And Novaferon (Nova) for the Treatment of Covid -19

Total Page:16

File Type:pdf, Size:1020Kb

And Novaferon (Nova) for the Treatment of Covid -19 EUnetHTA Joint Action 3 WP4 “Rolling Collaborative Review” of Covid-19 treatments INTERFERON (IFN) AND NOVAFERON (NOVA) FOR THE TREATMENT OF COVID -19 Project ID: RCR13 Monitoring Report Version 4.0, December 2020 Template version November 2020 This Rolling Collaborative Review Living Document is part of the project / joint action ‘724130 / EUnetHTA JA3’ which has received funding from the European Union’s Health Programme (2014-2020) Dec2015 ©EUnetHTA, 2015. Reproduction is authorised provided EUnetHTA is explicitly acknowledged 1 Rolling Collaborative Review - Living Report RCR13 - Interferon beta-1a (IFN β-1a) and Novaferon (Nova) for the treatment of COVID-19 DOCUMENT HISTORY AND CONTRIBUTORS Version Date Description of changes V 0.1 01/09/2020 Literature searches, Literature screening, Data extraction V 0.2 02/09/2020 Data extraction and analysis complete V 0.3 03/09/2020 Check of data extraction and analysis V 1.0 15/09/2020 First version V 1.1 28/09/2020 Literature searches, Literature screening, Data extraction V 1.2 01/10/2020 Data extraction and analysis complete V 1.3 12/10/2020 Check of data extraction and analysis V 2.0 15/10/2020 Second version V 3.0 15/11/2020 Third version V 4.0 15/12/2020 Fourth version Major changes from previous version Chapter, page no. Major changes from version 3.0 Effectiveness and Safety evidence from Additional studies included RCTs, p.11 Ongoing studies, p. 12 Additional trials included Disclaimer The content of this “Rolling Collaborative Review” (RCR) represents a consolidated view based on the consensus within the Authoring Team; it cannot be considered to reflect the views of the European Network for Health Technology Assessment (EUnetHTA), EUnetHTA’s participating institutions, the European Commission and/or the Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union. The European Commission and the Agency do not accept any responsibility for use that may be made of the information it contains. Rolling Collaborative Review team Author(s) Division for Health Services, Norwegian Institute of Public Health (NIPHNO), Norway Co-Author(s) Department of Epidemiology Lazio Regional Health Service (DEPLazio), Italy December 2020 EUnetHTA Joint Action 3 WP4 2 Rolling Collaborative Review - Living Report RCR13 - Interferon beta-1a (IFN β-1a) and Novaferon (Nova) for the treatment of COVID-19 Further contributors Project Management Zorginstituut Nederland (ZIN), Coordination between involved parties throughout the assessment Netherlands Austrian Institute for Health Coordination of RCR Technology Assessment (AIHTA), Austria Conflict of interest All authors and co-authors involved in the production of this living document have declared they have no conflicts of interest in relation to the technology and comparator(s) assessed according to the EUnetHTA declaration of interest (DOI) form. Conflict of Interest was evaluated following the EUnetHTA Procedure Guidance for handling DOI form (https://eunethta.eu/doi). Copyright EUnetHTA assessments are published under a “CC/BY/NC” Creative Commons Licence. How to cite this assessment Please cite this assessment as follows: EUnetHTA Rolling Collaborative Review (RCR13) Authoring Team. [Interferon (IFN) and Novaferon (Nova) for the treatment of COVID-19]. Diemen (The Netherlands): EUnetHTA; 2020. [date of citation]. 64 pages. Report No.: RCR13. Available from: https //www.eunethta.eu. Contact the EUnetHTA Secretariat [email protected] with inquiries about this assessment. December 2020 EUnetHTA Joint Action 3 WP4 3 Rolling Collaborative Review - Living Report RCR13 - Interferon beta-1a (IFN β-1a) and Novaferon (Nova) for the treatment of COVID-19 TABLE OF CONTENTS DOCUMENT HISTORY AND CONTRIBUTORS .....................................................................................2 TABLE OF CONTENTS ...........................................................................................................................4 LIST OF TABLES AND FIGURES...........................................................................................................4 1 OBJECTIVE .......................................................................................................................................6 2 METHODS ..........................................................................................................................................6 2.1 SCOPE ...........................................................................................................................................6 2.2 SOURCES OF INFORMATION .............................................................................................................8 3 ABOUT THE TREATMENT ............................................................................................................ 