Siberian Tiger Winter Tour
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of the Distribution, Status and Conservation of Musk Deer in China
Folia Zool. – 53(2): 129–140 (2004) Review of the distribution, status and conservation of musk deer in China Yijun ZHOU1, Xiuxiang MENG1,2∗, Jinchao FENG1, Qisen YANG2, Zuojian FENG2, Lin XIA2 and Luděk BARTOŠ3 1 School of Life and Environment Sciences, Central University for Nationalities, 27 Zhongguancun Nan-da-jie, Beijing 100081, China; e-mail:[email protected] 2 Institute of Zoology, Chinese Academy of Sciences, 19 Zhongguancun Road, Beijing 100080, China 3 Ethology Group, Research Institute of Animal Production, P.O.Box 1, 104 01 Praha 10, Czech Republic; e-mail: [email protected] Received 30 December 2003; Accepted 8 June 2004 A b s t r a c t . There are five species of musk deer of the genus Moschus, in China, occurring in about 17 provinces. We estimate the total numbers in China to be between 220,000 and 320,000. In some areas the populations are in decline, and some are close to extinction due to over-hunting and habitat loss or degradation, the former being the primary threat to musk deer populations. To conserve musk deer, in situ protection should be improved, and the present unsustainable forest exploitation in the range areas should be halted. Poaching of musk deer, and smuggling of musk deer products, should be prevented. Domestic use of musk should be restricted. In some areas where musk deer have become extinct or are critically endangered, ex situ protection should be introduced. Musk deer farming should be revised and developed according to biological requirements. Key words: musk deer, Moschus, conservation status, China Introduction Musk deer Moschus spp. -
Review of Asian Species/Country Combinations Subject to Long-Standing Import Suspensions
Review of Asian species/country combinations subject to long-standing import suspensions (Version edited for public release) SRG 54 Prepared for the European Commission Directorate General Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre November, 2010 UNEP World Conservation Monitoring PREPARED FOR Centre 219 Huntingdon Road The European Commission, Brussels, Belgium Cambridge CB3 0DL DISCLAIMER United Kingdom Tel: +44 (0) 1223 277314 The contents of this report do not necessarily Fax: +44 (0) 1223 277136 reflect the views or policies of UNEP or Email: [email protected] Website: www.unep-wcmc.org contributory organisations. The designations employed and the presentations do not imply ABOUT UNEP-WORLD CONSERVATION the expressions of any opinion whatsoever on MONITORING CENTRE the part of UNEP, the European Commission or contributory organisations concerning the The UNEP World Conservation Monitoring legal status of any country, territory, city or Centre (UNEP-WCMC), based in Cambridge, area or its authority, or concerning the UK, is the specialist biodiversity information delimitation of its frontiers or boundaries. and assessment centre of the United Nations Environment Programme (UNEP), run cooperatively with WCMC, a UK charity. The © Copyright: 2010, European Commission Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the centre of decision-making. Through the analysis and synthesis of global biodiversity knowledge the Centre provides authoritative, strategic and timely information for conventions, countries and organisations to use in the development and implementation of their policies and decisions. The UNEP-WCMC provides objective and scientifically rigorous procedures and services. -
Whole-Genome Sequencing of Wild Siberian Musk
Yi et al. BMC Genomics (2020) 21:108 https://doi.org/10.1186/s12864-020-6495-2 RESEARCH ARTICLE Open Access Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features Li Yi1†, Menggen Dalai2*†, Rina Su1†, Weili Lin3, Myagmarsuren Erdenedalai4, Batkhuu Luvsantseren4, Chimedragchaa Chimedtseren4*, Zhen Wang3* and Surong Hasi1* Abstract Background: Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results: Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions: Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer. -
Tentative List "Lena Pillars"
