The Potential Detrimental Impact of Galactic Cosmic Radiation on Central Nervous System and Hematopoietic Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Potential Detrimental Impact of Galactic Cosmic Radiation on Central Nervous System and Hematopoietic Stem Cells THE POTENTIAL DETRIMENTAL IMPACT OF GALACTIC COSMIC RADIATION ON CENTRAL NERVOUS SYSTEM AND HEMATOPOIETIC STEM CELLS By RUTULKUMAR UPENDRABHAI PATEL Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Scott M. Welford, Ph.D Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY January, 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Rutulkumar Upendrabhai Patel Candidate for the Doctor of Philosophy degree *. (signed) Derek Taylor (Committee Chair) Scott M. Welford (Dissertation Advisor) Stanton L. Gerson (Committee Member) Marvin Nieman (Committee Member) Jennifer Yu (Committee Member) (date) December 3rd, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. ii Dedication I would like to dedicate this dissertation to my parents, Upendrabhai and Ujvalakumari Patel, who supported my wishes and ambitions despite being lived most of their lives in a lower-middle class family income. They sacrificed a lot to make sure a better life for their children. I would also like to dedicate this to my two sisters, Ekta and Vanita, for their support and encouragement over the years. iii Table of Contents Table of Contents ……………………………………………………………….. iv List of Figures ………………………………………………………………….. viii Acknowledgements ……………………………………………………………. xii Abstract ……………………………………………………………….…………. 1 Chapter 1: Introduction and Background ………………………………….. 3 1.1 Radiation, DNA Damage, and Carcinogenesis …………………………... 3 1.1.1 Space Radiation Environment and Induction of DNA Damage …………………………………………………………… 8 1.1.2 Radiation Induced Carcinogenesis ……………….................... 10 1.2 Hematopoietic Stem Cell Niche and Functions …………………………… 12 1.2.1 Low-LET Irradiation and HSC Injuries …………………………. 16 1.2.2 High-LET Irradiation Impact on HSCs …………………………. 17 1.3 Importance of Mismatch Repair ……………………………………………. 20 1.3.1 Compromised MMR and Cancer ………………….................. 25 1.3.2 MLH1, an Important MMR Component ………………………… 26 1.4 Radiation Exposure and Central Nervous System ……………………….. 27 1.4.1 Harmful Effects of Low-LET Irradiation on CNS ………………. 31 1.4.2 High-LET Irradiation Disrupts CNS functions …………………. 32 1.5 Statement of Purpose ……………………………………………………… 32 iv Chapter 2: Long-term deficits in behavior performances caused by low- and high-linear energy transfer radiation …………………….......................... 37 2.1 Abstract ………………………………………………………………………. 37 2.2 Introduction ………………………………………………………………….. 39 2.3 Materials and Methods ……………………………………………………… 41 2.4 Results ………………………………………………………………………... 46 2.5 Discussion ……………………………………………………………………. 50 2.6 Acknowledgements ……………………………………………................... 55 Chapter 3: MMR deficiency does not sensitize or compromise the function of hematopoietic stem cells to low and high LET radiation …………….. 64 3.1 Abstract ………………………………………………………………………. 64 3.2 Introduction …………………………………………………………………... 66 3.3 Materials and Methods ……………………………………………………… 69 3.4 Results ………………………………………………………………………... 72 3.5 Discussion ……………………………………………………………………. 78 3.6 Acknowledgements …………………………………………………………. 81 v Chapter 4: Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure ………………………………… 100 4.1 Abstract ……………………………………………………………………... 100 4.2 Introduction …………………………………………………………………. 102 4.3 Materials and Methods …………………………………………………….. 104 4.4 Results ………………………………………………………………………. 107 4.5 Discussion ………………………………………………………………….. 113 4.6 Acknowledgements ………………………………………………………… 117 Chapter 5: Age related loss of Mlh1 in hematopoietic stem cells accelerates tumorigenesis post simulated solar or galactic cosmic radiation exposure ………………………………………………………………………………………. 139 Chapter 6: Discussion and Future Directions ……………………………. 149 6.1 Tumorigenesis depends on LET of radiation source and Mlh1 status of HSCs ………………………………………………………………………………………. 152 6.2 Determine the impact of mixed beam GCR exposure on tumorigenesis of Mlh1 chimeric mouse model …………………………………………………………. 157 6.3 Define the mitigating potential of dietary polyamines as a countermeasure for GCR induced tumorigenesis …………………………………………………... 161 vi 6.4 Concluding Remarks ……………………………………………………... 163 References ……………………………………………………………………... 166 vii List of Figures Figure 1.1: Overview of DNA Damage, Repair Mechanisms, and Consequences …………………………………………………………………………………………. 