Lecture 3: Convex Sets and Functions 3.1 Convex Sets

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 3: Convex Sets and Functions 3.1 Convex Sets EE 227A: Convex Optimization and Applications January 24, 2012 Lecture 3: Convex Sets and Functions Lecturer: Laurent El Ghaoui Reading assignment: Chapters 2 (except x2.6) and sections 3.1, 3.2, 3.3 of BV. You can also look at section 3.1 of the web textbook. 3.1 Convex Sets Definition. A subset C of Rn is convex if and only if it contains the line segment between any two points in it: 8 x1; x2 2 C; 8 θ1 ≥ 0; θ2 ≥ 0; θ1 + θ2 = 1 : θ1x1 + θ2x2 2 C: Some important special cases of convex sets are the following. • The set is said to be an affine subspace if it contains the entire line passing through any two points. This corresponds to the condition above, with θ1; θ2 arbitrary. Subspaces and affine subspaces are convex. • The set is said to be a convex cone if the condition above holds, but with the restriction θ1 + θ2 = 1 removed. Examples. • The convex hull of a set of points fx1; : : : ; xmg is defined as ( m m ) X m X Co(x1; : : : ; xm) := λixi : λ 2 R+ ; λi = 1 ; i=1 i=1 and is convex. The conic hull: ( m ) X m λixi : λ 2 R+ i=1 is a convex cone. • For a 2 Rn, and b 2 R, the hyperplane H = fx : aT x = bg is affine. The half-space fx : aT x ≤ bg is convex. 3-1 EE 227A Lecture 3 | January 24, 2012 Sp'12 n×n n • For a square, non-singular matrix R 2 R , and xc 2 R , the ellipsoid fxc + Ru : kuk2 ≤ 1g is convex. (The center of the epllipsoid is xc, and you can think of R as the "radius".) With P = RRT , and assuming R is full rank, we can describe the ellipsoid as T −1 x :(x − xc) P (x − xc) ≤ 1 : • A polyhedron is a set described by a finite number of affine inequalities and equalities: P = fx : Ax ≤ b; Cx = dg ; where A; C are matrices, b; d are vectors, and inequalities are understood component- wise. Sometimes bounded polyhedra are referred to as polytopes. • The probability simplex ( n ) n X p 2 R+ : pi = 1 i=1 is a special case of a polyhedron, and is useful to describe discrete probabilities. • The second-order cone n+1 (x; t) 2 R : t ≥ kxk2 (3.1) is a convex cone. It is sometimes called \ice-cream cone", for obvious reasons. (We will prove the convexity of this set later.) • The positive semi-definite cone n T n×n S+ := X = X 2 R : X 0 is a convex cone. (Again, we will prove the convexity of this set later.) Support and indicator functions. For a given set S, the function T φS(x) := max x u u2S is called the support function of S. If S is the unit ball for some norm: S = fu : kuk ≤ 1g, then the support function of S is the dual norm. Another important function associated with S is the indicator function 0 x 2 S; I (x) = S +1 x 62 S: 3-2 EE 227A Lecture 3 | January 24, 2012 Sp'12 Operations that preserve convexity. Two important operations that preserve convexity are: • Intersection: the intersection of a (possibly infinite) family of convex sets is convex. n We can use this property to prove that the semi-definite cone S+ is convex, since n T n×n n T S+ = X = X 2 R : 8 z 2 R ; z Xz ≥ 0 ; from which we see that the set is the intersection of the subspace of symmetric matrices with a set described by an infinite number of linear inequalities of the form zT Xz ≥ 0, indexed by z 2 Rn. Likewise, the second-order cone defined in (3.1) is convex, since the T condition t ≥ kxk2 is equivalent to the infinite number of affine inequalities t ≥ u x, kuk2 ≤ 1. • Affine transformation: If a function is affine (that is, it is the sum of a linear function and a constant), and C is convex, then the set f(C) := ff(x): x 2 Cg is convex. A particular example is projection on a subspace, which preserves convexity. Separation theorems. There are many versions of separation theorems in convex analy- sis. One of them is the separating hyperplane theorem: Theorem 1 (Separating hyperplane). If C, D are two convex subsets of Rn that do not intersect, then there is an hyperplane that separates them, that is, there exit a 2 Rn, a 6= 0, and b 2 R, such that aT x ≤ b for every x 2 C, and aT x ≥ b for every x 2 D. Another result involves the separation of a set from a point on its boundary: Theorem 2 (Supporting hyperplane). If C ⊆ Rn is convex and non-empty, then for any x0 at the boundary of C, there exist a supporting hyperplane to C at x0, meaning that there n T exist a 2 R , a 6= 0, such that a (x − x0) ≤ 0 for every x 2 C. 3.2 Convex Functions Domain of a function. The domain of a function f : Rn ! R is the set domf ⊆ Rn over which f is well-defined, in other words: dom f := fx 2 Rn : −∞ < f(x) < +1g: Here are some examples: • The function with values f(x) = log(x) has domain dom f = R++. n • The function with values f(X) = log det(X) has domain dom f = S++ (the set of positive-definite matrices). 