Profile of Philip Cohen

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Philip Cohen Profile of Philip Cohen ir Philip Cohen, a biochemist like switch its activity on or off, but it elected as a foreign associate to can also stabilize a protein or allow it to the National Academy of Sci- be degraded or allow it to move from ences in 2008, remembers the one part of the cell to another part of Smoment in his distinguished career the cell.’’ when his studies in cell signaling and During his time in Seattle, Cohen pri- protein phosphorylation took off. The marily worked on glycogen phosphory- moment arrived during a 1978 seminar lase. The subject began to draw more of given by Thomas Vanaman at the Uni- his attention after he left Fischer’s labo- versity of Dundee (Dundee, Scotland, ratory and took a position in the newly UK). At that time, Cohen had been founded biochemistry department at the working on the first kinase to be stud- University of Dundee in 1971. ied, phosphorylase kinase, which helps After his first eureka! moment when to regulate the breakdown of glycogen. he discovered the connection between Cohen had purified the kinase to study calmodulin and phosphorylase kinase, how it was regulated by cAMP and cal- Cohen went on to discover other calmod- cium, but he could not untangle the ulin-dependent enzymes, including the mechanisms by which calcium activated first calcium- and calmodu- it. That afternoon, Vanaman spoke lin-dependent phosphatase, calcineurin. about work he had done on calmodulin, Calcineurin was later shown by others a calcium-binding protein and a known to activate a transcription factor in T intermediary in calcium-regulated pro- cells by removing phosphate groups, cesses. Vanaman’s descriptions of cal- which then up-regulates the production modulin—its small size and heat stabil- of interleukin-2 and prompts T cell ity—gave Cohen a better idea of the proliferation. perplexing faint blue smear that he had Philip Cohen These immune-system effects took on observed at the bottom of his poly- increased medical importance when re- acrylamide gels. Cohen had been so searchers discovered that the protein focused on the massive kinase subunits led Cohen to pursue a career in bio- was the target of the immunosuppres- controlled by cAMP that he had chemistry at University College London sant drug cyclosporine. Used mostly to missed the small protein that ran off (London, UK). ‘‘Somehow I thought prevent transplant rejection, cyclospor- the end of the gel. that biochemistry must be a cross be- ine had been on the market for 8 years Rushing back to his laboratory after tween chemistry and bird-watching,’’ before researchers discovered that it Vanaman’s seminar, Cohen prepared a Cohen said, recalling that the subject targeted calcineurin. different type of gel and identified a initially did not hold much interest for A Multiplicity Uncovered small band ahead of the dye front—a him. band that appeared even after the sam- Only when he began his first indepen- Cohen’s studies on phosphorylase ki- ple had been boiled, indicating the com- dent laboratory projects in his third year nase had unexpectedly led him to dis- ponent was heat-stable. ‘‘Then I knew at the university did he decide to con- cover that it was phosphorylated at mul- what the answer was going to be,’’ Co- tinue with biochemistry. He discovered tiple sites. The other enzymes known to hen said. ‘‘This must be the missing that, ‘‘with my own hands, I could actu- be regulated by phosphorylation only component.’’ Shortly after, Cohen’s hy- ally find out something that no one had had one site. ‘‘It seemed to me an extra pothesis was confirmed: calmodulin me- found out before.’’ sophistication in the control system,’’ he diated the action of calcium ions on Cohen graduated from University said. phosphorylase kinase. College London with his Ph.D. in bio- He stumbled across glycogen synthase Cohen has remained at the University chemistry in 1969, where he worked in a literature review, and suspected of Dundee since 1971 and has worked with Michael Rosemeyer in physical that reports of a single phosphorylation on many areas of signal transduction, protein chemistry to identify the sub- site on the enzyme were wrong. As he from protein phosphorylation to ubiq- units of glucose-6-phosphate dehydroge- investigated the protein, he found that uitination. His inaugural article, pub- nase. He then accepted a postdoctoral not only did glycogen synthase have sev- lished in a recent issue of PNAS, identi- fellowship at the University of Washing- eral phosphorylation sites, each phos- fies the phosphorylation sites on Pellino ton (Seattle, WA) with future Nobel phate group was introduced by a sepa- that activate this signaling protein that Laureate Edmond Fischer, examining rate kinase. ‘‘So the more we studied controls ubiquitination events in the in- protein phosphorylation and the regula- this enzyme, actually, the more compli- nate immune system (1). tion of glycogen metabolism. cated it became,’’ Cohen said. ‘‘We At the time, protein phosphorylation eventually found it was phosphorylated In the Beginning was thought to be a specific mechanism on no less than 9 different sites by 7 Born just outside London in 1945, Philip confined to glycogen metabolism. In different kinases.’’ Cohen spent much of his childhood ex- fact, the process is a near-universal reg- Cohen and his team identified a third ploring the woods around his house. His ulatory system that evolved in early pro- kinase, glycogen synthase kinase 3 father worked as a printing ink technol- karyotes that regulates protein function (GSK3), and showed that the phosphate ogist, designing color inks for use in sev- in a simple, flexible, and—perhaps most eral of Britain’s major publications. The importantly—reversible process. ‘‘When This is a Profile of a recently elected member of the National combination of an interest in natural you attach a phosphate to a protein,’’ Academy of Sciences to accompany the member’s Inaugu- history and an aptitude for chemistry Cohen said, ‘‘it can do something simple ral Article on page 4584 in issue 12 of volume 106. 7692–7694 ͉ PNAS ͉ May 12, 2009 ͉ vol. 106 ͉ no. 19 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0903588106 Downloaded by guest on September 27, 2021 PROFILE groups added by GSK3 in muscle cells nases (MAPKs) played a role in this MAPK pathway works to prevent the were removed within minutes after stim- process. The classical MAPK signal activation of MAP2K1 by the protein ulating the cells with insulin. So, Cohen transduction pathway links extracellular kinase Raf. figured, either the insulin inactivated signals (mitogens) to downstream intra- These collaborations opened Cohen’s GSK3, or it turned on a phosphatase cellular effects. Although the MAPK eyes not just to the therapeutic poten- that removed the phosphate groups, signaling cascade turned out not to re- tials of kinase inhibitors and their use as which activated glycogen synthase. late specifically to insulin signaling, as reagents in basic research, but also to He later established how insulin af- Cohen had initially thought, it played a the development of a relationship be- fected GSK3 through a series of chemi- role in cellular growth and proliferation. tween industry and academia. Between cal reactions regulated by phosphoryla- His work on MAPK signaling led to 1996 and 1998, Cohen persuaded 6 tion. His research group showed that the identification and characterization of pharmaceutical companies to help sup- protein kinase B (PKB, also called Akt) MAP kinase kinase 1 (MAP2K1), which port his signal transduction unit, part of switched off GSK3 activity and with integrates the extracellular signals by the protein phosphorylation unit he Dario Alessi discovered that PKB was phosphorylating MAP kinase. Cohen’s founded at the University of Dundee. activated by 3-phosphoinositide-depen- group then used a cell line whose stimu- The corporate collaboration, which dent protein kinase 1 (PDK1). These lation by nerve growth factor (NGF) has recently been renewed for a third series of studies explained how insulin, activated MAPK signaling and caused time, ‘‘led to the development of a num- acting through the ‘‘second messenger’’ the cells to differentiate into a neuronal- ber of new technologies, like kinase pro- phosphatidylinositol (3,4,5)-trisphos- like phenotype. The effect of NGF con- filing, that have helped to accelerate the phate, activated glycogen synthase in trasted with previous studies showing development of specific inhibitors of muscle (2). that epidermal growth factor (EGF), kinases, and to a lot of useful new tools As he continued to work on glycogen which also activates the MAPK signaling and reagents for the cell signaling com- metabolism, he also started to look at pathway, does not cause neuronal munity,’’ Cohen said. protein phosphorylation more globally, differentiation. This research has resulted in the de- classifying the various protein phospha- velopment of new therapeutic agents. tases involved in different cellular pro- cesses. In 1983, he published a series of ‘‘With my own hands, The ‘‘Next Big Thing’’ 7 articles that examined the different A few years ago, Cohen switched his phosphatases, culminating in a review in I could find out research to the study of the innate im- Science that defined 4 different classes mune system, which led him to focus on of protein phosphatases (3). something no one a new area of cellular signaling: ubiq- ‘‘Until we actually carried out that uitination. Just as phosphorylation in- study,’’ Cohen said, ‘‘different people in had found before.’’ volves the reversible attachment of the world were all working on what they phosphate groups to enzymes, ubiquiti- thought were different phosphatases, nation reversibly attaches to enzymes a each of which removed phosphate from ‘‘I found that there was an important small protein called ubiquitin.
