Concept of an Accelerator-Driven Advanced Nuclear Energy System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
00307399.Pdf
+ ASI&’rrrativc ActioIs/Eq51dS&MtSUdtyErrqsbyer < This work was supported by the National Cancer Institute, Division of Research Resources and Centers, Department of Health, Education, and Welfare. Edited by Ixruise Taylor, AT Division. DISCLAMER This report was prepared as an account of work sponsored by assagency of the Uruted States &rvcrrrment. Neither the United States Ciovernanerstnor any agency thereof, nor asryof their employru, makes any *anty, express or irnpfied, or assumesany legal liability or responsibility for the accuracy, completeness, or usefulnessof arsyirsfornsation, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. References herein to any specitlc comnserciat product. process, or aer+ce by trade name, trademark, rnamafacmrer, or otherwise, does not necessady constitute or imply ita errdorsement, recommendation, or favoring by the Urdted States Government or any agency thersof. llte view and opinions of authors expressed herein do not nemsas-ity stare or reflect those of the United States Government or any agency thereof. LA-9144-MS UC-28 and UC-48 Issued: February 1982 . ● / A Linear Accelerator for Radioisotope Production L.D. Hansborough R. W. Harem J. E. Stovall i !-=-—- ‘ - I I . -.... J“’”’ .“ Los Alamos National Laboratory ~~~~la~~s Lo.Alamo.,New.exi..875.~ A LINEAR ACCELERATOR FOR RADIOISOTOPE PRODUCTION by L. D. Hansborough, R. W. Harem, and J. E. Stovall ABSTRACT A 200- to 500-uA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. -
Doe Nuclear Physics Reactor Theory Handbook
DOE-HDBK-1019/2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012223 DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY ABSTRACT The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance. Key Words: Training Material, Atomic Physics, The Chart of the Nuclides, Radioactivity, Radioactive Decay, Neutron Interaction, Fission, Reactor Theory, Neutron Characteristics, Neutron Life Cycle, Reactor Kinetics Rev. 0 NP DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY FOREWORD The Department of Energy (DOE) Fundamentals Handbooks consist of ten academic subjects, which include Mathematics; Classical Physics; Thermodynamics, Heat Transfer, and Fluid Flow; Instrumentation and Control; Electrical Science; Material Science; Mechanical Science; Chemistry; Engineering Symbology, Prints, and Drawings; and Nuclear Physics and Reactor Theory. -
Nuclear Power Systems for Space Applications
Aristotle University of Thessaloniki Master Program in Computational Physics Nuclear Power Systems for Space Applications Department of Nuclear and Elementary Particles Physics Laboratory of Atomic and Nuclear Physics Professor: Christos Eleftheriadis Dimitrios Chatzipanagiotidis Acknowledgments The presented work is for my thesis in master degree in Computational Physics at Aristotle University of Thessaloniki. This effort combines my two favorite fields of interest, Nuclear Physics and Space Physics. Firstly, I want to thanks my supervisor, Professor Christos Eleftheriadis, who help and support me all those years from my bachelor degree until now for my thesis with his unique way of teaching and explain Nuclear Physics. Also, I want to thanks Professor Pavel Tsvetkov of Texas A&M University Engineering as he offered to help and guide me for my thesis about RTG. Finally, I would like to thanks my family and my friends for supporting me in my life all these years. Dimitrios Chatzipanagiotidis, Thessaloniki, October 2019 Abstract As the solar energy for space applications put some significant limitations about missions be- yond Jupiter and planetary surface rovers, the use of nuclear energy is the future of space explo- ration. Plutonium 238 is the most desirable fuel for Radioisotopes Thermoelectric Generators (RTG) but is limited on the planet and the production is a highly cost procedure. New techniques of Plutonium 238 production are developed in order to enable new space missions. Other radio- isotopes can be used instead of Plutonium 238, like Strontium 90, but the shielding considera- tions or the half-life make them undesirable for space applications. Although Plutonium 238 offer great designs of power sources still we have some limitations about the amount of power that can be produces by those devices and the profile of a space mission. -
Introduction to Accelerators
