Convex Analysis, Duality and Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Convex Analysis, Duality and Optimization Convex Analysis, Duality and Optimization Yao-Liang Yu [email protected] Dept. of Computing Science University of Alberta March 7, 2010 Contents 1 Prelude 1 2 Basic Convex Analysis 2 3 Convex Optimization 5 4 Fenchel Conjugate 11 5 Minimax Theorem 13 6 Lagrangian Duality 15 7 References 18 1 Prelude Notations Used Throughout •C for convex set, S for arbitrary set, K for convex cone, • g(·) is for arbitrary functions, not necessarily convex, • f(·) is for convex functions, for simplicity, we assume f(·) is closed, proper, continuous, and differen- tiable when needed, • min (max) means inf (sup) when needed, • w.r.t.: with respect to; w.l.o.g.: without loss of generality; u.s.c.: upper semi-continuous; l.s.c.: lower semi-continuous; int: interior point; RHS: right hand side; w.p.1: with probability 1. Historical Note • 60s: Linear Programming, Simplex Method • 70s-80s: (Convex) Nonlinear Programming, Ellipsoid Method, Interior-Point Method • 90s: Convexification almost everywhere 1 • Now: Large-scale optimization, First-order gradient method But... Neither of poly-time solvability and convexity implies the other. NP-Hard convex problems abound. 2 Basic Convex Analysis Convex Sets and Functions Definition 1 (Convex set). A point set C is said to be convex if 8 λ 2 [0; 1]; x; y 2 C, we have λx+(1−λ)y 2 C. Definition 2 (Convex function). A function f(·) is said to be convex if 1. domf is convex, and, 2. 8 λ 2 [0; 1]; x; y 2 domf, we have f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y); x Or equivalently, f(·) is convex if its epigraph f t : f(x) ≤ tg is a convex set. • Function h(·) is concave iff −h(·) is convex, • h(·) is called affine (linear) iff it's both convex and concave, • No concave set. Affine set: drop the constraint on λ. More on Convex functions Definition 3 (Strongly Convex Function). f(x) is said to be µ-strongly convex with respect to a norm k · k iff dom f is convex and 8λ 2 [0; 1], λ(1 − λ) f(λx + (1 − λ)y) + µ · kx − yk2 ≤ λf(x) + (1 − λ)f(y): 2 Proposition 1 (Sufficient Conditions for µ-Strong Convexity). 1. Zero Order: definition 2. First Order: 8x; y 2 dom f; µ f(y) ≥ f(x) + hrf(x); x − yi + kx − yk2: 2 3. Second Order: 8x; y 2 dom f; hr2f(x)y; yi ≥ µkyk2: Elementary Convex Functions (to name a few) • Negative entropy x log x is convex on x > 0, 1=p h P pi • `p-norm kxkp := i jxij is convex when p ≥ 1, concave otherwise (except p = 0), P • Log-sum-exp function log i exp(xi) is convex, same is true for the matrix version log Tr exp(X) on symmetric matrices, • Quadratic-over-linear function xT Y −1x is jointly convex in x and Y 0, what if Y 0? • Log-determinant log det X is concave on X 0, what about log det X−1? 2 • Tr X−1 is convex on X 0, • The largest element x[1] = maxi xi is convex; moreover, sum of largest k elements is convex; what about smallest analogies? • The largest eigenvalue of symmetric matrices is convex; moreover, sum of largest k eigenvalues of symmetric matrices is also convex; can we drop the condition symmetric? Compositions Proposition 2 (Affine Transform). AC := fAx : x 2 Cg and A−1C := fx : Ax 2 Cg are convex sets. Similarly, (Af)(x) := min f(y) and (fA)(x) := f(Ax) are convex. Ay=x Proposition 3 (Sufficient but NOT Necessary). f ◦ g is convex if • g(·) is convex and f(·) is non-decreasing, or • g(·) is concave and f(·) is non-increasing. Proof. For simplicity, assume f ◦ g is twice differentiable. Use the second-order sufficient condition. Remark: One needs to check if domf ◦ g is convex! However, this is unnecessary if we consider extended- value functions. Operators Preserving Convexity Proposition 4 (Algebraic). For θ > 0, λC := fθx : x 2 Cg is convex; θf(x) is convex; and f1(x) + f2(x) is convex. Proposition 5 (Intersection v.s. Supremum). • Intersection of arbitrary collection of convex sets is convex; • Similarly, pointwise supremum of arbitrary collection of convex functions is convex. Proposition 6 (Sum v.s. Infimal Convolution). •C 1 + C2 := fx1 + x2 : xi 2 Cig is convex; • Similarly, (f1f2)(x) := infyff1(y) + f2(x − y)g is convex. Proof. Consider affine transform. What about union v.s. infimum? Needs extra convexification. Convex Hull Definition 4 (Convex Hull). The convex hull of S, denoted convS, is the smallest convex set containing S, i.e. the intersection of all convex sets containing S. Similarly, the convex hull of g(x), denoted convg, is the greatest convex function dominated by g, i.e. the pointwise supremum of all convex functions dominated by g. Theorem 5 (Carath´eodory, 1911). The convex hull of any set S 2 Rn is: n+1 n+1 X X fx : x = λixi; xi 2 S; λi ≥ 0; λi = 1g: i=1 i=1 We will see how to compute convg later. 