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by G 12
    The Journal of Neuroscience, August 15, 2002, 22(16):6863–6875 Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by G␣ ␣ 12 and G 13 by Rho-Independent and Rho-Dependent Mechanisms C. Laura Sayas, Jesu´ s Avila, and Francisco Wandosell Centro de Biologı´a Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientı´ficas, Universidad Auto´ noma de Madrid, Cantoblanco, Madrid 28049, Spain ␣ ␣ ␣ ␣ Glycogen synthase kinase-3 (GSK-3) was generally considered tively active G 12 (G 12QL) and G 13 (G 13QL) in Neuro2a cells a constitutively active enzyme, only regulated by inhibition. induces upregulation of GSK-3 activity. Furthermore, overex- Here we describe that GSK-3 is activated by lysophosphatidic pression of constitutively active RhoA (RhoAV14) also activates ␣ acid (LPA) during neurite retraction in rat cerebellar granule GSK-3 However, the activation of GSK-3 by G 13 is blocked by neurons. GSK-3 activation correlates with an increase in GSK-3 coexpression with C3 transferase, whereas C3 does not block ␣ tyrosine phosphorylation. In addition, LPA induces a GSK-3- GSK-3 activation by G 12. Thus, we demonstrate that GSK-3 is ␣ ␣ mediated hyperphosphorylation of the microtubule-associated activated by both G 12 and G 13 in neuronal cells. However, ␣ protein tau. Inhibition of GSK-3 by lithium partially blocks neu- GSK-3 activation by G 13 is Rho-mediated, whereas GSK-3 ␣ rite retraction, indicating that GSK-3 activation is important but activation by G 12 is Rho-independent. The results presented not essential for the neurite retraction progress. GSK-3 activa- here imply the existence of a previously unknown mechanism of ␣ tion by LPA in cerebellar granule neurons is neither downstream GSK-3 activation by G 12/13 subunits.
    [Show full text]
  • Chem331 Glycogen Metabolism
    Glycogen metabolism Glycogen review - 1,4 and 1,6 α-glycosidic links ~ every 10 sugars are branched - open helix with many non-reducing ends. Effective storage of glucose Glucose storage Liver glycogen 4.0% 72 g Muscle glycogen 0.7% 245 g Blood Glucose 0.1% 10 g Large amount of water associated with glycogen - 0.5% of total weight Glycogen stored in granules in cytosol w/proteins for synthesis, degradation and control There are very different means of control of glycogen metabolism between liver and muscle Glycogen biosynthetic and degradative cycle Two different pathways - which do not share enzymes like glycolysis and gluconeogenesis glucose -> glycogen glycogenesis - biosynthetic glycogen -> glucose 1-P glycogenolysis - breakdown Evidence for two paths - Patients lacking phosphorylase can still synthesize glycogen - hormonal regulation of both directions Glycogenolysis (glycogen breakdown)- Glycogen Phosphorylase glycogen (n) + Pi -> glucose 1-p + glycogen (n-1) • Enzyme binds and cleaves glycogen into monomers at the end of the polymer (reducing ends of glycogen) • Dimmer interacting at the N-terminus. • rate limiting - controlled step in glycogen breakdown • glycogen phosphorylase - cleavage of 1,4 α glycosidic bond by Pi NOT H2O • Energy of phosphorolysis vs. hydrolysis -low standard state free energy change -transfer potential -driven by Pi concentration -Hydrolysis would require additional step s/ cost of ATP - Think of the difference between adding a phosphate group with hydrolysis • phosphorylation locks glucose in cell (imp. for muscle) • Phosphorylase binds glycogen at storage site and the catalytic site is 4 to 5 glucose residues away from the catalytic site. • Phosphorylase removes 1 residue at a time from glycogen until 4 glucose residues away on either side of 1,6 branch point – stericaly hindered by glycogen storage site • Cleaves without releasing at storage site • general acid/base catalysts • Inorganic phosphate attacks the terminal glucose residue passing through an oxonium ion intermediate.