6 Figure 1.2: Overview of Hematopoietic Stem Cell Niche Components and Hematopoiesis …………………………………………………………………… 14 Figure 1.3: Schematic Representation of Mismatch Repair Post Replication ………………………………………………………………………………………... 23 Figure 1.4: Symptoms and Timeline for the Development of IR-induced Brain Injuries …………………………………………………………………………….. 29 Figure 2.1: Diminished activity is a late toxicity from low- and high-LET radiation ………………………………………………………………………………………... 56 Figure 2.2: Long-term motor coordination defects were revealed after low- and high-LET radiation ……………………………………………………………….. 58 Figure 2.3: Low- and high-LET radiation cause long-term recognition memory loss ………………………………………………………………………………………... 60 Figure 2.4: Transient spatial memory loss is caused by γ-ray and 56Fe ion radiation ………………………………………………………………................................... 62 Figure 3.1: High LET radiation induces similar long term damage to the bone marrow as γ radiation ……………………………………………………………. 82 Figure 3.2: High LET radiation is more damaging to clonogenic capacity of stem cells than low LET radiation, but independent of MMR status ………………. 84 viii Figure 3.3: Blood counts demonstrate similar acute damage to the hematopoietic system across LET ………………………………………………………………. 86 Figure 3.4: Mlh1 knockout mice display enhanced sensitivity to IR ………………………………………………………………………………………... 88 Figure 3.5: Long term effects on hematopoiesis by IR is independent of MMR status ……………………………………………………………………………… 90 Figure 3.6: Defects in Mlh1 function do not enhance decreased competitive repopulation caused by IR ………………………………………………………. 92 Supplementary Figure 3.1: Myeloid CFU survival post radiation exposure ………………………………………………………………………………………... 94 Supplementary Figure 3.2: Lymphocyte counts in Mlh1+/+ and Mlh1-/- mice ………………………………………………………………………………………. 96 Supplementary Figure 3.3: Bone marrow cellularity in Mlh1+/+ and Mlh1-/- mice ………………………………………………………………………………………... 98 Figure 4.1: Long-term tumorigenesis assay post low- and high-LET radiation exposure ………………………………………………………………………… 119 Figure 4.2: Histopathology of tumors from Mlh1+/+ and Mlh1+/- mice ………………………………………………………………………………………. 121 Figure 4.3: Immunohistochemistry of lymphomas from Mlh1+/+ and Mlh1+/- mice ………………………………………………………………………………………. 123 ix Figure 4.4: Microsatellite instability found in Mlh1+/+ and Mlh1+/- tumors ………………………………………………………………………………………. 125 Figure 4.5: Whole exome sequencing analysis of Mlh1+/+ and Mlh1+/- TRB lymphomas ……………………………………………………………………… 127 Figure 4.6: Correlation between frequently mutated mouse TRB lymphoma genes vs human leukemia genes ……………………………………………………... 129 Supplementary Figure 4.1: HSC acute functional assays post radiation exposure ………………………………………………………………………………………. 131 Supplementary Figure 4.2: HSC differentiation independent of Mlh1 status ………………………………………………………………………………………. 133 Figure 5.1: 1H ion and 28Si ion irradiation affects HSC acute function, but not long- term differentiation ……………………………………………………………… 143 Figure 5.2: Incidence of tumorigenesis in Mlh1+/+ and Mlh1+/- mice post 1H ion and 28Si ion exposure ……………………………………………………………….. 145 Figure 5.3: Gene expression profile of Mlh1+/+ vs Mlh1+/- TRB lymphomas ………………………………………………………………………………………. 147 Figure 6: Summary explains the detrimental impact of GCR on mouse brain and hematopoietic stem cell ………………………………………………………... 150 Figure 6.1: The impact of LET and Mlh1 status on GCR induced tumorigenesis ………………………………………………………………………………………. 155 x Figure 6.2: Generation of Mlh1-/- chimeric mouse model and study of tumorigenesis …………………………………………………………………… 159 xi Acknowledgements I came to the United States in 2007 to pursue my career in the field of science and it was an exciting phase of my life to be in a vast country with plenty of opportunities around, but soon a honeymoon period was vanished and a real struggle began to find my place. Finding the first job was a really difficult task after graduating with Master’s degree and a minimal laboratory experience. At that time, Dr. Rajendra Mehta gave me an opportunity to kick start my career at IIT Research Institute, Chicago where I found my love for cancer research, and I knew that I had found my career path. The second opportunity was given to me by Dr. Nancy Oleinick at the CWRU, where she constantly supported and encouraged me to further pursue my education by getting into Ph.D. program. While working under excellent supervision of Dr. Oleinick, I met Dr. Scott Welford and came across a project funded by NASA, which immediately grabbed my attention. At that moment, I decided to pursue my Ph.D. under Dr. Welford’s mentorship. He taught me many lessons over the years but the importance of “asking the right question” to do a good science was the most insightful advice he ever gave me. Dr. Stanton Gerson, despite being extremely busy with multiple responsibilities, gave his precious time and advice throughout my journey. Dr. Derek Taylor, Dr. Marvin Nieman, and Dr. Jennifer Yu were very instrumental in providing new perspective and kept me on the track throughout
