SARS-COV-2 Antiviral Therapeutics Summit Report, November 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physiology-2021-Abstract-Book.Pdf (Physoc.Org)
Physiology 2021 Our Annual Conference 12 – 16 July 2021 Online | Worldwide #Physiology2021 Contents Prize Lectures 1 Symposia 7 Oral Communications 63 Poster Communications 195 Abstracts Experiments on animals and animal tissues It is a requirement of The Society that all vertebrates (and Octopus vulgaris) used in experiments are humanely treated and, where relevant, humanely killed. To this end authors must tick the appropriate box to confirm that: For work conducted in the UK, all procedures accorded with current UK legislation. For work conducted elsewhere, all procedures accorded with current national legislation/guidelines or, in their absence, with current local guidelines. Experiments on humans or human tissue Authors must tick the appropriate box to confirm that: All procedures accorded with the ethical standards of the relevant national, institutional or other body responsible for human research and experimentation, and with the principles of the World Medical Association’s Declaration of Helsinki. Guidelines on the Submission and Presentation of Abstracts Please note, to constitute an acceptable abstract, The Society requires the following ethical criteria to be met. To be acceptable for publication, experiments on living vertebrates and Octopus vulgaris must conform with the ethical requirements of The Society regarding relevant authorisation, as indicated in Step 2 of submission. Abstracts of Communications or Demonstrations must state the type of animal used (common name or genus, including man. Where applicable, abstracts must specify the anaesthetics used, and their doses and route of administration, for all experimental procedures (including preparative surgery, e.g. ovariectomy, decerebration, etc.). For experiments involving neuromuscular blockade, the abstract must give the type and dose, plus the methods used to monitor the adequacy of anaesthesia during blockade (or refer to a paper with these details). -
Réponse Rapide
2021-05-17 13:58 17 mai 2021 Réponse en continu COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur Une production de l’Institut national d’excellence en santé et en services sociaux (INESSS) 2021-05-17 13:58 Cette réponse a été préparée par les professionnels scientifiques de la Direction de l’évaluation et de la pertinence des modes d’intervention en santé et la Direction et de la Direction de l’évaluation des médicaments et des technologies à des fins de remboursement de l’Institut national d’excellence en santé et en services sociaux (INESSS). RESPONSABILITÉ L’INESSS assume l’entière responsabilité de la forme et du contenu définitif de ce document au moment de sa publication. Les positions qu’il contient ne reflètent pas forcément les opinions des personnes consultées aux fins de son élaboration. MISE À JOUR Suivant l’évolution de la situation, les conclusions de cette réponse mise à jour pourraient être appelées à changer. Dépôt légal Bibliothèque et Archives nationales du Québec, 2021 Bibliothèque et Archives Canada, 2021 ISBN 978-2-550-86479-0 (PDF) © Gouvernement du Québec, 2021 La reproduction totale ou partielle de ce document est autorisée à condition que la source soit mentionnée. Pour citer ce document : Institut national d’excellence en santé et en services sociaux (INESSS). COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur. Québec, Qc : INESSS; 2021. 123 p. L’Institut remercie les membres de son personnel qui ont contribué à l’élaboration du présent document. 2 2021-05-17 13:58 COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur Le présent document ainsi que les constats qu’il énonce ont été rédigés en réponse à une interpellation du ministère de la Santé et des Services sociaux dans le contexte de la crise sanitaire liée à la maladie à coronavirus (COVID-19) au Québec. -
Retroactive News.2017