10 3.1 MODE OF ACTION ........................................................................................................................ 10 3.2 REGULATORY STATUS ................................................................................................................. 10 3.3 LEVEL OF EVIDENCE .................................................................................................................... 10 4 SUMMARY ...................................................................................................................................... 11 4.1 EFFECTIVENESS AND SAFETY EVIDENCE FROM RCTS .................................................................... 11 4.2 SAFETY EVIDENCE FROM OBSERVATIONAL STUDIES ....................................................................... 11 4.3 ONGOING STUDIES ....................................................................................................................... 12 4.4 SCIENTIFIC CONCLUSION ABOUT STATUS OF EVIDENCE GENERATION .............................................. 12 5 REFERENCES ................................................................................................................................ 55 6 APPENDIX ...................................................................................................................................... 57 6.1 SEARCH STRATEGY TO IDENTIFY RANDOMISED CONTROLLED TRIALS ............................................... 57 6.2 SEARCH STRATEGY TO IDENTIFY OBSERVATIONAL STUDIES ............................................................ 60 6.3 SEARCH STRATEGY TO IDENTIFY ONGOING STUDIES ....................................................................... 62 6.4 FLOW DIAGRAMS ......................................................................................................................... 63 LIST OF TABLES AND FIGURES Table 2-1 Scope of the RCR ....................................................................................................................6 Table 4-1 Summary of findings (SoF) table for published RCTs related to effectiveness and safety of IFN and Novaferon ...................................................................................................................... 13 Table 4-2 Study characteristics of included RCTs ................................................................................ 27 Table 4-3 Study characteristics of included RCTs (continued) ............................................................. 31 Table 4-4 Study characteristics of included RCTs (continued) ............................................................. 35 Table 4-5 Ongoing trials IFN-α, single and in combination ................................................................... 41 Table 4-6 Ongoing trials IFN-α, single and in combination (continued) ................................................ 42 Table 4-7 Ongoing trials Single agents IFN β-1a and Novaferon ......................................................... 43 Table 4-8 Ongoing trials Single agents IFN β-1a and Novaferon (continued) ...................................... 46 Table 4-9 Ongoing trials Combination therapies IFN β-1a and Novaferon ........................................... 48 Table 4-10 Ongoing trials Single agents IFN β-1a and Novaferon (continued) .................................... 50 Table 4-11 Ongoing trials IFN β-1b, single and in combination ............................................................ 51 Table 4-12 Ongoing trials IFN Lambda ................................................................................................. 53 Table 6-1 Search strategy to identify randomised controlled studies.................................................... 58 Table 6-2 Search strategy to identify observational studies .................................................................. 60 Table 6-3 Search strategy to identify ongoing studies .......................................................................... 62 Appendix Figure 6-1. Flow diagram depicting the selection process of RCTs ...................................... 63 Appendix Figure 6-2. Flow diagram depicting the selection process of observational studies ............. 64 December 2020 EUnetHTA Joint Action 3 WP4 4 Rolling Collaborative Review - Living Report RCR13 - Interferon beta-1a (IFN β-1a) and Novaferon (Nova) for the treatment of COVID-19 LIST OF ABBREVIATIONS AE Adverse Event ATC Anatomical Therapeutic Chemical [Classification System] ATMP Advanced therapy medicinal product CI Confidence Interval DOI Declaration of interest EUnetHTA European Network of Health Technology Assessment GRADE Grading of Recommendations, Assessment, Development