    [Show full text]
  • The Origins of Protein Phosphorylation
    historical perspective The origins of protein phosphorylation Philip Cohen The reversible phosphorylation of proteins is central to the regulation of most aspects of cell func- tion but, even after the first protein kinase was identified, the general significance of this discovery was slow to be appreciated. Here I review the discovery of protein phosphorylation and give a per- sonal view of the key findings that have helped to shape the field as we know it today. he days when protein phosphorylation was an abstruse backwater, best talked Tabout between consenting adults in private, are over. My colleagues no longer cringe on hearing that “phosphorylase kinase phosphorylates phosphorylase” and their eyes no longer glaze over when a “”kinase kinase kinase” is mentioned. This is because protein phosphorylation has gradu- ally become an integral part of all the sys- tems they are studying themselves. Indeed it would be difficult to find anyone today who would disagree with the statement that “the reversible phosphorylation of proteins regu- lates nearly every aspect of cell life”. Phosphorylation and dephosphorylation, catalysed by protein kinases and protein phosphatases, can modify the function of a protein in almost every conceivable way; for Carl and Gerty Cori, the 1947 Nobel Laureates. Picture: Science Photo Library. example by increasing or decreasing its bio- logical activity, by stabilizing it or marking it for destruction, by facilitating or inhibiting movement between subcellular compart- so long before its general significance liver enzyme that catalysed the phosphory- ments, or by initiating or disrupting pro- was appreciated? lation of casein3. Soon after, Fischer and tein–protein interactions.
    [Show full text]
  • AMP-Activated Protein Kinase: the Current Landscape for Drug Development
    REVIEWS AMP-activated protein kinase: the current landscape for drug development Gregory R. Steinberg 1* and David Carling2 Abstract | Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established. Cardiovascular disease Dramatic improvements in health care coupled with identifying a unifying mechanism that could link these (CVD). A term encompassing an increased standard of living, including better nutri- changes to multiple branches of metabolism followed diseases affecting the heart tion and education, have led to a remarkable increase in the discovery that the AMP-activated protein kinase or circulatory system. human lifespan1. Importantly, the number of years spent (AMPK) provided a common regulatory mechanism in good health is also increasing2. Despite these positive for inhibiting both cholesterol (through phosphoryla- Non-alcoholic fatty liver disease developments, there are substantial risks that challenge tion of HMG-CoA reductase (HMGR)) and fatty acid (NAFLD). A very common continued improvements in human health. Perhaps the (through phosphorylation of acetyl-CoA carboxylase disease in humans in which greatest threat to future health is a chronic energy imbal- (ACC)) synthesis8 (BOx 1).
    [Show full text]
  • Glycogenosis Due to Liver and Muscle Phosphorylase Kinase Deficiency
    Pediat. Res. 15: 299-303 (198 1) genetics muscle glycogenosis phosphorylase kinase deficiency liver Glycogenosis Due to Liver and Muscle Phosphorylase Kinase Deficiency N. BASHAN. T. C. IANCU. A. LERNER. D. FRASER, R. POTASHNIK. AND S. W. MOSES'"' Pediatric Research Laborarorv. Soroka Medical Center. Iaculr~of Health Sciences. Ben-Gurion Universi!,' of Negev. Beer-Sheva, and Department of Pediatrics. Carmel Hospiral. Huifa. Israel Summary hepatomegaly. The family history disclosed that two sisters were similarly affected, whereas one older brother was apparently A four-year-old Israeli Arab boy was found to have glycogen healthy. accumulation in both liver and muscle without clinical symptoms. Past history was unremarkable. The patient's height was below Liver phosphorylase kinase (PK) activity was 20% of normal, the third percentile for his age in contrast to a normal weight. He resulting in undetectable activity of phosphorylase a. Muscle PK had a doll face and a protuberant abdomen. The liver was palpable activity was about 25% of normal, resulting in a marked decrease 9 cm below the costal margin. Slight muscular hypotonia and of phosphorylase a activity. weakness were noticeable with normal tendon reflexes. He had Two sisters showed a similar pattern, whereas one brother had slightly abnormal liver function tests. a fasting blood sugar of 72 normal PK activity. The patient's liver protein kinase activity was mg %, a normal glucagon test. and no lactic acidemia or uricemia normal. Addition of exogenous protein kinase did not affect PK but slight lipidemia. Electronmicroscopic studies of a liver biopsy activity, whereas exogenous PK restored phosphorylase activity revealed marked deposition of glycogen.