3-3 EE 227A Lecture 3 | January 24, 2012 Sp'12 Definition of convexity. A function f : Rn ! R is convex if i) dom f is convex; ii) 8 x; y 2 dom f and 8 λ 2 [0; 1], f (λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). Note that the convexity of the domain is required. For example, the function f : R ! R defined as x if x 62 [−1; 1] f(x) = +1 otherwise is not convex, although is it linear (hence, convex) on its domain ] − 1; −1) [ (1; +1[. We say that a function is concave if −f is convex. Here are some examples: • The support function of any set is convex. • The indicator function of a set is convex if and only if the set is convex. T T n • The quadratic function f(x) = x P x + 2q x + r, with P 2 S++, is convex. (For a proof, see later.) • The function f : R ! R defined as f(x) = 1=x for x > 0 and f(x) = +1 is convex. Alternate characterizations of convexity. Let f : Rn ! R. The following are equiva- lent conditions for f to be convex. • Epigraph condition: f is convex if and only if its epigraph epif := (x; t) 2 Rn+1 : t ≥ f(x) is convex. We can us this result to prove for example, that the largest eigenvalue n function λmax : S ! R, which to a given n × n symmetric matrix X associates its largest eigenvalue, is convex, since the condition λmax(X) ≤ t is equivalent to the n condition that tI − X 2 S+. • Restriction to a line: The function f is convex if and only if its restriction to any line n n is convex, meaning that for every x0 2 R , and v 2 R , the function g(t) := f(x0 + tv) is convex. For example, the function f(X) = log det X is convex. (Prove this as an exercise.) You can also use this to prove that the quadratic function f(x) = xT P x + 2qT x + r is convex if and only if P 0. • First-order condition: If f is differentiable (that is, domf is open and the gradient exists everywhere on the domain), then f is convex if and only if 8 x; y : f(y) ≥ f(x) + rf(x)T (y − x): The geometric interpretation is that the graph of f is bounded below everywhere by anyone of its tangents. 3-4 EE 227A Lecture 3 | January 24, 2012 Sp'12 • Second-order condition: If f is twice differentiable, then it is convex if and only if its Hessian r2f is positive semi-definite everywhere. This is perhaps the most commonly known characterization of convexity. For example, the function f(x; t) = xT x=t with domain f(x; t): t > 0g, is convex. Pn (Check this!) Other examples include the log-sum-exp function, f(x) = log i=1 exp xi, and the quadratic function alluded to above. Operations that preserve convexity. • The nonnegative weighted sum of convex functions is convex. • The composition with an affine function preserves convexity: if A 2 Rm×n, b 2 Rm and f : Rm ! R is convex, then the function g : Rn ! R with values g(x) = f(Ax + b) is convex. • The pointwise maximum of a family of convex functions is convex: if (fα)α2A is a family of convex functions index by α, then the function f(x) := max fα(x) α2A is convex. For example, the dual norm x ! max yT x y :kyk≤1 is convex, as the maximum of convex (in fact, linear) functions (indexed by the vector y). Another example is the largest singular value of a matrix A: f(A) = σmax(A) = n maxx : kxk2=1 kAxk2. Here, each function (indexed by x 2 R ) A ! kAxk2 is convex, since it is the composition of the Euclidean norm (a convex function) with an affine function A ! Ax. Also, this can be used to prove convexity of the function we introduced in lecture 2, k n X T X n kxk1;k := jxj[i] = max u jxj : ui = k; u 2 f0; 1g ; u i=1 i=1 where we use the fact that for any u feasible for the maximization problem, the function x ! uT jxj is convex (since u ≥ 0).