Recommended publications
  • Physiology-2021-Abstract-Book.Pdf (Physoc.Org)
    Physiology 2021 Our Annual Conference 12 – 16 July 2021 Online | Worldwide #Physiology2021 Contents Prize Lectures 1 Symposia 7 Oral Communications 63 Poster Communications 195 Abstracts Experiments on animals and animal tissues It is a requirement of The Society that all vertebrates (and Octopus vulgaris) used in experiments are humanely treated and, where relevant, humanely killed. To this end authors must tick the appropriate box to confirm that: For work conducted in the UK, all procedures accorded with current UK legislation. For work conducted elsewhere, all procedures accorded with current national legislation/guidelines or, in their absence, with current local guidelines. Experiments on humans or human tissue Authors must tick the appropriate box to confirm that: All procedures accorded with the ethical standards of the relevant national, institutional or other body responsible for human research and experimentation, and with the principles of the World Medical Association’s Declaration of Helsinki. Guidelines on the Submission and Presentation of Abstracts Please note, to constitute an acceptable abstract, The Society requires the following ethical criteria to be met. To be acceptable for publication, experiments on living vertebrates and Octopus vulgaris must conform with the ethical requirements of The Society regarding relevant authorisation, as indicated in Step 2 of submission. Abstracts of Communications or Demonstrations must state the type of animal used (common name or genus, including man. Where applicable, abstracts must specify the anaesthetics used, and their doses and route of administration, for all experimental procedures (including preparative surgery, e.g. ovariectomy, decerebration, etc.). For experiments involving neuromuscular blockade, the abstract must give the type and dose, plus the methods used to monitor the adequacy of anaesthesia during blockade (or refer to a paper with these details).
    [Show full text]
  • Réponse Rapide
    2021-05-17 13:58 17 mai 2021 Réponse en continu COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur Une production de l’Institut national d’excellence en santé et en services sociaux (INESSS) 2021-05-17 13:58 Cette réponse a été préparée par les professionnels scientifiques de la Direction de l’évaluation et de la pertinence des modes d’intervention en santé et la Direction et de la Direction de l’évaluation des médicaments et des technologies à des fins de remboursement de l’Institut national d’excellence en santé et en services sociaux (INESSS). RESPONSABILITÉ L’INESSS assume l’entière responsabilité de la forme et du contenu définitif de ce document au moment de sa publication. Les positions qu’il contient ne reflètent pas forcément les opinions des personnes consultées aux fins de son élaboration. MISE À JOUR Suivant l’évolution de la situation, les conclusions de cette réponse mise à jour pourraient être appelées à changer. Dépôt légal Bibliothèque et Archives nationales du Québec, 2021 Bibliothèque et Archives Canada, 2021 ISBN 978-2-550-86479-0 (PDF) © Gouvernement du Québec, 2021 La reproduction totale ou partielle de ce document est autorisée à condition que la source soit mentionnée. Pour citer ce document : Institut national d’excellence en santé et en services sociaux (INESSS). COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur. Québec, Qc : INESSS; 2021. 123 p. L’Institut remercie les membres de son personnel qui ont contribué à l’élaboration du présent document. 2 2021-05-17 13:58 COVID-19 et biothérapies dirigées contre l’interleukine 6 ou son récepteur Le présent document ainsi que les constats qu’il énonce ont été rédigés en réponse à une interpellation du ministère de la Santé et des Services sociaux dans le contexte de la crise sanitaire liée à la maladie à coronavirus (COVID-19) au Québec.
    [Show full text]
  • Antivirals Against SARS-Cov-2 by Autumn?