    [Show full text]
  • Expression, Purification, Characterization, and Site-Directed Mutagenesis of Phosphorylase Kinase [Upsilon] Subunit " (1994)
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1994 Expression, purification, characterization, and site- directed mutagenesis of phosphorylase kinase [upsilon] subunit Chi-Ying F. Huang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Huang, Chi-Ying F., "Expression, purification, characterization, and site-directed mutagenesis of phosphorylase kinase [upsilon] subunit " (1994). Retrospective Theses and Dissertations. 10611. https://lib.dr.iastate.edu/rtd/10611 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. I INFORMATION TO USERS This manuscript bas been reproduced from the microfilm master. UMI films the text directly fi'om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Inhibition of Glycogen Synthase Kinase 3 Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle Svetlana E
    Inhibition of Glycogen Synthase Kinase 3 Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle Svetlana E. Nikoulina,1,2 Theodore P. Ciaraldi,1,2 Sunder Mudaliar,1,2 Leslie Carter,1,2 Kirk Johnson,3 and Robert R. Henry1,2 Glycogen synthase kinase (GSK)-3 has been implicated on insulin action, using mechanisms that differ from and in the regulation of multiple cellular physiological pro- are additive to those of insulin. Diabetes 51:2190–2198, cesses in skeletal muscle. Selective cell-permeable re- 2002 versible inhibitors (INHs) of GSK-3 (CT98014 and CHIR98023 [Chiron, Emeryville, CA] and LiCl) were used to evaluate the role of GSK-3 in controlling glucose metabolism. Acute treatment (30 min) of cultured hu- lycogen synthase kinase (GSK)-3 is a serine/ man skeletal muscle cells with either INH resulted in a threonine kinase originally discovered because dose-dependent activation of glycogen synthase (GS) of its ability to phosphorylate and inhibit gly- ϳ ␮ with a maximally effective concentration of 2 mol/l. cogen synthase (GS) (1). Human GSK-3 exists The maximal acute effect of either INH on GS (103 ؎ G as two isoforms, ␣ and ␤, encoded by two distinct genes, 25% stimulation over basal) was greater than the max- -imal insulin response (48 ؎ 9%, P < 0.05 vs. INH); LiCl located on chromosomes 19q13.1-2 and 3q13.3-q21, respec was as effective as insulin. The GSK-3 inhibitor effect, tively (2). GSK-3 is constitutively active in resting cells and like that of insulin, was on the activation state (frac- is inhibited by several hormones such as insulin, endothe- tional velocity [FV]) of GS.
    [Show full text]
  • Inhibition of Calmodulin Increases Intracellular Survival of Salmonella in Chicken Macrophage Cells T ⁎ Haiqi Hea, , Ryan J
    Veterinary Microbiology 232 (2019) 156–161 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic Inhibition of calmodulin increases intracellular survival of Salmonella in chicken macrophage cells T ⁎ Haiqi Hea, , Ryan J. Arsenaultb, Kenneth J. Genovesea, Christina L. Swaggertya, Casey Johnsonb, David J. Nisbeta, Michael H. Koguta a Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States b Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, United States ARTICLE INFO ABSTRACT Keywords: Calcium (Ca2+) is a pivotal intracellular second messenger and calmodulin (CaM) acts as a multifunctional Calmodulin Ca2+-binding protein that regulates downstream Ca2+ dependent signaling. Together they play an important Kinome role in regulating various cellular functions, including gene expression, maturation of phagolysosome, apoptosis, Nitric oxide and immune response. Intracellular Ca2+ has been shown to play a critical role in Toll-like receptor-mediated Salmonella immune response to microbial agonists in the HD11 chicken macrophage cell line. The role of that the Ca2+/ Macrophage cell CaM pathway plays in the intracellular survival of Salmonella in chicken macrophages has not been reported. In Chicken this study, kinome peptide array analysis indicated that the Ca2+/CaM pathway was significantly activated when chicken macrophage HD11 cells were infected with S. Enteritidis or S. Heidelberg. Further study de- monstrated that treating cells with a pharmaceutical CaM inhibitor W-7, which disrupts the formation of Ca2+/ CaM, significantly inhibited macrophages to produce nitric oxide and weaken the control of intracellular Salmonella replication. These results strongly indicate that CaM plays an important role in the innate immune response of chicken macrophages and that the Ca2+/CaM mediated signaling pathway is critically involved in the host cell response to Salmonella infection.