Recommended publications
  • Glossary Derived From: Human Research Program Integrated Research Plan, Revision A, (January 2009)
    Glossary derived from: Human Research Program Integrated Research Plan, Revision A, (January 2009). National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas 77058, pages 232-280. Report No. 153: Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit (2006). National Council on Radiation Protection and Measurements, pages 309-318. Reprinted with permission of the National Council on Radiation Protection and Measurements, http://NCRPonline.org . Managing Space Radiation Risk in the New Era of Space Exploration (2008). Committee on the Evaluation of Radiation Shielding for Space Exploration, National Research Council. National Academies Press, pages 111-118. -A- AAPM: American Association of Physicists in Medicine. absolute risk: Expression of excess risk due to exposure as the arithmetic difference between the risk among those exposed and that obtaining in the absence of exposure. absorbed dose (D): Average amount of energy imparted by ionizing particles to a unit mass of irradiated material in a volume sufficiently small to disregard variations in the radiation field but sufficiently large to average over statistical fluctuations in energy deposition, and where energy imparted is the difference between energy entering the volume and energy leaving the volume. The same dose has different consequences depending on the type of radiation delivered. Unit: gray (Gy), equivalent to 1 J/kg. ACE: Advanced Composition Explorer Mission, launched in 1997 and orbiting the L1 libration point to sample energetic particles arriving from the Sun and interstellar and galactic sources. It also provides continuous coverage of solar wind parameters and solar energetic particle intensities (space weather). When reporting space weather, it can provide an advance warning (about one hour) of geomagnetic storms that can overload power grids, disrupt communications on Earth, and present a hazard to astronauts.
    [Show full text]
  • Cherenkov Radiation
    TheThe CherenkovCherenkov effecteffect A charged particle traveling in a dielectric medium with n>1 radiates Cherenkov radiation B Wave front if its velocity is larger than the C phase velocity of light v>c/n or > 1/n (threshold) A β Charged particle The emission is due to an asymmetric polarization of the medium in front and at the rear of the particle, giving rise to a varying electric dipole momentum. dN Some of the particle energy is convertedγ = 491into light. A coherent wave front is dx generated moving at velocity v at an angle Θc If the media is transparent the Cherenkov light can be detected. If the particle is ultra-relativistic β~1 Θc = const and has max value c t AB n 1 cosθc = = = In water Θc = 43˚, in ice 41AC˚ βct βn 37 TheThe CherenkovCherenkov effecteffect The intensity of the Cherenkov radiation (number of photons per unit length of particle path and per unit of wave length) 2 2 2 2 2 Number of photons/L and radiation d N 4π z e 1 2πz 2 = 2 1 − 2 2 = 2 α sin ΘC Wavelength depends on charge dxdλ hcλ n β λ and velocity of particle 2πe2 α = Since the intensity is proportional to hc 1/λ2 short wavelengths dominate dN Using light detectors (photomultipliers)γ = sensitive491 in 400-700 nm for an ideally 100% efficient detector in the visibledx € 2 dNγ λ2 d Nγ 2 2 λ2 dλ 2 2 11 1 22 2 d 2 z sin 2 z sin 490393 zz sinsinΘc photons / cm = ∫ λ = π α ΘC ∫ 2 = π α ΘC 2 −− 2 = α ΘC λ1 λ1 dx dxdλ λ λλ1 λ2 d 2 N d 2 N dλ λ2 d 2 N = = dxdE dxdλ dE 2πhc dxdλ Energy loss is about 104 less hc 2πhc than 2 MeV/cm in water from €
    [Show full text]
  • 00307399.Pdf