    EDITORIALS BMJ: first published as 10.1136/bmj.n1215 on 17 May 2021. Downloaded from 1 St George’s, University of London, Antivirals against SARS-CoV-2 by autumn? London, UK An over ambitious target that risks forced errors 2 St George’s University Hospitals NHS Foundation Trust, London, UK David Smith, 1 , 2 Dipender Gill1 , 2 Correspondence to: D Gill 5 [email protected] The UK government has launched a covid-19 drugs. In the 1980s, trials showed that Cite this as: BMJ 2021;373:n1215 antivirals taskforce with the aim of deploying drugs azidothymidine improved survival in people with 1 http://dx.doi.org/10.1136/bmj.n1215 for home treatment by autumn this year. The HIV infection, and the drug was initially viewed as a Published: 17 May 2021 description suggests that the government wants direct success before viral resistance emerged.9 It became acting orally administered drugs that reduce clear that patients required a combination of three replication and help eliminate SARS-CoV-2 from the drugs in order to avoid resistance.10 More recently, body. Taken after a positive swab test result or the pandemic influenza strain H1N1 has developed prophylactically after exposure, these drugs could resistance to oseltamivir.11 If SARS-CoV-2 shares this reduce viral transmission, morbidity, and mortality. capacity to generate escape mutations, then multiple antiviral drugs may be required in combination for And they may well be needed. Vaccine efficacy effective treatment or prophylaxis. against symptomatic disease is 67-95%, with unknown durability and effectiveness against new The targets variants.2 Peak viral loads seem to determine the SARS-CoV-2 does present a few potential targets for duration and severity of symptoms,3 but current antiviral therapy.
    [Show full text]
  • Szczepionki I Leki Stosowane W Terapii COVID-19
    TERAPIA I LEKI Szczepionki i leki stosowane w terapii COVID-19 Jolanta B. Zawilska1, Katarzyna Kuczyńska1, Magdalena Gawior2, Martyna Kosiorek2, Katarzyna Dąbrowska2, Zuzanna Dominiak2, Amelia Baranowska2, Gabriela Skorupska2, Agnieszka Sujecka2, Klaudia Michalak2, Agata Rojek2, Adrianna Bakowicz2, Weronika Kowalczyk2, Aleksandra Wojciechowska2, Wiktoria Bęczkowska2, Patryk Maj2 1Zakład Farmakodynamiki, Wydział Farmaceutyczny, Uniwersytet Medyczny w Łodzi, Polska 2Uniwersytet Medyczny w Łodzi (student), Polska Farmacja Polska, ISSN 0014-8261 (print); ISSN 2544-8552 (on-line) Adres do korespondencji Konflikt interesów Jolanta B. Zawilska, Zakład Farmakodynamiki, Nie istnieje konflikt interesów. Wydział Farmaceutyczny, Uniwersytet Medyczny w Łodzi, ul. Muszyńskiego 1, 90-151 Łódź, Polska; Otrzymano: 2021.03.03 e-mail: [email protected] Zaakceptowano: 2021.03.30 Opublikowano on-line: 2021.04.08 Źródła finansowania Uniwersytet Medyczny w Łodzi, DOI Grant No. 503/3-011-01/503-31-002-19. 10.32383/farmpol/135224 ORCID Therapy of COVID-19: vaccines and drugs Jolanta Barbara Zawilska (ORCID iD: 0000-0002-3696-2389) The COVID-19 pandemic, caused by SARS-CoV-2 – a novel and highly Katarzyna Kuczyńska (ORCID iD: 0000-0003-3103-5874) infectious coronavirus, has been spreading around the world for over a year, Magdalena Gawior (ORCID iD: 0000-0001-8418-1467) and poses a serious threat to the public health. Numerous studies have Martyna Kosiorek (ORCID iD: 0000-0002-2133-7054) revealed the genome, structure and replication cycle of the SARS-CoV-2 virus Katarzyna Dąbrowska as well as the immune response to infection. Data from these studies provide (ORCID iD: 0000-0002-0782-194X) a firm basis for the development of strategies to prevent the further spread Zuzanna Dominiak (ORCID iD: 0000-0003-0917-7286) of COVID-19, as well as to synthesize effective and safe vaccines and drugs.