Recommended publications
  • On Choquet Theorem for Random Upper Semicontinuous Functions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector International Journal of Approximate Reasoning 46 (2007) 3–16 www.elsevier.com/locate/ijar On Choquet theorem for random upper semicontinuous functions Hung T. Nguyen a, Yangeng Wang b,1, Guo Wei c,* a Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA b Department of Mathematics, Northwest University, Xian, Shaanxi 710069, PR China c Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA Received 16 May 2006; received in revised form 17 October 2006; accepted 1 December 2006 Available online 29 December 2006 Abstract Motivated by the problem of modeling of coarse data in statistics, we investigate in this paper topologies of the space of upper semicontinuous functions with values in the unit interval [0,1] to define rigorously the concept of random fuzzy closed sets. Unlike the case of the extended real line by Salinetti and Wets, we obtain a topological embedding of random fuzzy closed sets into the space of closed sets of a product space, from which Choquet theorem can be investigated rigorously. Pre- cise topological and metric considerations as well as results of probability measures and special prop- erties of capacity functionals for random u.s.c. functions are also given. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Choquet theorem; Random sets; Upper semicontinuous functions 1. Introduction Random sets are mathematical models for coarse data in statistics (see e.g. [12]). A the- ory of random closed sets on Hausdorff, locally compact and second countable (i.e., a * Corresponding author.
    [Show full text]
  • CORE View Metadata, Citation and Similar Papers at Core.Ac.Uk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bulgarian Digital Mathematics Library at IMI-BAS Serdica Math. J. 27 (2001), 203-218 FIRST ORDER CHARACTERIZATIONS OF PSEUDOCONVEX FUNCTIONS Vsevolod Ivanov Ivanov Communicated by A. L. Dontchev Abstract. First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative. 1. Introduction. Three characterizations of pseudoconvex functions are considered in this paper. The first is new. It is well-known that each pseudo- convex function is invex. Then the following question arises: what is the type of 2000 Mathematics Subject Classification: 26B25, 90C26, 26E15. Key words: Generalized convexity, nonsmooth function, generalized directional derivative, pseudoconvex function, quasiconvex function, invex function, nonsmooth optimization, solution sets, pseudomonotone generalized directional derivative. 204 Vsevolod Ivanov Ivanov the function η from the definition of invexity, when the invex function is pseudo- convex. This question is considered in Section 3, and a first order necessary and sufficient condition for pseudoconvexity of a function is given there. It is shown that the class of strongly pseudoconvex functions, considered by Weir [25], coin- cides with pseudoconvex ones. The main result of Section 3 is applied to characterize the solution set of a nonlinear programming problem in Section 4. The base results of Jeyakumar and Yang in the paper [13] are generalized there to the case, when the function is pseudoconvex.
    [Show full text]
  • Convexity I: Sets and Functions
    Convexity I: Sets and Functions Ryan Tibshirani Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis • basic multivariate calculus • basic linear algebra • Last time: why convexity? Why convexity? Simply put: because we can broadly understand and solve convex optimization problems Nonconvex problems are mostly treated on a case by case basis Reminder: a convex optimization problem is of ● the form ● ● min f(x) x2D ● ● subject to gi(x) 0; i = 1; : : : m ≤ hj(x) = 0; j = 1; : : : r ● ● where f and gi, i = 1; : : : m are all convex, and ● hj, j = 1; : : : r are affine. Special property: any ● local minimizer is a global minimizer ● 2 Outline Today: Convex sets • Examples • Key properties • Operations preserving convexity • Same for convex functions • 3 Convex sets n Convex set: C R such that ⊆ x; y C = tx + (1 t)y C for all 0 t 1 2 ) − 2 ≤ ≤ In words, line segment joining any two elements lies entirely in set 24 2 Convex sets Figure 2.2 Some simple convexn and nonconvex sets. Left. The hexagon, Convex combinationwhich includesof x1; its : :boundary : xk (shownR : darker), any linear is convex. combinationMiddle. The kidney shaped set is not convex, since2 the line segment between the twopointsin the set shown as dots is not contained in the set. Right. The square contains some boundaryθ1x points1 + but::: not+ others,θkxk and is not convex. k with θi 0, i = 1; : : : k, and θi = 1. Convex hull of a set C, ≥ i=1 conv(C), is all convex combinations of elements. Always convex P 4 Figure 2.3 The convex hulls of two sets in R2.