TENTATIVE LIST STATE PARTY: Russian Federation DATE OF SUBMISSION: 11/07/2006 Submission prepared by: Name: E-mail: Address: Fax: Institution: Telephone: Name of Property Nature Park “Lena Pillars” The Nature Park is located in Khangalassky ulus State, Province or Region (region) of Yakutia. The NP is located on the right bank of the river Lena middle stream. Geographical coordinates of the nominated site: • The utmost north point: 124°55′52′′ east longitude; 60°43′28′′ north latitude; • The utmost south point: 127°16′30′′ east longitude; 60°49′00′′ north latitude; Latitude and Longitude or UTM •The utmost west point: coordinates 125°00′04′′ east longitude; 60 °44′ 49′′ north latitude; • The utmost east point: 128°47′55′′ east longitude; 61 °15 ′57′′ north latitude Area of the site: 485 000 ha. Area of its buffer zone: 868 100 ha. DESCRIPTION: In the NP “Lena Pillars” area the main landscape-environmental factors: the geological texture and relief, the geocryological condition and climate - are characterized with the considerable heterogeneity. Geology and relief The territory of the NP “Lena Pillars” is situated at the northern periclinale of the Aldan anteclises, complicated by the small- amplitude arched uplift and protrusions occupying the large areas. In the park area the sedimentary mantle is represented by unexposed upper Precambrian, exposed Cambrian and Quaternary deposits which lie flat or with hade of layers measured by minutes or rarely by the first degrees. Along the Sinyaya River the lower Cambrian deposits are exposed, and along the Lena and the Buotoma rivers the lower and middle Cambrian deposits are denuded. -
Primorsky Krai 165,900 Sq
PRIMORSKY KHABAROVSK Trans- Siberian Railroad Russian Far East Amur River JAO Agzu Samarga Edinka POZHARSKY Svetlaya POZHARSKY Ulunga Verkhne Pereval Vostok Luchegorsk Krasny Yar Kuznetsovo Ignatevka Pozharskoe Maximovka Guberovo Glubinnoe CHINA Amgu !. Dalnerechensk Roshchino TERNEISKY Lazo Novopokrovka KRASNOARMEISKY Rakitnoe Velikaya Kema Tamga DALNERECHENSKY Malaya Kema Melnichnoe !. Lesozavodsk SKY LESOZAVOD Tury Rog Gornye Klyuchi Ternei Ariadnoe Kirovsky ¯ Novokachalinsk Lake lroad Dalny Kut KIROVSKY ORSKY KHANKA Rai Ilinka Plastun Khanka Gorny km DALNEG Cheremshany Dvoryanka berian PO ISKY Samarka Kamen-Rybolov Krasnorechensky 100 GRANICHNY Dalnegorsk !. Zharikovo Tr!.ans-SiSpassk-Dalny KY Koksharovka SPASSKY Kamenka KHOROLS AKOLEVS Khrustalny Pogranichny Khorol Y Yakovlevka EVSKY Rudny Rudnaya Pristan ! CH UGU CHERNIGOVSKY !Kavalerovo EROVSKY KY Lipovtsy ! Sibirtsevo Chuguevka KAVAL ! !. ANUCHINSKY Arsenev Yaroslavsky OKTYABRSKY Vesely Yar n MI Mikhailovka Pokrovka KHAILOVSKY Anuchino Olga a Mikhailovka Arkhipovka Nikolo-Lvovskoe !. OLGINSKY PARTI p USSURIISKY UssuriiskSHKO Terekhovka a ZANSKY TOVSKY Margaritovo NADEZHDINSKY Lazo J Sergeevka Uglovoe Artem ! !. ! Smolyaninovo ZOVSKY LA Valentin f Primorsky !. P! !. Bolshoi Kamen Partizansk o ! Russky Nakhodka Preobrazhenie ! . Popova ! a Kraskino KHASANSKY Poset Slavyanka e VLADIVOSTOK S Map 2.1 Zarubino Khasan Primorsky Krai 165,900 sq. km Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel. 466 pages By Newell and Zhou / Sources: Ministry of Natural Resources, 2002; ESRI, 2002. 110 Ⅲ THE RUSSIAN FAR EAST CHAPTER 2 Primorsky Krai PRIMORSKY Location Situated along the southeastern border of the rfe, Primorsky Krai, or Primorie, shares a common border with China in the west and Khabarovsk Krai in the north. To the east lies the Sea of Japan, which separates Primorsky from Japan by only 400 km. -
Amur Oblast TYNDINSKY 361,900 Sq