Introduction to Accelerators Lecture 4 Basic Properties of Particle Beams William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT US Particle Accelerator School Homework item US Particle Accelerator School From the last lecture US Particle Accelerator School We computed the B-field from current loop with I = constant By the Biot-Savart law we found that on the z-axis I 2 2IR2 B = Rsin d zˆ = zˆ cr2 2 2 3/2 0 cR()+ z What happens if we drive the current to have a time variation? r R US Particle Accelerator School The far field B-field has a static dipole form Importantly the ring of current does not radiate US Particle Accelerator School Question to ponder: What is the field from this situation? r R We’ll return to this question in the second half of the course US Particle Accelerator School Is this really paradoxical? Let’s look at Maxwell’s equations Take the curl of xE Hence US Particle Accelerator School The dipole radiation field: note the similarity to the static dipole US Particle Accelerator School Now on to beams US Particle Accelerator School Beams: particle bunches with directed velocity Ions - either missing electrons (+) or with extra electrons (-) Electrons or positrons Plasma - ions plus electrons Source techniques depend on type of beam & on application US Particle Accelerator School Electron sources - thermionic Heated metals Some electrons have energies above potential barrier Cannot escape + HV Enough energy to escape # of electrons Work function = Electrons in a metal -
Nuclear Waste Transmutation in Subcritical Reactors Driven by Target-Distributed Accelerators
Nuclear Waste Transmutation in Subcritical Reactors Driven by Target-Distributed Accelerators Anatoly Blanovsky Teacher Technology Center, 7850 Melrose Ave., Los Angeles, CA 90046, USA E-mail [email protected] Abstract-A radioactive waste transmutation system based extensively on existing nuclear power technology is presented. By replacing the control rods with neutron generators, we could maintain good power distribution and perform long-lived waste burning in high flux subcritical reactors (HFSR). To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket. A neutron gate (absorber and moderator) imposed between two zones permits fast neutrons from the booster to flow to the blanket. Neutrons moving in the reverse direction are moderated and absorbed. The design is based on a small pressurized water reactor (PWR), fission electric cell (FEC), target-distributed accelerator (TDA) and power monitoring system with in-core gamma-ray detectors, now under development in several countries. The FEC is essentially a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV. The TDA, in which an FEC electric field compensates for lost beam energy in the target, offers a new approach to obtain large neutron fluxes. INTRODUCTION I. HFSR CONCEPT In the conventional reactor, nuclear energy With self-amplifying due to feedback, (electrical in nature) is converted to thermal, then to blanket and booster multiplication factors of k=0.95 mechanical and then to electrical energy. To achieve and 0.98, respectively, an external neutron source the high degree of the burn-up, only fresh low rate of at least 10.sup.15 n/s is needed to drive the enriched uranium fuel is used. -
Tutorial on Accelerator-Based Light Sources∗
TUOAS1 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA A TUTORIAL ON ACCELERATOR-BASED LIGHT SOURCES∗ M. Borland† , ANL, Argonne, IL 60439, USA Abstract light compared to protons, electrons are far easier to ac- celerate to relativistic energies, and hence are preferred Accelerator-based light sources are some of the largest for radiation generation. The first accelerator-generated and most successful scientific user facilities in existence, x-rays were created by the rapid deflection and decel- serving tens of thousands of users each year. These im- eration electrons experience when hitting a metal target portant facilities enable research in diverse fields, includ- (bremsstrahlung radiation). A more controlled technique ing biology, pharmaceuticals, energy conservation and pro- uses a magnetic field to deflect the particle trajectory in a duction, data storage, and archaeology. In this tutorial, circular arc, which produces acceleration at right angles to we briefly review the history of accelerator-based light the direction of motion. sources. We present an overview of the different types of accelerator-based light sources, including a description of For circulating electrons with β 1, radiation is emit- their various operating principles, as well as a discussion of ted in a broad angular pattern at the revolution frequency. measures of performance. Technical challenges of current Radiation is emitted most strongly in the forward and back- and future light sources are also reviewed. ward directions, for which a distant observer sees the great- est acceleration. However, when β ≈ 1 the emitting elec- tron follows closely behind the forward-directed radiation, INTRODUCTION which has β =1. -
On Fusion Driven Systems (FDS) for Transmutation