    + ASI&’rrrativc ActioIs/Eq51dS&MtSUdtyErrqsbyer < This work was supported by the National Cancer Institute, Division of Research Resources and Centers, Department of Health, Education, and Welfare. Edited by Ixruise Taylor, AT Division. DISCLAMER This report was prepared as an account of work sponsored by assagency of the Uruted States &rvcrrrment. Neither the United States Ciovernanerstnor any agency thereof, nor asryof their employru, makes any *anty, express or irnpfied, or assumesany legal liability or responsibility for the accuracy, completeness, or usefulnessof arsyirsfornsation, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. References herein to any specitlc comnserciat product. process, or aer+ce by trade name, trademark, rnamafacmrer, or otherwise, does not necessady constitute or imply ita errdorsement, recommendation, or favoring by the Urdted States Government or any agency thersof. llte view and opinions of authors expressed herein do not nemsas-ity stare or reflect those of the United States Government or any agency thereof. LA-9144-MS UC-28 and UC-48 Issued: February 1982 . ● / A Linear Accelerator for Radioisotope Production L.D. Hansborough R. W. Harem J. E. Stovall i !-=-—- ‘ - I I . -.... J“’”’ .“ Los Alamos National Laboratory ~~~~la~~s Lo.Alamo.,New.exi..875.~ A LINEAR ACCELERATOR FOR RADIOISOTOPE PRODUCTION by L. D. Hansborough, R. W. Harem, and J. E. Stovall ABSTRACT A 200- to 500-uA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available.
    [Show full text]
  • Introduction to Accelerators
    Introduction to Accelerators Lecture 4 Basic Properties of Particle Beams William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT US Particle Accelerator School Homework item US Particle Accelerator School From the last lecture US Particle Accelerator School We computed the B-field from current loop with I = constant By the Biot-Savart law we found that on the z-axis I 2 2IR2 B = Rsin d zˆ = zˆ cr2 2 2 3/2 0 cR()+ z What happens if we drive the current to have a time variation? r R US Particle Accelerator School The far field B-field has a static dipole form Importantly the ring of current does not radiate US Particle Accelerator School Question to ponder: What is the field from this situation? r R We’ll return to this question in the second half of the course US Particle Accelerator School Is this really paradoxical? Let’s look at Maxwell’s equations Take the curl of xE Hence US Particle Accelerator School The dipole radiation field: note the similarity to the static dipole US Particle Accelerator School Now on to beams US Particle Accelerator School Beams: particle bunches with directed velocity Ions - either missing electrons (+) or with extra electrons (-) Electrons or positrons Plasma - ions plus electrons Source techniques depend on type of beam & on application US Particle Accelerator School Electron sources - thermionic Heated metals Some electrons have energies above potential barrier Cannot escape + HV Enough energy to escape # of electrons Work function = Electrons in a metal
    [Show full text]
  • Nuclear Glossary
    NUCLEAR GLOSSARY A ABSORBED DOSE The amount of energy deposited in a unit weight of biological tissue. The units of absorbed dose are rad and gray. ALPHA DECAY Type of radioactive decay in which an alpha ( α) particle (two protons and two neutrons) is emitted from the nucleus of an atom. ALPHA (ααα) PARTICLE. Alpha particles consist of two protons and two neutrons bound together into a particle identical to a helium nucleus. They are a highly ionizing form of particle radiation, and have low penetration. Alpha particles are emitted by radioactive nuclei such as uranium or radium in a process known as alpha decay. Owing to their charge and large mass, alpha particles are easily absorbed by materials and can travel only a few centimetres in air. They can be absorbed by tissue paper or the outer layers of human skin (about 40 µm, equivalent to a few cells deep) and so are not generally dangerous to life unless the source is ingested or inhaled. Because of this high mass and strong absorption, however, if alpha radiation does enter the body through inhalation or ingestion, it is the most destructive form of ionizing radiation, and with large enough dosage, can cause all of the symptoms of radiation poisoning. It is estimated that chromosome damage from α particles is 100 times greater than that caused by an equivalent amount of other radiation. ANNUAL LIMIT ON The intake in to the body by inhalation, ingestion or through the skin of a INTAKE (ALI) given radionuclide in a year that would result in a committed dose equal to the relevant dose limit .