AMUR 196 Ⅲ THE RUSSIAN FAR EAST SAKHA Map 5.1 Ust-Nyukzha Amur Oblast TY NDINS KY 361,900 sq. km Lopcha Lapri Ust-Urkima Baikal-Amur Mainline Tynda CHITA !. ZEISKY Kirovsky Kirovsky Zeiskoe Zolotaya Gora Reservoir Takhtamygda Solovyovsk Urkan Urusha !Skovorodino KHABAROVSK Erofei Pavlovich Never SKOVO MAGDAGACHINSKY Tra ns-Siberian Railroad DIRO Taldan Mokhe NSKY Zeya .! Ignashino Ivanovka Dzhalinda Ovsyanka ! Pioner Magdagachi Beketovo Yasny Tolbuzino Yubileiny Tokur Ekimchan Tygda Inzhan Oktyabrskiy Lukachek Zlatoustovsk Koboldo Ushumun Stoiba Ivanovskoe Chernyaevo Sivaki Ogodzha Ust-Tygda Selemdzhinsk Kuznetsovo Byssa Fevralsk KY Kukhterin-Lug NS Mukhino Tu Novorossiika Norsk M DHI Chagoyan Maisky SELE Novovoskresenovka SKY N OV ! Shimanovsk Uglovoe MAZ SHIMA ANOV Novogeorgievka Y Novokievsky Uval SK EN SK Mazanovo Y SVOBODN Chernigovka !. Svobodny Margaritovka e CHINA Kostyukovka inlin SERYSHEVSKY ! Seryshevo Belogorsk ROMNENSKY rMa Bolshaya Sazanka !. Shiroky Log - Amu BELOGORSKY Pridorozhnoe BLAGOVESHCHENSKY Romny Baikal Pozdeevka Berezovka Novotroitskoe IVANOVSKY Ekaterinoslavka Y Cheugda Ivanovka Talakan BRSKY SKY P! O KTYA INSK EI BLAGOVESHCHENSK Tambovka ZavitinskIT BUR ! Bakhirevo ZAV T A M B OVSKY Muravyovka Raichikhinsk ! ! VKONSTANTINO SKY Poyarkovo Progress ARKHARINSKY Konstantinovka Arkhara ! Gribovka M LIKHAI O VSKY ¯ Kundur Innokentevka Leninskoe km A m Trans -Siberianad Railro u 100 r R i v JAO Russian Far East e r By Newell and Zhou / Sources: Ministry of Natural Resources, 2002; ESRI, 2002. Newell, J. 2004. The Russian Far East: A Reference Guide for Conservation and Development. McKinleyville, CA: Daniel & Daniel. 466 pages CHAPTER 5 Amur Oblast Location Amur Oblast, in the upper and middle Amur River basin, is 8,000 km east of Moscow by rail (or 6,500 km by air). -
Sexual Selection and Extinction in Deer Saloume Bazyan
Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8 -
Newell, J. 2004. the Russian Far East
Industrial pollution in the Komsomolsky, Solnechny, and Amursky regions, and in the city of Khabarovsk and its Table 3.1 suburbs, is excessive. Atmospheric pollution has been increas- Protected areas in Khabarovsk Krai ing for decades, with large quantities of methyl mercaptan in Amursk, formaldehyde, sulfur dioxide, phenols, lead, and Type and name Size (ha) Raion Established benzopyrene in Khabarovsk and Komsomolsk-on-Amur, and Zapovedniks dust prevalent in Solnechny, Urgal, Chegdomyn, Komso- molsk-on-Amur, and Khabarovsk. Dzhugdzhursky 860,000 Ayano-Maysky 1990 Between 1990 and 1999, industries in Komsomolsky and Bureinsky 359,000 Verkhne-Bureinsky 1987 Amursky Raions were the worst polluters of the Amur River. Botchinsky 267,400 Sovetsko-Gavansky 1994 High concentrations of heavy metals, copper (38–49 mpc), Bolonsky 103,600 Amursky, Nanaisky 1997 KHABAROVSK zinc (22 mpc), and chloroprene (2 mpc) were found. Indus- trial and agricultural facilities that treat 40 percent or less of Komsomolsky 61,200 Komsomolsky 1963 their wastewater (some treat none) create a water defi cit for Bolshekhekhtsirsky 44,900 Khabarovsky 1963 people and industry, despite the seeming abundance of water. The problem is exacerbated because of: Federal Zakazniks Ⅲ Pollution and low water levels in smaller rivers, particular- Badzhalsky 275,000 Solnechny 1973 ly near industrial centers (e.g., Solnechny and the Silinka River, where heavy metal levels exceed 130 mpc). Oldzhikhansky 159,700 Poliny Osipenko 1969 Ⅲ A loss of soil fertility. Tumninsky 143,100 Vaninsky 1967 Ⅲ Fires and logging, which impair the forests. Udylsky 100,400 Ulchsky 1988 Ⅲ Intensive development and quarrying of mineral resourc- Khekhtsirsky 56,000 Khabarovsky 1959 es, primarily construction materials. -
Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer -
Europe Main Takeaways
EUROPE MAIN TAKEAWAYS for the pet trade, including reptiles and birds. and likely increasing due to Asian demand, threatening the survival of this critically endangered species. and derivatives, such as wolf skins, primate skulls, bear bile, and musk deer preputial glands. such as France and the Netherlands, often act as transit source and demand regions in the Americas, Africa, and Asia. regardless of whether they were primarily origin, transit, or destination points, suggesting that certain customs and enforcement mechanisms can lead to wildlife seizures on departure and in transit, as well as on arrival. but had one of the lowest seizure rates in Europe. Given the increasing prominence of European eel suitcases and air freight shipments on departure for signs of hidden in a large number of suitcases or containers. EUROPE FIGURE 1 airports. Even though Europe is not generally considered a hotspot for Appearance of Russia1 activity throughout the region. A variety of