    [Show full text]
  • A Note on Indicator-Functions
    proceedings of the american mathematical society Volume 39, Number 1, June 1973 A NOTE ON INDICATOR-FUNCTIONS J. MYHILL Abstract. A system has the existence-property for abstracts (existence property for numbers, disjunction-property) if when- ever V(1x)A(x), M(t) for some abstract (t) (M(n) for some numeral n; if whenever VAVB, VAor hß. (3x)A(x), A,Bare closed). We show that the existence-property for numbers and the disjunc- tion property are never provable in the system itself; more strongly, the (classically) recursive functions that encode these properties are not provably recursive functions of the system. It is however possible for a system (e.g., ZF+K=L) to prove the existence- property for abstracts for itself. In [1], I presented an intuitionistic form Z of Zermelo-Frankel set- theory (without choice and with weakened regularity) and proved for it the disfunction-property (if VAvB (closed), then YA or YB), the existence- property (if \-(3x)A(x) (closed), then h4(t) for a (closed) comprehension term t) and the existence-property for numerals (if Y(3x G m)A(x) (closed), then YA(n) for a numeral n). In the appendix to [1], I enquired if these results could be proved constructively; in particular if we could find primitive recursively from the proof of AwB whether it was A or B that was provable, and likewise in the other two cases. Discussion of this question is facilitated by introducing the notion of indicator-functions in the sense of the following Definition. Let T be a consistent theory which contains Heyting arithmetic (possibly by relativization of quantifiers).
    [Show full text]
  • Soft Set Theory First Results
    An Inlum~md computers & mathematics PERGAMON Computers and Mathematics with Applications 37 (1999) 19-31 Soft Set Theory First Results D. MOLODTSOV Computing Center of the R~msian Academy of Sciences 40 Vavilova Street, Moscow 117967, Russia Abstract--The soft set theory offers a general mathematical tool for dealing with uncertain, fuzzy, not clearly defined objects. The main purpose of this paper is to introduce the basic notions of the theory of soft sets, to present the first results of the theory, and to discuss some problems of the future. (~) 1999 Elsevier Science Ltd. All rights reserved. Keywords--Soft set, Soft function, Soft game, Soft equilibrium, Soft integral, Internal regular- ization. 1. INTRODUCTION To solve complicated problems in economics, engineering, and environment, we cannot success- fully use classical methods because of various uncertainties typical for those problems. There are three theories: theory of probability, theory of fuzzy sets, and the interval mathematics which we can consider as mathematical tools for dealing with uncertainties. But all these theories have their own difficulties. Theory of probabilities can deal only with stochastically stable phenomena. Without going into mathematical details, we can say, e.g., that for a stochastically stable phenomenon there should exist a limit of the sample mean #n in a long series of trials. The sample mean #n is defined by 1 n IZn = -- ~ Xi, n i=l where x~ is equal to 1 if the phenomenon occurs in the trial, and x~ is equal to 0 if the phenomenon does not occur. To test the existence of the limit, we must perform a large number of trials.
    [Show full text]
  • Convex Functions
    Convex Functions Prof. Daniel P. Palomar ELEC5470/IEDA6100A - Convex Optimization The Hong Kong University of Science and Technology (HKUST) Fall 2020-21 Outline of Lecture • Definition convex function • Examples on R, Rn, and Rn×n • Restriction of a convex function to a line • First- and second-order conditions • Operations that preserve convexity • Quasi-convexity, log-convexity, and convexity w.r.t. generalized inequalities (Acknowledgement to Stephen Boyd for material for this lecture.) Daniel P. Palomar 1 Definition of Convex Function • A function f : Rn −! R is said to be convex if the domain, dom f, is convex and for any x; y 2 dom f and 0 ≤ θ ≤ 1, f (θx + (1 − θ) y) ≤ θf (x) + (1 − θ) f (y) : • f is strictly convex if the inequality is strict for 0 < θ < 1. • f is concave if −f is convex. Daniel P. Palomar 2 Examples on R Convex functions: • affine: ax + b on R • powers of absolute value: jxjp on R, for p ≥ 1 (e.g., jxj) p 2 • powers: x on R++, for p ≥ 1 or p ≤ 0 (e.g., x ) • exponential: eax on R • negative entropy: x log x on R++ Concave functions: • affine: ax + b on R p • powers: x on R++, for 0 ≤ p ≤ 1 • logarithm: log x on R++ Daniel P. Palomar 3 Examples on Rn • Affine functions f (x) = aT x + b are convex and concave on Rn. n • Norms kxk are convex on R (e.g., kxk1, kxk1, kxk2). • Quadratic functions f (x) = xT P x + 2qT x + r are convex Rn if and only if P 0.
    [Show full text]
  • What Is Fuzzy Probability Theory?