3 Cones and Conic Hull Definition 6 (Cone and Positively Homogeneous Function). A set S is called a cone if 8x 2 S; θ ≥ 0; we have θx 2 S. Similarly, a function g(x) is called positively homogeneous if 8θ ≥ 0; g(θx) = θg(x). K is a convex cone if it is a cone and is convex, specifically, if 8x1; x2 2 K; θ1; θ2 ≥ 0; ) θ1x1 + θ2x2 2 K. Similarly, f(x) is positively homogeneous convex if it is positively homogeneous and convex, specifically, if 8x1; x2 2 domf; θ1; θ2 ≥ 0; ) f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2). Remark: Under the above definitions, cones always contain the origin, and positively homogeneous func- tions equal 0 at the origin. Definition 7 (Conic Hull). The conic hull of S is the smallest convex cone containing S. Similarly, the conic hull of g(x), denoted coneg, is the greatest positively homogeneous convex function dominated by g. Theorem 8 (Carath´eodory, 1911). The conic hull of any set S 2 Rn is: n X fx : x = θixi; xi 2 S; θi ≥ 0; g: i=1 For convex function f(x), its conic hull is: (conef)(x) = min θ · f(θ−1x): θ≥0 How to compute coneg? Hint: coneg = cone convg, why? Elementary Convex Sets (to name a few) • Hyperplane aT x = α is convex, • Half space aT x ≤ α is convex, • Affine set Ax = b is convex (proof?), • Polyhedra set Ax ≤ b is convex (proof?), Proposition 7 (Level sets). (Sub)level sets of f(x), defined as fx : f(x) ≤ αg are convex. 0T x Proof. Consider the intersection of the epigraph of f(x) and the hyperplane 1 t = α. Remark: A function, with all level sets being convex, is not necessarily convex! We call such functions, with convex domain, quasi-convex. P Convince yourself the `0-norm, defined as kxk0 = i I[xi 6= 0], is not convex. Show that -kxk0 on x ≥ 0 is quasi-convex. T −1 1=2 • Ellipsoid fx :(x − xc) P (x − xc) ≤ 1;P 0g or fxc + P u : kuk2 ≤ 1g is convex, • Nonnegative orthant x ≥ 0 is a convex cone, • All positive (semi)definite matrices compose a convex cone (positive (semi)definite cone) X 0 (X 0), x • All norm cones f t : kxk ≤ tg are convex, in particular, for the Euclidean norm, the cone is called second order cone or Lorentz cone or ice-cream cone. Remark: This is essentially saying that all norms are convex. `0-norm is not convex? No, but it's not a \norm" either. People call it \norm" unjustly. 4 3 Convex Optimization Unconstrained Consider the simple problem: min f(x); (1) x where f(·) is defined in the whole space. Theorem 9 (First-order Optimality Condition). A sufficient and necessary condition for x? to be the minimizer of (1) is: 0 2 @f(x?): (2) When f(·) is differentiable, (2) reduces to rf(x?) = 0. Remark: • The minimizer is unique when f(·) is strictly convex, • For general nonconvex functions g(·), the condition in (2) gives only critical (stationary) points, which could be minimizer, maximizer, or nothing (saddle-point). Simply Constrained Consider the constrained problem: min f(x); (3) x2C where f(·) is defined in the whole space. Is rf(x?) = 0 still the optimality condition? If you think so, consider the example: min x: x2[1;2] Theorem 10 (First-order Optimality Condition). A sufficient and necessary condition for x? to be the minimizer of (3) is (assuming differentiability): 8x 2 C; (x − x?)T rf(x?) ≥ 0: (4) Verify this condition is indeed satisfied by the example above. General Convex Program We say a problem is convex if it is of the following form: min f0(x) x2C s:t: fi(x) ≤ 0; i = 1; : : : ; m Ax = b; where fi(x); i = 0; : : : ; m are all convex. Remark: • The equality constraint must be affine! But affine functions are free to appear in inequality constraints. • The objective function, being convex, is to be minimized. Sometimes we see maximizinga concave function, no difference (why?). • The inequality constraints are ≤, which lead to a convex feasible region (why?). • To summarize, convex programs are to minimizea convex function over a convex feasible region. 5 Two Optimization Strategies Usually, unconstrained problems are easier to handle than constrained ones, and there are two typical ways to convert constrained problems into unconstrained ones. Example 11 (Barrier Method). Given the convex program, determine the feasible region (needs to be com- pact), and then construct a barrier function, say b(x), which is convex and quickly grows to 1 when x, the decision variable, approaches the boundary of the feasible region.