    [Show full text]
  • Tutorial on Accelerator-Based Light Sources∗
    TUOAS1 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA A TUTORIAL ON ACCELERATOR-BASED LIGHT SOURCES∗ M. Borland† , ANL, Argonne, IL 60439, USA Abstract light compared to protons, electrons are far easier to ac- celerate to relativistic energies, and hence are preferred Accelerator-based light sources are some of the largest for radiation generation. The first accelerator-generated and most successful scientific user facilities in existence, x-rays were created by the rapid deflection and decel- serving tens of thousands of users each year. These im- eration electrons experience when hitting a metal target portant facilities enable research in diverse fields, includ- (bremsstrahlung radiation). A more controlled technique ing biology, pharmaceuticals, energy conservation and pro- uses a magnetic field to deflect the particle trajectory in a duction, data storage, and archaeology. In this tutorial, circular arc, which produces acceleration at right angles to we briefly review the history of accelerator-based light the direction of motion. sources. We present an overview of the different types of accelerator-based light sources, including a description of For circulating electrons with β 1, radiation is emit- their various operating principles, as well as a discussion of ted in a broad angular pattern at the revolution frequency. measures of performance. Technical challenges of current Radiation is emitted most strongly in the forward and back- and future light sources are also reviewed. ward directions, for which a distant observer sees the great- est acceleration. However, when β ≈ 1 the emitting elec- tron follows closely behind the forward-directed radiation, INTRODUCTION which has β =1.
    [Show full text]
  • Nuclear Fusion Enhances Cancer Cell Killing Efficacy in a Protontherapy Model
    Nuclear fusion enhances cancer cell killing efficacy in a protontherapy model GAP Cirrone*, L Manti, D Margarone, L Giuffrida, A. Picciotto, G. Cuttone, G. Korn, V. Marchese, G. Milluzzo, G. Petringa, F. Perozziello, F. Romano, V. Scuderi * Corresponding author Abstract Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11Bà3a reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha-particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated. 1 The urgent need for radical radiotherapy research to achieve improved tumour control in the context of reducing the risk of normal tissue toxicity and late-occurring sequelae, has driven the fast- growing development of cancer treatment by accelerated beams of charged particles (hadrontherapy) in recent decades (1). This appears to be particularly true for protontherapy, which has emerged as the most-rapidly expanding hadrontherapy approach, totalling over 100,000 patients treated thus far worldwide (2).
    [Show full text]
  • Space Radiation: the Number One Risk to Astronaut Health Beyond Low Earth Orbit
    Life 2014, 4, 491-510; doi:10.3390/life4030491 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Review Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit Jeffery C. Chancellor 1,2, Graham B. I. Scott 1,3 and Jeffrey P. Sutton 1,4,* 1 National Space Biomedical Research Institute (NSBRI), and Center for Space Medicine, Baylor College of Medicine, 6500 Main Street, Suite 910, Houston, TX 77030-1402, USA; E-Mails: [email protected] (J.C.C.); [email protected] (G.B.I.S.) 2 Department of Materials Science and Engineering, Dwight Look College of Engineering, Texas A&M University, 3003 TAMU, College Station, TX 77843-3003, USA 3 Department of Molecular and Cellular Biology, Baylor College of Medicine, 6500 Main Street, Suite 910, Houston, TX 77030-1402, USA 4 Department of Medicine, Baylor College of Medicine, 6500 Main Street, Suite 910, Houston, TX 77030-1402, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-713-798-7412; Fax: +1-713-798-7413. Received: 10 June 2014; in revised form: 6 August 2014 / Accepted: 21 August 2014 / Published: 11 September 2014 Abstract: Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO).