    [Show full text]
  • Electron Donor–Acceptor Capacity of Selected Pharmaceuticals Against COVID-19
    antioxidants Article Electron Donor–Acceptor Capacity of Selected Pharmaceuticals against COVID-19 Ana Martínez Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior SN, Ciudad Universitaria, Ciudad de México CP 04510, Mexico; [email protected] Abstract: More than a year ago, the first case of infection by a new coronavirus was identified, which subsequently produced a pandemic causing human deaths throughout the world. Much research has been published on this virus, and discoveries indicate that oxidative stress contributes to the possibility of getting sick from the new SARS-CoV-2. It follows that free radical scavengers may be useful for the treatment of coronavirus 19 disease (COVID-19). This report investigates the antioxidant properties of nine antivirals, two anticancer molecules, one antibiotic, one antioxidant found in orange juice (Hesperidin), one anthelmintic and one antiparasitic (Ivermectin). A molecule that is apt for scavenging free radicals can be either an electron donor or electron acceptor. The results I present here show Valrubicin as the best electron acceptor (an anticancer drug with three F atoms in its structure) and elbasvir as the best electron donor (antiviral for chronic hepatitis C). Most antiviral drugs are good electron donors, meaning that they are molecules capable of reduzing other molecules. Ivermectin and Molnupiravir are two powerful COVID-19 drugs that are not good electron acceptors, and the fact that they are not as effective oxidants as other molecules may be an advantage. Electron acceptor molecules oxidize other molecules and affect the conditions necessary for viral infection, such as the replication and spread of the virus, but they may also oxidize molecules that are essential for life.
    [Show full text]
  • Policy Brief 002 Update 07.2021
    Content ................................................................................................................................................................ 3 1 Background: policy question and methods ................................................................................................. 7 1.1 Policy Question ............................................................................................................................................. 7 1.2 Methodology ................................................................................................................................................. 7 1.3 Selection of Products for “Vignettes” ........................................................................................................ 10 2 Results: Vaccines ......................................................................................................................................... 13 2.1 Moderna Therapeutics—US National Institute of Allergy ..................................................................... 25 2.2 University of Oxford/ Astra Zeneca .......................................................................................................... 26 2.3 BioNTech/Fosun Pharma/Pfizer .............................................................................................................. 27 2.4 Janssen Pharmaceutical/ Johnson & Johnson .......................................................................................... 29 2.5 Novavax ......................................................................................................................................................
    [Show full text]
  • Policy Brief 002 Update 04.2021.Pdf
    .................................................................................................................................................................. 3 1 Background: policy question and methods ................................................................................................. 7 1.1 Policy Question ............................................................................................................................................. 7 1.2 Methodology ................................................................................................................................................. 7 1.3 Selection of Products for “Vignettes” ........................................................................................................ 10 2 Results: Vaccines ......................................................................................................................................... 13 2.1 Moderna Therapeutics—US National Institute of Allergy ..................................................................... 22 2.2 University of Oxford/ Astra Zeneca .......................................................................................................... 23 2.3 BioNTech/Fosun Pharma/Pfizer .............................................................................................................. 25 2.4 Janssen Pharmaceutical/ Johnson & Johnson .......................................................................................... 27 2.5 Novavax ......................................................................................................................................................
    [Show full text]
  • A Robust SARS-Cov-2 Replication Model in Primary Human Epithelial Cells at the Air Liquid Interface to Assess Antiviral Agents
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436907; this version posted April 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A robust SARS-CoV-2 replication model in primary human 2 epithelial cells at the air liquid interface to assess antiviral 3 agents 4 Thuc Nguyen Dan Do1, Kim Donckers1, Laura Vangeel1, Arnab K. Chatterjee2, Philippe A. Gallay3, Michael 5 D. Bobardt3, John P. Bilello4, Tomas Cihlar4, Steven De Jonghe1, Johan Neyts1*, Dirk Jochmans1* 6 1 KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory 7 of Virology and Chemotherapy, Leuven, Belgium. 8 2 CALIBR - Department of Medicinal Chemistry, the Scripps Research Institute, La Jolla, CA, USA. 9 3 CALIBR - Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, CA, U SA. 10 USA. 11 4 Gilead Sciences, Inc., Foster City, CA, USA. 12 *To whom correspondence may be addressed. Email: [email protected] and 13 [email protected] 14 ABSTRACT 15 There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid 16 in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells 17 (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air/liquid interface (ALI). These 18 cultures were infected at the apical side with one of two different SARS-CoV-2 isolates.