Newsletter of the Center for Retrovirus Research at The Ohio State University 2017 Highlights Dr. Li Wu awarded NIH R01 to study how RNA modifications modulate retroviral infection Dr. Li Wu has been awarded a replication in CD4+ T-cells by affecting the structure, new $1.42 million R01 grant from stability, splicing, and/or trafficking of HIV-1 RNA. NIH to investigate how HIV-1 Investigations of the HIV-1 RNA m6A modification and RNA modifications modulate viral interactions with host proteins represent a new area infection. of HIV-1 RNA biology which can potentially facilitate In this project, Dr. Wu and his therapeutic development against HIV-1 infection. collaborators will study the Dr. Wu’s collaborators in this project include Dr. Chuan molecular mechanisms by which He at University of Chicago and Howard Hughes Medical 6 6 N -methyladenosine (m A) Institute, Drs. Karin Musier-Forsyth and Mark Foster at modification of HIV-1 RNA regulates The Ohio State University, and Dr. Mamuka Kvaratskhelia viral replication in CD4+ T-cells. They hypothesize that at the University of Colorado. reversible m6A modification of HIV-1 RNA regulates viral Dr. Namal Liyanage, PhD joins the Ohio State faculty and the CRR Dr. Namal Liyanage was recruited during the ALVAC-SIV prime boost vaccination strategy to join the Departments of Microbial in collaboration with Dr. Rafick-Pierre Sekaly, at Case Infection and Immunity and Western Reserve University. Veterinary Biosciences, and the Dr. Liyanage is the recipient of a 2016 NIH career Center for Retrovirus Research transition grant (K22 Award). Dr. Liyanage’s lab at Ohio (CRR), as part of the university’s State mainly focuses on understanding the role of the Discovery Themes initiative. -
Antivirals Against SARS-Cov-2 by Autumn?
EDITORIALS BMJ: first published as 10.1136/bmj.n1215 on 17 May 2021. Downloaded from 1 St George’s, University of London, Antivirals against SARS-CoV-2 by autumn? London, UK An over ambitious target that risks forced errors 2 St George’s University Hospitals NHS Foundation Trust, London, UK David Smith, 1 , 2 Dipender Gill1 , 2 Correspondence to: D Gill 5 [email protected] The UK government has launched a covid-19 drugs. In the 1980s, trials showed that Cite this as: BMJ 2021;373:n1215 antivirals taskforce with the aim of deploying drugs azidothymidine improved survival in people with 1 http://dx.doi.org/10.1136/bmj.n1215 for home treatment by autumn this year. The HIV infection, and the drug was initially viewed as a Published: 17 May 2021 description suggests that the government wants direct success before viral resistance emerged.9 It became acting orally administered drugs that reduce clear that patients required a combination of three replication and help eliminate SARS-CoV-2 from the drugs in order to avoid resistance.10 More recently, body. Taken after a positive swab test result or the pandemic influenza strain H1N1 has developed prophylactically after exposure, these drugs could resistance to oseltamivir.11 If SARS-CoV-2 shares this reduce viral transmission, morbidity, and mortality. capacity to generate escape mutations, then multiple antiviral drugs may be required in combination for And they may well be needed. Vaccine efficacy effective treatment or prophylaxis. against symptomatic disease is 67-95%, with unknown durability and effectiveness against new The targets variants.2 Peak viral loads seem to determine the SARS-CoV-2 does present a few potential targets for duration and severity of symptoms,3 but current antiviral therapy. -
Szczepionki I Leki Stosowane W Terapii COVID-19
TERAPIA I LEKI Szczepionki i leki stosowane w terapii COVID-19 Jolanta B. Zawilska1, Katarzyna Kuczyńska1, Magdalena Gawior2, Martyna Kosiorek2, Katarzyna Dąbrowska2, Zuzanna Dominiak2, Amelia Baranowska2, Gabriela Skorupska2, Agnieszka Sujecka2, Klaudia Michalak2, Agata Rojek2, Adrianna Bakowicz2, Weronika Kowalczyk2, Aleksandra Wojciechowska2, Wiktoria Bęczkowska2, Patryk Maj2 1Zakład Farmakodynamiki, Wydział Farmaceutyczny, Uniwersytet Medyczny w Łodzi, Polska 2Uniwersytet Medyczny w Łodzi (student), Polska Farmacja Polska, ISSN 0014-8261 (print); ISSN 2544-8552 (on-line) Adres do korespondencji Konflikt interesów Jolanta B. Zawilska, Zakład Farmakodynamiki, Nie istnieje konflikt interesów. Wydział Farmaceutyczny, Uniwersytet Medyczny w Łodzi, ul. Muszyńskiego 1, 90-151 Łódź, Polska; Otrzymano: 2021.03.03 e-mail: [email protected] Zaakceptowano: 2021.03.30 Opublikowano on-line: 2021.04.08 Źródła finansowania Uniwersytet Medyczny w Łodzi, DOI Grant No. 503/3-011-01/503-31-002-19. 