    [Show full text]
  • The Glycogen Phosphorylase
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 The glycogen phosphorylase/ phosphorylase kinase interaction: effects of mutations in the amino-terminal region of glycogen phosphorylase Alyssa Christine Biorn Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation Biorn, Alyssa Christine, "The glycogen phosphorylase/ phosphorylase kinase interaction: effects of mutations in the amino-terminal region of glycogen phosphorylase " (1999). Retrospective Theses and Dissertations. 12198. https://lib.dr.iastate.edu/rtd/12198 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Proceedings of the Nutrition Society Plenary Lecture Energy Sensing By
    Proceedings of the Nutrition Society (2011), 70, 92–99 doi:10.1017/S0029665110003915 g The Author 2010 First published online 11 November 2010 The Summer Meeting of the Nutrition Society hosted by the Scottish Section was held at Heriot-Watt University, Edinburgh on 28 June–1 July 2010 Conference on ‘Nutrition and health: cell to community’ Plenary Lecture Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism D. Grahame Hardie College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status, and a regulator of energy balance at both the cellular and whole body levels. Although ubiquitously expressed, its function is best understood in skeletal muscle. AMPK contains sites that reversibly bind AMP or ATP, with an increase in cellular AMP:ATP ratio (signalling a fall in cellular energy status) switching on the kinase. In muscle, AMPK activation is therefore triggered by sustained contraction, and appears to be particularly important in the metabolic changes that occur in the transition from resistance to endurance exercise. Once activated, AMPK switches on catabolic processes that generate ATP, while switching off energy-requiring processes not essential in the short term. Thus, it acutely activates glucose uptake (by promoting translocation of the transporter GLUT4 to the membrane) and fatty acid oxidation, while switching off glycogen synthesis and protein synthesis (the later via inactivation of the mammalian target-of- rapamycin pathway). Prolonged AMPK activation also causes some of the chronic adaptations to endurance exercise, such as increased GLUT4 expression and mitochondrial biogenesis.
    [Show full text]
  • Structural Basis and Prediction of Substrate Specificity in Protein Serine͞threonine Kinases
    Structural basis and prediction of substrate specificity in protein serine͞threonine kinases Ross I. Brinkworth, Robert A. Breinl, and Bostjan Kobe* Department of Biochemistry and Molecular Biology and Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia Edited by Susan S. Taylor, University of California at San Diego, La Jolla, CA, and approved November 18, 2002 (received for review July 16, 2002) The large number of protein kinases makes it impractical to an automated prediction of optimal substrate peptides by using determine their specificities and substrates experimentally. Using only the amino acid sequence of the protein kinase as input. To the available crystal structures, molecular modeling, and sequence explore the utility of the method, we used PREDIKIN to analyze analyses of kinases and substrates, we developed a set of rules the signaling pathways in two cellular processes in yeast, cell governing the binding of a heptapeptide substrate motif (sur- cycle control and DNA damage checkpoints, and predicted new rounding the phosphorylation site) to the kinase and implemented connections in these pathways. Our method should be generally these rules in a web-interfaced program for automated prediction applicable to identifying possible substrate proteins for protein of optimal substrate peptides, taking only the amino acid sequence serine͞threonine kinases and should aid in unraveling signaling of a protein kinase as input. We show the utility of the method by pathways in which these proteins may be involved. analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method Materials and Methods generally applicable for identifying possible substrate proteins for Identification of Binding Sites and Sequence Motifs.
    [Show full text]