    [Show full text]
  • SARS-COV-2 Antiviral Therapeutics Summit Report, November 2020
    SARS-COV-2 ANTIVIRAL THERAPEUTICS SUMMIT REPORT Summit sponsored by the National Institute of Allergy and Infectious Diseases and the National Center for Advancing Translational Sciences NOVEMBER 6, 2020 National Institutes of Health Summit Report Authors Annaliesa Anderson, Pfzer James M. Anderson, Offce of the Director, NIH Kara Carter, Evotec* Tomas Cihlar, Gilead Sciences Anthony J. Conley, National Institute of Allergy and Infectious Diseases, NIH Mindy I. Davis, National Institute of Allergy and Infectious Diseases, NIH Mark Denison, Vanderbilt University Matthew D. Hall, National Center for Advancing Translational Sciences, NIH Daria Hazuda, Merck & Co. Stephanie Moore, University of Alabama at Birmingham George Painter, Emory University Pei-Yong Shi, University of Texas Medical Branch Richard Whitley, University of Alabama at Birmingham *Current affliation: Dewpoint Therapeutics -2- Summit Hosts Dr. Francis Collins, Director, National Institutes of Health (NIH) Dr. Anthony Fauci, Director, National Institute of Allergy and Infectious Diseases (NIAID) Dr. Christopher Austin, Director, National Center for Advancing Translational Sciences (NCATS) Summit Organizers James M. Anderson, Offce of the Director, NIH Kyle R. Brimacombe, NCATS, NIH Anthony J. Conley, NIAID, NIH Mindy I. Davis, NIAID, NIH Stephanie Ford-Scheimer, NCATS, NIH Abigail Grossman, NCATS, NIH Matthew D. Hall, NCATS, NIH -3- TABLE OF CONTENTS Introduction 5 Overview of the Virus and Therapeutics Approaches 7 Viral Replication Machinery 11 Proteases (Viral and Host) 18 Emerging Targets, Emerging Modalities 25 Preclinical Tools 28 Lessons from Other Viruses and Preparation for the Future 33 Summary of Discussions and Perspectives on the Challenges Ahead 38 Resources 43 References 47 -4- INTRODUCTION NIH SARS-COV-2 ANTIVIRAL THERAPEUTICS SUMMIT Presenters: Dr.
    [Show full text]
  • Remdesivir for Early COVID-19 Treatment of High-Risk Individuals Prior to Or at Early Disease Onset—Lessons Learned
    viruses Perspective Remdesivir for Early COVID-19 Treatment of High-Risk Individuals Prior to or at Early Disease Onset—Lessons Learned Lars Dölken 1,2,*, August Stich 3 and Christoph D. Spinner 4,5,* 1 Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, 97078 Würzburg, Germany 2 Helmholtz-Institute for RNA-Based Infection Research, 97080 Würzburg, Germany 3 Department of Tropical Medicine, Klinikum Würzburg Mitte, 97074 Würzburg, Germany; [email protected] 4 Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, 81675 Munich, Germany 5 German Center for Infection Research (DZIF), Partner Site Munich, Germany * Correspondence: [email protected] (L.D.); [email protected] (C.D.S.) Abstract: After more than one year of the COVID-19 pandemic, antiviral treatment options against SARS-CoV-2 are still severely limited. High hopes that had initially been placed on antiviral drugs like remdesivir have so far not been fulfilled. While individual case reports provide striking evidence for the clinical efficacy of remdesivir in the right clinical settings, major trials failed to demonstrate this. Here, we highlight and discuss the key findings of these studies and underlying reasons for their failure. We elaborate on how such shortcomings should be prevented in future clinical trials and pandemics. We suggest in conclusion that any novel antiviral agent that enters human trials should first be tested in a post-exposure setting to provide rapid and solid evidence for its clinical efficacy before initiating further time-consuming and costly clinical trials for more advanced disease.
