Noname manuscript No. (will be inserted by the editor) DC Decomposition of Nonconvex Polynomials with Algebraic Techniques Amir Ali Ahmadi · Georgina Hall Received: date / Accepted: date Abstract We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite program- ming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave proce- dure (CCP). We prove, however, that optimizing over the entire set of dcds is NP-hard. Keywords Difference of convex programming, conic relaxations, polynomial optimization, algebraic decomposition of polynomials 1 Introduction A difference of convex (dc) program is an optimization problem of the form min f0(x) (1) s.t. fi(x) ≤ 0; i = 1; : : : ; m; where f0; : : : ; fm are difference of convex functions; i.e., fi(x) = gi(x) − hi(x); i = 0; : : : ; m; (2) The authors are partially supported by the Young Investigator Program Award of the AFOSR and the CAREER Award of the NSF. Amir Ali Ahmadi ORFE, Princeton University, Sherrerd Hall, Princeton, NJ 08540 E-mail: a a
[email protected] Georgina Hall arXiv:1510.01518v2 [math.OC] 12 Sep 2018 ORFE, Princeton University, Sherrerd Hall, Princeton, NJ 08540 E-mail:
[email protected] 2 Amir Ali Ahmadi, Georgina Hall n n and gi : R ! R; hi : R ! R are convex functions. The class of functions that can be written as a difference of convex functions is very broad containing for instance all functions that are twice continuously differentiable [18], [22].