    Foundations of Physics, Vol.30,No. 10, 2000 What Is Fuzzy Probability Theory? S. Gudder1 Received March 4, 1998; revised July 6, 2000 The article begins with a discussion of sets and fuzzy sets. It is observed that iden- tifying a set with its indicator function makes it clear that a fuzzy set is a direct and natural generalization of a set. Making this identification also provides sim- plified proofs of various relationships between sets. Connectives for fuzzy sets that generalize those for sets are defined. The fundamentals of ordinary probability theory are reviewed and these ideas are used to motivate fuzzy probability theory. Observables (fuzzy random variables) and their distributions are defined. Some applications of fuzzy probability theory to quantum mechanics and computer science are briefly considered. 1. INTRODUCTION What do we mean by fuzzy probability theory? Isn't probability theory already fuzzy? That is, probability theory does not give precise answers but only probabilities. The imprecision in probability theory comes from our incomplete knowledge of the system but the random variables (measure- ments) still have precise values. For example, when we flip a coin we have only a partial knowledge about the physical structure of the coin and the initial conditions of the flip. If our knowledge about the coin were com- plete, we could predict exactly whether the coin lands heads or tails. However, we still assume that after the coin lands, we can tell precisely whether it is heads or tails. In fuzzy probability theory, we also have an imprecision in our measurements, and random variables must be replaced by fuzzy random variables and events by fuzzy events.
    [Show full text]
  • Sum of Squares and Polynomial Convexity
    CONFIDENTIAL. Limited circulation. For review only. Sum of Squares and Polynomial Convexity Amir Ali Ahmadi and Pablo A. Parrilo Abstract— The notion of sos-convexity has recently been semidefiniteness of the Hessian matrix is replaced with proposed as a tractable sufficient condition for convexity of the existence of an appropriately defined sum of squares polynomials based on sum of squares decomposition. A multi- decomposition. As we will briefly review in this paper, by variate polynomial p(x) = p(x1; : : : ; xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M T (x) M (x) drawing some appealing connections between real algebra with a possibly nonsquare polynomial matrix M(x). It turns and numerical optimization, the latter problem can be re- out that one can reduce the problem of deciding sos-convexity duced to the feasibility of a semidefinite program. of a polynomial to the feasibility of a semidefinite program, Despite the relative recency of the concept of sos- which can be checked efficiently. Motivated by this computa- convexity, it has already appeared in a number of theo- tional tractability, it has been speculated whether every convex polynomial must necessarily be sos-convex. In this paper, we retical and practical settings. In [6], Helton and Nie use answer this question in the negative by presenting an explicit sos-convexity to give sufficient conditions for semidefinite example of a trivariate homogeneous polynomial of degree eight representability of semialgebraic sets. In [7], Lasserre uses that is convex but not sos-convex. sos-convexity to extend Jensen’s inequality in convex anal- ysis to linear functionals that are not necessarily probability I.
    [Show full text]
  • Subgradients
    Subgradients Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: gradient descent Consider the problem min f(x) x n for f convex and differentiable, dom(f) = R . Gradient descent: (0) n choose initial x 2 R , repeat (k) (k−1) (k−1) x = x − tk · rf(x ); k = 1; 2; 3;::: Step sizes tk chosen to be fixed and small, or by backtracking line search If rf Lipschitz, gradient descent has convergence rate O(1/) Downsides: • Requires f differentiable next lecture • Can be slow to converge two lectures from now 2 Outline Today: crucial mathematical underpinnings! • Subgradients • Examples • Subgradient rules • Optimality characterizations 3 Subgradients Remember that for convex and differentiable f, f(y) ≥ f(x) + rf(x)T (y − x) for all x; y I.e., linear approximation always underestimates f n A subgradient of a convex function f at x is any g 2 R such that f(y) ≥ f(x) + gT (y − x) for all y • Always exists • If f differentiable at x, then g = rf(x) uniquely • Actually, same definition works for nonconvex f (however, subgradients need not exist) 4 Examples of subgradients Consider f : R ! R, f(x) = jxj 2.0 1.5 1.0 f(x) 0.5 0.0 −0.5 −2 −1 0 1 2 x • For x 6= 0, unique subgradient g = sign(x) • For x = 0, subgradient g is any element of [−1; 1] 5 n Consider f : R ! R, f(x) = kxk2 f(x) x2 x1 • For x 6= 0, unique subgradient g = x=kxk2 • For x = 0, subgradient g is any element of fz : kzk2 ≤ 1g 6 n Consider f : R ! R, f(x) = kxk1 f(x) x2 x1 • For xi 6= 0, unique ith component gi = sign(xi) • For xi = 0, ith component gi is any element of [−1; 1] 7 n