    [Show full text]
  • TAG Mail – 26 August 2021 COVID-19 RESOURCES & ARTICLES of INTEREST Please Click This Link for the Cumulative Listing of COVID-19 Resources in Past TAG Mails
    TAG Mail: July to December 2021 Cumulative Listing of Reports, Publications, Medication Safety TAG Mail – 26 August 2021 COVID-19 RESOURCES & ARTICLES OF INTEREST Please click this link for the cumulative listing of COVID-19 resources in past TAG Mails. AUSTRALIAN Agency for Clinical Innovation, NSW (ACI) - Caring for adults with COVID-10 in the community. Updated guide to care for adults with Delta variant - link Australian Government Department of Health - ATAGI update following weekly COVID-19 meeting 18 August 2021 - link - PHLN and CDNA joint statement on SARS-CoV-2 rapid antigen tests (updated 23/8/21) - link - Shared decision making guide to COVID-19 vaccination for women who are pregnant, breastfeeding or planning pregnancy - link, factsheets in English and other languages - COVID-19 National Health Plan: Prescriptions via telehealth. Guides for prescribers & pharmacists - ATAGI clinical guidance on COVID-19 vaccine in Australia in 2021 (updated 20/8/21) - link MJA Podcasts - Episode 33: COVID-19 in children National COVID-19 Clinical Evidence Taskforce - Taskforce makes new conditional recommendation for sotrovimab - link - New immunodulatory treatments comparison table - link - Tocilizumab and baricitinib FAQs - Ivermectin FAQs NSW Health - COVID-19 vaccination for workers - link - COVID-19 Weekly Surveillance in NSW - Epidemiological week 31, ending 7 August 2021 - link - Safety Notice 018/21: Myocarditis and pericarditis after mRNA COVID-19 vaccines - Statewide Protocol for the Supply or Administration of COVID-19 Vaccine. PD2021_032 (13/08/21) - New ‘find the facts’ webpage which provides data on COVID-19 cases, testing and vaccination and maps showing case numbers and vaccination rates based on location.
    [Show full text]
  • The FDA-Approved Drug Cobicistat Synergizes with Remdesivir to Inhibit SARS-Cov-2 Replication
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434219; this version posted March 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The FDA-approved drug cobicistat synergizes with remdesivir to inhibit SARS-CoV-2 replication Iart Luca Shytaj1,2* , Mohamed Fares3, Bojana Lucic1,4, Lara Gallucci1, Mahmoud M. Tolba5, Liv Zimmermann6,7, Ahmed Taha Ayoub8, Mirko Cortese9, Christopher J. Neufeldt9, Vibor Laketa4,6, Petr Chlanda6,7, Oliver T. Fackler1,4, Steeve Boulant6, Ralf Bartenschlager4,9, Megan Stanifer9, Andrea Savarino10§, Marina Lusic1,4§. 1 Department of Infectious Diseases, Integrative Virology, Heidelberg University, Heidelberg, Germany. 2 Federal University of São Paulo, Infectious Diseases Department, São Paulo, Brazil. 3 Department of Hydrobiology, Veterinary Research Division, National Research Centre, Cairo, Egypt.. 4 German Center for Infection Research (DZIF), Heidelberg, Germany. 5 Pharmaceutical Division, Ministry of Health and Population, Faiyum, Egypt 6 Department of Infectious Diseases, Virology, CIID, Heidelberg University Hospital, Heidelberg, Germany 7 Schaller Research Groups, Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany 8 Biomolecular Simulation Center, Department of Pharmaceutical Chemistry, Heliopolis University, Cairo, Egypt 9 Department of Infectious Diseases, Molecular Virology, CIID, Heidelberg University, Heidelberg, Germany 10 Department of Infectious and Immune-Mediated Diseases, Italian Institute of Health, Rome, Italy * Correspondence: [email protected] §equal contribution Keywords: COVID-19, SARS-CoV-2, spike protein, direct-acting antivirals, cobicistat, remdesivir, drug repurposing. Abstract Combinations of direct-acting antivirals are needed to minimize drug-resistance mutations and stably suppress replication of RNA viruses.
    [Show full text]