R-08-126 On fusion driven systems (FDS) for transmutation O Ågren Uppsala University, Ångström laboratory, division of electricity V E Moiseenko Institute of Plasma Physics, National Science Center Kharkov Institute of Physics and Technology K Noack Forschungszentrum Dresden-Rossendorf October 2008 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 CM Gruppen AB, Bromma, 2008 ISSN 1402-3091 Tänd ett lager: SKB Rapport R-08-126 P, R eller TR. On fusion driven systems (FDS) for transmutation O Ågren Uppsala University, Ångström laboratory, division of electricity V E Moiseenko Institute of Plasma Physics, National Science Center Kharkov Institute of Physics and Technology K Noack Forschungszentrum Dresden-Rossendorf October 2008 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se. Summary This SKB report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented. 3 Sammanfattning Denna rapport för SKB ger en övergripande beskrivning av pågående aktiviteter kring fusionsdrivna system (FDS) för transmutation av långlivade radioaktiva isotoper i kärnavfallet från fissionskraftverk. -
Nureg/Cr-6760 Ornl/Tm-2000-321
NUREG/CR- 6760 ORNL/TM-2000-321 Study of the Effect of Integral Burnable Absorbers for PWR Burnup Credit Oak Ridge National Laboratory U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001 AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material Non-NRC Reference Material technical As of November 1999, you may electronically access Documents available from public and special NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC's Public Electronic Reading Room at books, journal articles, and transactions, Federal www.nrc.gov/NRC/ADAMS/index.html. Register notices, Federal and State legislation, and Publicly released records include, to name a few, congressional reports. Such documents as theses, NUREG-series publications; FederalRegister notices; dissertations, foreign reports and translations, and applicant, licensee, and vendor documents and non-NRC conference proceedings may be purchased organization. correspondence; NRC correspondence and internal from their sponsoring memoranda; bulletins and information notices; inspection and investigative reports; licensee event Copies of industry codes and standards used in a reports, and Commission papers and their substantive manner in the NRC regulatory process are attachments. maintained at The NRC Technical Library NRC publications in the NUREG series, NRC Two White Flint North regulations, and Title 10, Energy, in the Code of 11545 Rockville Pike Federal Regulations may also be purchased from one Rockville, MD 20852-2738 of these two sources. 1. The Superintendent of Documents These standards are available in the library for are U.S. Government Printing Office reference use by the public. -
Design and Development of Subcritical Reactor by Using Aqueous Fuel for 99Mo Production
Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences A. Physical and Computational Sciences 55 (1): 21–26 (2018) Copyright © Pakistan Academy of Sciences ISSN: 2518-4245 (print), 2518-4253 (online) Research Article Design and Development of Subcritical Reactor by Using Aqueous Fuel for 99Mo Production Syarip*, Tegas Sutondo, Edi Trijono Budisantoso, and Endang Susiantini Research Centre for Accelerator Science and Technology (CAST), National Nuclear Energy Agency (BATAN), Jalan Babarsari, Yogyakarta 55281, Indonesia Abstract: A non-critical reactor system for 99Mo production has been designed and will be developed at the Centre for Accelerator Science and Technology (CAST), National Nuclear Energy Agency (BATAN). The system is called subcritical aqueous reactor “assembly” for 99Mo production (SAMOP) which is fueled with uranyl nitrate and driven by external neutron source from a neutron generator. The design characteristics of criticality analysis, safety aspect, and calculation of 99Mo specific activities, choice and estimation of technology for 99Mo separation from the irradi- ated uranyl nitrate are presented in this paper. The analysis result showed that the SAMOP system using low enriched –1 uranyl nitrate UO2(NO3)2 of 300 g U L has an effective neutron multiplication factor of 0.98 to 0.99 with an average 10 –2 neutron flux of 10 n cm s . The total volumes of UO2(NO3)2 and uranium content in the core are 23 L and 3.8 kg, respectively. The SAMOP system using low enriched uranyl nitrate with total volume of 23 L and 3.8 kg uranium content may produce 111 GBq/batch (3 000 mCi/batch) of 99Mo. -
Reactor Kinetics and Operation