10.32383/farmpol/135224 ORCID Therapy of COVID-19: vaccines and drugs Jolanta Barbara Zawilska (ORCID iD: 0000-0002-3696-2389) The COVID-19 pandemic, caused by SARS-CoV-2 – a novel and highly Katarzyna Kuczyńska (ORCID iD: 0000-0003-3103-5874) infectious coronavirus, has been spreading around the world for over a year, Magdalena Gawior (ORCID iD: 0000-0001-8418-1467) and poses a serious threat to the public health. Numerous studies have Martyna Kosiorek (ORCID iD: 0000-0002-2133-7054) revealed the genome, structure and replication cycle of the SARS-CoV-2 virus Katarzyna Dąbrowska as well as the immune response to infection. Data from these studies provide (ORCID iD: 0000-0002-0782-194X) a firm basis for the development of strategies to prevent the further spread Zuzanna Dominiak (ORCID iD: 0000-0003-0917-7286) of COVID-19, as well as to synthesize effective and safe vaccines and drugs. -
Chain Maturation and Surface Expression Heavy Μ and D Μ
Conventional and Surrogate Light Chains Differentially Regulate Ig µ and Dµ Heavy Chain Maturation and Surface Expression This information is current as Terry Fang, Brendan P. Smith and Christopher A. J. Roman of October 5, 2021. J Immunol 2001; 167:3846-3857; ; doi: 10.4049/jimmunol.167.7.3846 http://www.jimmunol.org/content/167/7/3846 Downloaded from References This article cites 73 articles, 34 of which you can access for free at: http://www.jimmunol.org/content/167/7/3846.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 5, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Conventional and Surrogate Light Chains Differentially Regulate Ig and D Heavy Chain Maturation and Surface Expression1 Terry Fang, Brendan P. Smith, and Christopher A. J. Roman2 Positive selection of precursor (pre-) B cells by Ig membrane H chains (m HC) and counterselection mediated by the truncated HC D depend on the ability of each HC to form a pre-B cell receptor (pre-BCR) signaling complex with the surrogate L chain (SLC) components 5 and Vpre-B. -
Electron Donor–Acceptor Capacity of Selected Pharmaceuticals Against COVID-19
antioxidants Article Electron Donor–Acceptor Capacity of Selected Pharmaceuticals against COVID-19 Ana Martínez Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, Ciudad de México CP 04510, Mexico; [email protected] Abstract: More than a year ago, the first case of infection by a new coronavirus was identified, which subsequently produced a pandemic causing human deaths throughout the world. Much research has been published on this virus, and discoveries indicate that oxidative stress contributes to the possibility of getting sick from the new SARS-CoV-2. It follows that free radical scavengers may be useful for the treatment of coronavirus 19 disease (COVID-19). This report investigates the antioxidant properties of nine antivirals, two anticancer molecules, one antibiotic, one antioxidant found in orange juice (Hesperidin), one anthelmintic and one antiparasitic (Ivermectin). A molecule that is apt for scavenging free radicals can be either an electron donor or electron acceptor. The results I present here show Valrubicin as the best electron acceptor (an anticancer drug with three F atoms in its structure) and elbasvir as the best electron donor (antiviral for chronic hepatitis C). Most antiviral drugs are good electron donors, meaning that they are molecules capable of reduzing other molecules. Ivermectin and Molnupiravir are two powerful COVID-19 drugs that are not good electron acceptors, and the fact that they are not as effective oxidants as other molecules may be an advantage. Electron acceptor molecules oxidize other molecules and affect the conditions necessary for viral infection, such as the replication and spread of the virus, but they may also oxidize molecules that are essential for life. -
