribute nutrition, income, and health benefits for communities. One threat L.; Friedemann, M.; Spielmeyer, A.; to these securities is ciguatera poisoning; worldwide, the most commonly reported non-bacterial Kappenstein, O.; Bodi, D. Ciguatera seafood-related illness. Ciguatera is caused by the consumption of (primarily) finfish contaminated Mini Review: 21st Century with ciguatoxins, potent neurotoxins produced by benthic single-cell microalgae. When consumed, Environmental Challenges and the ciguatoxins are biotransformed and can bioaccumulate throughout the food-web via complex path- Interdisciplinary Research Efforts ways.
    [Show full text]
  • Lessons Learned
    Prevention and Reversal of Chronic Disease Copyright © 2019 RN Kostoff PREVENTION AND REVERSAL OF CHRONIC DISEASE: LESSONS LEARNED By Ronald N. Kostoff, Ph.D., School of Public Policy, Georgia Institute of Technology 13500 Tallyrand Way, Gainesville, VA, 20155 [email protected] KEYWORDS Chronic disease prevention; chronic disease reversal; chronic kidney disease; Alzheimer’s Disease; peripheral neuropathy; peripheral arterial disease; contributing factors; treatments; biomarkers; literature-based discovery; text mining ABSTRACT For a decade, our research group has been developing protocols to prevent and reverse chronic diseases. The present monograph outlines the lessons we have learned from both conducting the studies and identifying common patterns in the results. The main product of our studies is a five-step treatment protocol to reverse any chronic disease, based on the following systemic medical principle: at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective. Implementation of the five-step treatment protocol is as follows: FIVE-STEP TREATMENT PROTOCOL TO REVERSE ANY CHRONIC DISEASE Step 1: Obtain a detailed medical and habit/exposure history from the patient. Step 2: Administer written and clinical performance and behavioral tests to assess the severity of symptoms and performance measures. Step 3: Administer laboratory tests (blood, urine, imaging, etc) Step 4: Eliminate ongoing contributing factors to the chronic disease Step 5: Implement treatments for the chronic disease This individually-tailored chronic disease treatment protocol can be implemented with the data available in the biomedical literature now. It is general and applicable to any chronic disease that has an associated substantial research literature (with the possible exceptions of individuals with strong genetic predispositions to the disease in question or who have suffered irreversible damage from the disease).
    [Show full text]
  • Neuroprotective Natural Products Neuroprotective Natural Products
    Neuroprotective Natural Products Neuroprotective Natural Products Clinical Aspects and Mode of Action Edited by Goutam Brahmachari Editor All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Goutam Brahmachari editors, and publisher do not warrant the Visva-Bharati (a Central University) information contained in these books, including Department of Chemistry, Laboratory this book, to be free of errors. Readers are of Natural Products and Organic Synthesis, advised to keep in mind that statements, data, Santiniketan illustrations, procedural details or other items West Bengal 731 235 may inadvertently be inaccurate. India Cover Library of Congress Card No.: applied for Neurons: © fotolia_ktsdesign British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http:// dnb.d-nb.de. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are
    [Show full text]
  • Inhibition of Kv Channels by Gambierol Through an Interaction with the Voltage-Sensing Domain
    This item is the archived peer-reviewed author-version of: Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels Reference: Kopljar Ivan, Grottesi Alessandro, de Block Tessa, Rainier Jon D., Tytgat Jan, Labro Alain, Snyders Dirk.- Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels Neuropharmacology - ISSN 0028-3908 - 107(2016), p. 160-167 Full text (Publisher's DOI): http://dx.doi.org/doi:10.1016/J.NEUROPHARM.2016.03.010 To cite this reference: http://hdl.handle.net/10067/1330540151162165141 Institutional repository IRUA *Title page Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels. Authors: Ivan Kopljar1Ψ, Alessandro Grottesi2, Tessa de Block1, Jon D. Rainier3, Jan Tytgat4, Alain J. Labro1, Dirk J. Snyders1* Affiliations: 1Laboratory for Molecular Biophysics, Physiology and Pharmacology, University of Antwerp, 2610 Antwerp, Belgium 2CINECA – Sede di Roma – Via dei Tizii 6, 00185 – Rome, Italy 3Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA 4Toxicology and Pharmacology, University of Leuven Campus Gasthuisberg, 3000 Leuven, Belgium ΨCurrent affilation: Global Safety Pharmacology, PD&S, Discovery Sciences, Janssen Research and Development, Beerse, Belgium *Corresponding Author: Dirk J. Snyders, M.D., Ph.D. Laboratory for Molecular Biophysics, Physiology and Pharmacology Department of Biomedical Sciences University of Antwerp Universiteitsplein 1, T5.35 2610 Antwerp, Belgium Phone: +32-(3)-820-2335 Fax: +32-(3)-820-2326 Email: [email protected] *Abstract Abstract Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings.
    [Show full text]
  • Siemens J and Hanack C Modulation of TRP Ion Channels by Venomous
    Modulation of TRP Ion Channels by Venomous Toxins Jan Siemens and Christina Hanack Contents 1 Introduction: Venom Biology .............................................................. 1120 2 Toxins of Venomous Organisms in Ion Channel Research and Medical Therapy ...... 1122 3 Toxins: Mode of Action ................................................................... 1124 4 Toxins Modulating TRPV1 Activity ...................................................... 1125 4.1 Vanillotoxins ......................................................................... 1125 4.2 Double-Knot Toxin .................................................................. 1127 5 Additional TRPV1-Mediated Toxin Effects .............................................. 1129 6 Toxins Affecting Other TRPs .............................................................. 1131 6.1 TRPV6 ................................................................................ 1132 6.2 TRPA1 ................................................................................ 1132 6.3 TRPCs ................................................................................ 1133 7 Discussion and Outlook .................................................................... 1133 References ..........................................................................................1136 Abstract Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins—referred to as toxins—that have evolved to specifically modulate and interfere with the function of diverse molecular targets
    [Show full text]