Reactor Kinetics and Operation Course No: N03-002 Credit: 3 PDH Gilbert Gedeon, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Department of Energy Fundamentals Handbook NUCLEAR PHYSICS AND REACTOR THEORY Module 4 Reactor Theory (Reactor Operations) Reactor Theory (Reactor Operations) DOE-HDBK-1019/2-93 TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES ................................................ ii LIST OF TABLES ................................................. iii REFERENCES ................................................... iv OBJECTIVES .................................................... v SUBCRITICAL MULTIPLICATION .................................... 1 Subcritical Multiplication Factor ................................... 1 Effect of Reactivity Changes on Subcritical Multiplication ................. 3 Use of 1/M Plots ............................................. 6 Summary .................................................. 9 REACTOR KINETICS ............................................. 10 Reactor Period (τ) ........................................... 11 Effective Delayed Neutron Fraction ................................ 11 Effective Delayed Neutron Precursor Decay Constant ................... 13 Prompt Criticality ............................................ 15 Stable Period Equation ........................................ 16 Reactor Startup Rate (SUR) ..................................... 17 Doubling Time ............................................. -
Load Following with a Passive Reactor Core Using the SPARC Design
UPTEC ES 16 023 Examensarbete 30 hp 13 Juni 2016 Load following with a passive reactor core using the SPARC design Sebastian Leo Eile Svanström Abstract Load following with a passive reactor core using the SPARC design Sebastian Leo Eile Svanström Teknisk- naturvetenskaplig fakultet UTH-enheten This thesis is a follow up on "SPARC fast reactor design: Design of two passively metal-fuelled sodium-cooled pool-type small modular fast reactors with Autonomous Besöksadress: Reactivity Control" by Tobias Lindström (2015). In this thesis the two reactors Ångströmlaboratoriet Lägerhyddsvägen 1 designed by Lindström in said thesis were evaluated. The goal was to determine the Hus 4, Plan 0 reactors ability to load follow as well as the burnup of the neutron absorber used in the passive control system. Postadress: Box 536 751 21 Uppsala To be able to determine the dynamic behaviour of the reactors the reactivity feedbacks of the cores were modelled using Serpent, a Monte Carlo simulation Telefon: software for 3D neutron transport calculations. These feedbacks were then 018 – 471 30 03 implemented into a dynamic simulation of the core, primary and secondary circulation Telefax: and steam generator. The secondary circulation and feedwater flow were used to 018 – 471 30 00 regulate steam temperature and turbine power. The core was left at constant coolant flow and no control rods were used. Hemsida: http://www.teknat.uu.se/student The simulations showed that the reactor was able to load follow between 100 % and 40 % of rated power at a speed of 6 % per minute. It was also shown that the reactor could safely adjust its power between 100 % and 10 % of rated power suggesting that load following is possible below 40 % of rated power but at a lower speed. -
A Brief History and Review of Accelerators
A BRIEF HISTORY AND REVIEW OF ACCELERATORS P.J. Bryant CERN, Geneva, Switzerland ABSTRACT The history of accelerators is traced from three separate roots, through a rapid development to the present day. The well-known Livingston chart is used to illustrate how spectacular this development has been with, on average, an increase of one and a half orders of magnitude in energy per decade, since the early thirties. Several present-day accelerators are reviewed along with plans and hopes for the future. 1 . INTRODUCTION High-energy physics research has always been the driving force behind the development of particle accelerators. They started life in physics research laboratories in glass envelopes sealed with varnish and putty with shining electrodes and frequent discharges, but they have long since outgrown this environment to become large-scale facilities offering services to large communities. Although the particle physics community is still the main group, they have been joined by others of whom the synchrotron light users are the largest and fastest growing. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation and many other applications. Consequently accelerators now constitute a field of activity in their own right with professional physicists and engineers dedicated to their study, construction and operation. This paper will describe the early history of accelerators, review the important milestones in their development up to the present day and take a preview of future plans and hopes. 2 . HISTORICAL ROOTS The early history of accelerators can be traced from three separate roots.