Genome-Wide Rnai Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection." Plos Pathogens.10,2
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Genome-wide RNAi screen identifies broadly- acting host factors that inhibit arbovirus infection Ari Yasunaga University of Pennsylvania Sheri L. Hanna University of Pennsylvania Jianqing Li Washington University School of Medicine in St. Louis Hyelim Cho Washington University School of Medicine in St. Louis Patrick P. Rose University of Pennsylvania See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Yasunaga, Ari; Hanna, Sheri L.; Li, Jianqing; Cho, Hyelim; Rose, Patrick P.; Spiridigliozzi, Anna; Gold, Beth; Diamond, Michael S.; and Cherry, Sara, ,"Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection." PLoS Pathogens.10,2. e1003914. (2014). https://digitalcommons.wustl.edu/open_access_pubs/2700 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Ari Yasunaga, Sheri L. Hanna, Jianqing Li, Hyelim Cho, Patrick P. Rose, Anna Spiridigliozzi, Beth Gold, Michael S. Diamond, and Sara Cherry This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/2700 Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit -
Forty Years with Coronaviruses
VIEWPOINT Forty years with coronaviruses Susan R. Weiss I have been researching coronaviruses for more than forty years. This viewpoint summarizes some of the major findings in coronavirus research made before the SARS epidemic and how they inform current research on the newly emerged SARS-CoV-2. A virulent new coronavirus is currently didn’t want to continue working in that including infectious bronchitis virus and bo- holding hostage much of the human popu- field. In reading the literature, I came upon vine coronavirus. There were a handful of Downloaded from https://rupress.org/jem/article-pdf/217/5/e20200537/1041300/jem_20200537.pdf by guest on 30 March 2020 lation worldwide. This virus, SARS-CoV-2, coronaviruses as an attractive topic, with presentations on human coronavirus 229E, a which causes the COVID-19 disease, so much possible. The model coronavirus, poorly understood agent of the common cold. emerged in China from bats into a presumed mouse hepatitis virus (MHV), was easy to Leaving that meeting, and with the en- intermediate species and then into humans. grow in tissue culture in the laboratory and couragement and mentorship of Neal It then spread around the globe with ongo- also provided compelling mouse models for Nathanson, my chair, and Don Gilden, a ing devastating effects. This round of human human disease, especially those of the liver professor in the neurology department, I coronavirus disease follows the appearance and the central nervous system. Julian Lei- was excited to expand my research to of the related lethal coronaviruses, SARS- bowitz, then at the University of California, studies utilizing the MHV animal models of CoV and MERS-CoV, in 2002 and 2012 re- San Diego, working on MHV, very gener- both encephalitis/chronic demyelinating spectively. -
Policy Brief 002 Update 07.2021
Content ................................................................................................................................................................ 3 1 Background: policy question and methods ................................................................................................. 7 1.1 Policy Question ............................................................................................................................................. 7 1.2 Methodology ................................................................................................................................................. 7 1.3 Selection of Products for “Vignettes” ........................................................................................................ 10 2 Results: Vaccines ......................................................................................................................................... 