    [Show full text]
  • EE364 Review Session 2
    EE364 Review EE364 Review Session 2 Convex sets and convex functions • Examples from chapter 3 • Installing and using CVX • 1 Operations that preserve convexity Convex sets Convex functions Intersection Nonnegative weighted sum Affine transformation Composition with an affine function Perspective transformation Perspective transformation Pointwise maximum and supremum Minimization Convex sets and convex functions are related via the epigraph. • Composition rules are extremely important. • EE364 Review Session 2 2 Simple composition rules Let h : R R and g : Rn R. Let f(x) = h(g(x)). Then: ! ! f is convex if h is convex and nondecreasing, and g is convex • f is convex if h is convex and nonincreasing, and g is concave • f is concave if h is concave and nondecreasing, and g is concave • f is concave if h is concave and nonincreasing, and g is convex • EE364 Review Session 2 3 Ex. 3.6 Functions and epigraphs. When is the epigraph of a function a halfspace? When is the epigraph of a function a convex cone? When is the epigraph of a function a polyhedron? Solution: If the function is affine, positively homogeneous (f(αx) = αf(x) for α 0), and piecewise-affine, respectively. ≥ Ex. 3.19 Nonnegative weighted sums and integrals. r 1. Show that f(x) = i=1 αix[i] is a convex function of x, where α1 α2 αPr 0, and x[i] denotes the ith largest component of ≥ ≥ · · · ≥ ≥ k n x. (You can use the fact that f(x) = i=1 x[i] is convex on R .) P 2. Let T (x; !) denote the trigonometric polynomial T (x; !) = x + x cos ! + x cos 2! + + x cos(n 1)!: 1 2 3 · · · n − EE364 Review Session 2 4 Show that the function 2π f(x) = log T (x; !) d! − Z0 is convex on x Rn T (x; !) > 0; 0 ! 2π .
    [Show full text]
  • Be Measurable Spaces. a Func- 1 1 Tion F : E G Is Measurable If F − (A) E Whenever a G
    2. Measurable functions and random variables 2.1. Measurable functions. Let (E; E) and (G; G) be measurable spaces. A func- 1 1 tion f : E G is measurable if f − (A) E whenever A G. Here f − (A) denotes the inverse!image of A by f 2 2 1 f − (A) = x E : f(x) A : f 2 2 g Usually G = R or G = [ ; ], in which case G is always taken to be the Borel σ-algebra. If E is a topological−∞ 1space and E = B(E), then a measurable function on E is called a Borel function. For any function f : E G, the inverse image preserves set operations ! 1 1 1 1 f − A = f − (A ); f − (G A) = E f − (A): i i n n i ! i [ [ 1 1 Therefore, the set f − (A) : A G is a σ-algebra on E and A G : f − (A) E is f 2 g 1 f ⊆ 2 g a σ-algebra on G. In particular, if G = σ(A) and f − (A) E whenever A A, then 1 2 2 A : f − (A) E is a σ-algebra containing A and hence G, so f is measurable. In the casef G = R, 2the gBorel σ-algebra is generated by intervals of the form ( ; y]; y R, so, to show that f : E R is Borel measurable, it suffices to show −∞that x 2E : f(x) y E for all y. ! f 2 ≤ g 2 1 If E is any topological space and f : E R is continuous, then f − (U) is open in E and hence measurable, whenever U is op!en in R; the open sets U generate B, so any continuous function is measurable.
    [Show full text]
  • NP-Hardness of Deciding Convexity of Quartic Polynomials and Related Problems
    NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis ∗y Abstract We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial time. 1 Introduction The role of convexity in modern day mathematical programming has proven to be remarkably fundamental, to the point that tractability of an optimization problem is nowadays assessed, more often than not, by whether or not the problem benefits from some sort of underlying convexity. In the famous words of Rockafellar [39]: \In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." But how easy is it to distinguish between convexity and nonconvexity? Can we decide in an efficient manner if a given optimization problem is convex? A class of optimization problems that allow for a rigorous study of this question from a com- putational complexity viewpoint is the class of polynomial optimization problems. These are op- timization problems where the objective is given by a polynomial function and the feasible set is described by polynomial inequalities.
    [Show full text]