    [Show full text]
  • Martian Sub-Surface Ionising Radiation: Abstract Introduction ∗ Biosignatures and Geology Conclusions References Tables Figures L
    Biogeosciences Discuss., 4, 455–492, 2007 Biogeosciences www.biogeosciences-discuss.net/4/455/2007/ Discussions BGD © Author(s) 2007. This work is licensed 4, 455–492, 2007 under a Creative Commons License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Martian radiation L. R. Dartnell et al Title Page Martian sub-surface ionising radiation: Abstract Introduction ∗ biosignatures and geology Conclusions References Tables Figures L. R. Dartnell1, L. Desorgher2, J. M. Ward3, and A. J. Coates4 1CoMPLEX (Centre for Mathematics & Physics in the Life Sciences and Experimental J I Biology), University College London, UK J I 2Physikalisches Institut, University of Bern, Switzerland 3Department of Biochemistry and Molecular Biology, University College London, UK Back Close 4Mullard Space Science Laboratory, University College London, UK Full Screen / Esc Received: 8 January 2007 – Accepted: 7 February 2007 – Published: 9 February 2007 Correspondence to: L. R. Dartnell ([email protected]) Printer-friendly Version Interactive Discussion EGU ∗Invited contribution by L. R. Dartnell, one of the Union Young Scientist Award winners 2006. 455 Abstract BGD The surface of Mars, unshielded by thick atmosphere or global magnetic field, is ex- posed to high levels of cosmic radiation. This ionizing radiation field is deleterious to 4, 455–492, 2007 the survival of dormant cells or spores and the persistence of molecular biomarkers in 5 the subsurface, and so its characterisation is of prime astrobiological interest. Previous Martian radiation research has attempted to address the question of biomarker persistence by inappro- priately using dose profiles weighted specifically for cellular survival. Here, we present L. R. Dartnell et al modelling results of the unmodified physically absorbed radiation dose as a function of depth through the Martian subsurface.
    [Show full text]
  • A Brief History and Review of Accelerators
    A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots.
    [Show full text]
  • Concept of an Accelerator-Driven Advanced Nuclear Energy System
    Article Concept of an Accelerator-Driven Advanced Nuclear Energy System Xuesong Yan, Lei Yang *, Xunchao Zhang and Wenlong Zhan Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (X.Y.); [email protected] (X.Z.); [email protected] (W.Z.) * Correspondence: [email protected]; Tel.: +86-931-4969-187 Academic Editor: Hiroshi Sekimoto Received: 24 March 2017; Accepted: 10 May 2017; Published: 7 July 2017 Abstract: The utilization of clean energy is a matter of primary importance for sustainable development as well as a vital approach for solving worldwide energy-related issues. If the low utilization rate of nuclear fuel, nuclear proliferation, and insufficient nuclear safety can be solved, nuclear fission energy could be used as a sustainable and low-carbon clean energy form for thousands of years, providing steady and base-load electrical resources. To address these challenges, we propose an accelerator-driven advanced nuclear energy system (ADANES), consisting of a burner system and a fuel recycle system. In ADANES, the ideal utilization rate of nuclear fuel will be >95%, and the final disposal of nuclear waste will be minimized. The design of a high-temperature ceramic reactor makes the burner system safer. Part of fission products (FPs) are removed during the simple reprocessing in the fuel recycle system, significantly reducing the risks of nuclear proliferation of nuclear technology and materials. The ADANES concept integrates nuclear waste transmutation, nuclear fuel breeding, and safety power production, with an ideal closed loop operation of nuclear fission energy, constituting a major innovation of great potential interest for future energy applications.
    [Show full text]
  • Particle Accelerators
    Particle Accelerators By Stephen Lucas The subatomic Shakespeare of St.Neots Purposes of this presentation… To be able to explain how different particle accelerators work. To be able to explain the role of magnetic fields in particle accelerators. How the magnetic force provides the centripetal force in particle accelerators. Why have particle accelerators? They enable similarly charged particles to get close to each other - e.g. Rutherford blasted alpha particles at a thin piece of gold foil, in order to get the positively charged alpha particle near to the nucleus of a gold atom, high energies were needed to overcome the electrostatic force of repulsion. The more energy given to particles, the shorter their de Broglie wavelength (λ = h/mv), therefore the greater the detail that can be investigated using them as a probe e.g. – at the Stanford Linear Accelerator, electrons were accelerated to high energies and smashed into protons and neutrons revealing charge concentrated at three points – quarks. Colliding particles together, the energy is re-distributed producing new particles. The higher the collision energy the larger the mass of the particles that can be produced. E = mc2 The types of particle accelerator Linear Accelerators or a LINAC Cyclotron Synchrotron Basic Principles All accelerators are based on the same principle. A charged particle accelerates between a gap between two electrodes when there is a potential difference between them. Energy transferred, Ek = Charge, C x p.d, V Joules (J) Coulombs (C) Volts (V) Ek = QV Converting to electron volts 1 eV is the energy transferred to an electron when it moves through a potential difference of 1V.
    [Show full text]