13 2.1 Moderna Therapeutics—US National Institute of Allergy ..................................................................... 25 2.2 University of Oxford/ Astra Zeneca .......................................................................................................... 26 2.3 BioNTech/Fosun Pharma/Pfizer .............................................................................................................. 27 2.4 Janssen Pharmaceutical/ Johnson & Johnson .......................................................................................... 29 2.5 Novavax ...................................................................................................................................................... -
Download Program
Oral Program Sunday, October 1, 2017 11:00-13:00 Registration Room: Hotel Lobby North/Assembly Foyer Room South Ballroom 13:00-13:15 Opening Remarks, Editorial Organizers 13:15-14:15 Opening Keynote: Anthony S. Fauci, NIAID, USA Emerging and Re-Emerging Infectious Diseases: From AIDS to Zika [KEY1] 14:15-17:45 Session 1: Genomics & Evolution Session Chair: Akiko Iwasaki, Yale University 14:15-14:45 George Fu Gao, Chinese Academy of Sciences, China Enveloped virus entry: From Flu to Ebola [INV01] 14:45-15:00 [ST01] Functional Evolution of Zika Virus in the Americas N.D. Grubaugh*, C. Ontiveros, R. Agarwal, T. Rogers, N. Beutler, K. Gangavarapu, G. Oliveira, R. Robles- Sikisaka, D. Burton, K.G. Andersen The Scripps Research Institute, USA 15:00-15:15 [ST02] Characterization of a clade-defining Ebola virus glycoprotein mutant from the 2013-2016 epidemic W.E. Diehl1, D. Mu1, A.E. Lin3, M. Cabot2, K.G. Andersen4, J.H. Kuhn6, P. Sabeti3, B. Ganser-Pornillos2, J. White2, J. Luban*1 et al 1University of Massachusetts Medical School, USA, 2University of Virginia, USA, 3Harvard University, USA, 4The Scripps Research Institute, USA, 5University of Edinburgh, UK, 6NIAID, USA 15:15-15:45 Gustavo Palacios, USAMRIID Center for Genomic Sciences, USA Near real-time genomics applications in clinical virology and biosurveillance [INV02] 15:45-16:15 Refreshment Break Room: North Ballroom 16:15-16:45 Linfa Wang, Duke-NUS Medical School, Singapore Programme in emerging infectious diseases [INV03] 16:45-17:00 [ST03] Immune correlates of protection from a universal influenza vaccine during intra- and intersubtypic heterologous challenge with H1, H6, H7 and H10 influenza viruses J.C. -
Virus Recognition by Toll-7 Activates Antiviral Autophagy in Drosophila
Immunity Article Virus Recognition by Toll-7 Activates Antiviral Autophagy in Drosophila Margaret Nakamoto,1,2 Ryan H. Moy,1,2 Jie Xu,1 Shelly Bambina,1 Ari Yasunaga,1 Spencer S. Shelly,1 Beth Gold,1 and Sara Cherry1,* 1Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA 2These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.immuni.2012.03.003 SUMMARY tion molecules that activate a proteolytic cascade converging on the activation of spa¨ tzle, a cytokine that binds to Toll thereby Innate immunity is highly conserved and relies on inducing an NF-kB-dependent transcriptional program for anti- pattern recognition receptors (PRRs) such as Toll- microbial defense. Surprisingly, a role for the additional eight like receptors (identified through their homology to Drosophila Toll homologs in innate immune defense has yet to Drosophila Toll) for pathogen recognition. Although be established. Toll-2 (18-wheeler) may have a minor role in Drosophila Toll is vital for immune recognition and the antibacterial response (Ligoxygakis et al., 2002; Williams defense, roles for the other eight Drosophila Tolls in et al., 1997), and Toll-5 (Tehao) and Toll-9 can activate the expression of the antifungal gene Drosomycin (Bilak et al., immunity have remained elusive. Here we have 2003; Luo et al., 2001; Ooi et al., 2002; Tauszig et al., 2000). shown that Toll-7 is a PRR both in vitro and in adult However, these receptors have not been implicated as essential flies; loss of Toll-7 led to increased vesicular stoma- components of the immune response or in the recognition of any titis virus (VSV) replication and mortality.