factors contribute to other world regions. Prominence of Spain of these seizures were destined for South Korea or China. various bird species between at least 2016 and 2017 (see Spain in In Plane Sight seizures of rhino horns found in the luggage of Russians returning European Eel ). European eel seizures tend to be particularly large: eels. 1Although Russia is a Eurasian country, it could not be included in both the European and Asian analyses conducted for this report. Since the majority of Russia’s population lives on the western side of the country, C4ADS chose to include Russia within the European analysis. EUROPE viii derivatives still show up in seizures at international airports. -
Harmonia+ and Pandora+
Appendix A Harmonia+PL – procedure for negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland QUESTIONNAIRE A0 | Context Questions from this module identify the assessor and the biological, geographical & social context of the assessment. a01. Name(s) of the assessor(s): first name and family name 1. Henryk Okarma 2. Izabela Wierzbowska – external expert 3. Karolina Mazurska acomm01. Comments: degree affiliation assessment date (1) prof. dr hab. Institute of Nature Conservation of the Polish Academy 28-01-2018 of Sciences in Cracow (2) dr Institute of Environmental Sciences, Jagiellonian 06-02-2018 University, Cracow (3) mgr Institute of Nature Conservation of the Polish Academy 08-02-2018 of Sciences in Cracow a02. Name(s) of the species under assessment: Polish name: Maral (jeleń mandżurski) Latin name: Cervus elaphus sibiricus English name: Altai wapiti acomm02. Comments: Taxonomy of Cervus class is very complex and the experts cannot agree on its classification into species and subspecies. In recent years a view has been adopted, based on phylogenetic molecular studies, that maral belongs to the subspecies of wapiti Cervus canadensis, which has been lately recognized as the separate species (Lorenzini and Garofalo 2015 – P). According to the current state of knowledge, maral is the subspecies of (Cervus canadensis) and it should be called Cervus canedensis sibiricus in Latin, and not Cervus elaphus sibiricus. Significant changes in red deer (Cervus elaphus) and wapiti (Cervus canadensis) size and build were the base for defining them as two separate species (Brook et al. 2016 – P, Long 2003 – P, Wilson and Mittermeier 2011 – P). -
Investigation of Red Deer (Cervus Elaphus) Antlers in the Ukrainian
InvestigationBeiträge zur of Jagd-Red Deer und Wildforschung,antlers in the Ukrainian Bd. 40 (2015) Steppe 145-164 and results 1 Beiträge zur forschung · 40 A V, Melitopol / Ukraine Investigation of Red Deer (Cervus elaphus) antlers in the Ukrainian Steppe and results Key words: antler, area, hybridation, hunting, mammals, management, population, red deer, steppe zone, trophy, Ukraine Introduction red deer, Manchurian Wapiti (Cervus elaphus xanthophygus Milne-Edwards, 1867) and Wa- In response to dwindling populations of red piti (ТR, 1968). The result was a breed of deer (Cervus elaphus Linnaeus, 1758), intra- deer named the Askanian Steppe Maral (Fig. 1). species hybridization became widely used in It is well known that hybridization occurs more the late nineteenth century to produce offspring readily in the genus Cervus than in other genera from crosses of different subspecies. Most often of deer, with a consequence of increased hetero- used for this purpose were the Siberian red deer zygosity and reproductive potential (H- (Cervus elaphus sibiricus Severtzov, 1873), , 1985). Of course, according to modern the Caspian red deer or Maral (Cervus elaphus conceptions of biodiversity conservation, the maral Ogilby, 1840) and the Wapiti (Cervus creation of hybrid breeds and their subsequent elaphus canadensis Erxleben, 1777). Accord- resettlement in nature is not considered desire- ing to photographs from 1896–1905, a hybrid able because it distorts naturally occuring geno- derived from crossbreeding of the Central Eu- ropean red deer (Cervus elaphus hippelaphus Erxleben, 1777) and the Wapiti inhabited the forests near Upper Schleswig (Germany), the antlers of which contained 22 tines and in length exceeded 1,2 m.