Recommended publications
  • On Choquet Theorem for Random Upper Semicontinuous Functions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector International Journal of Approximate Reasoning 46 (2007) 3–16 www.elsevier.com/locate/ijar On Choquet theorem for random upper semicontinuous functions Hung T. Nguyen a, Yangeng Wang b,1, Guo Wei c,* a Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA b Department of Mathematics, Northwest University, Xian, Shaanxi 710069, PR China c Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA Received 16 May 2006; received in revised form 17 October 2006; accepted 1 December 2006 Available online 29 December 2006 Abstract Motivated by the problem of modeling of coarse data in statistics, we investigate in this paper topologies of the space of upper semicontinuous functions with values in the unit interval [0,1] to define rigorously the concept of random fuzzy closed sets. Unlike the case of the extended real line by Salinetti and Wets, we obtain a topological embedding of random fuzzy closed sets into the space of closed sets of a product space, from which Choquet theorem can be investigated rigorously. Pre- cise topological and metric considerations as well as results of probability measures and special prop- erties of capacity functionals for random u.s.c. functions are also given. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Choquet theorem; Random sets; Upper semicontinuous functions 1. Introduction Random sets are mathematical models for coarse data in statistics (see e.g. [12]). A the- ory of random closed sets on Hausdorff, locally compact and second countable (i.e., a * Corresponding author.
    [Show full text]
  • 1 Overview 2 Elements of Convex Analysis
    AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 | Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminol- ogy, and proved Weierstass' theorem (circa 1830) which gives a sufficient condition for existence of an optimal solution to an optimization problem. Today we will discuss basic definitions and prop- erties of convex sets and convex functions. We will then prove the separating hyperplane theorem and see an application of separating hyperplanes in machine learning. We'll conclude by describing the seminal perceptron algorithm (1957) which is designed to find separating hyperplanes. 2 Elements of Convex Analysis We will primarily consider optimization problems over convex sets { sets for which any two points are connected by a line. We illustrate some convex and non-convex sets in Figure 1. Definition. A set S is called a convex set if any two points in S contain their line, i.e. for any x1; x2 2 S we have that λx1 + (1 − λ)x2 2 S for any λ 2 [0; 1]. In the previous lecture we saw linear regression an example of an optimization problem, and men- tioned that the RSS function has a convex shape. We can now define this concept formally. n Definition. For a convex set S ⊆ R , we say that a function f : S ! R is: • convex on S if for any two points x1; x2 2 S and any λ 2 [0; 1] we have that: f (λx1 + (1 − λ)x2) ≤ λf(x1) + 1 − λ f(x2): • strictly convex on S if for any two points x1; x2 2 S and any λ 2 [0; 1] we have that: f (λx1 + (1 − λ)x2) < λf(x1) + (1 − λ) f(x2): We illustrate a convex function in Figure 2.
    [Show full text]
  • CORE View Metadata, Citation and Similar Papers at Core.Ac.Uk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bulgarian Digital Mathematics Library at IMI-BAS Serdica Math. J. 27 (2001), 203-218 FIRST ORDER CHARACTERIZATIONS OF PSEUDOCONVEX FUNCTIONS Vsevolod Ivanov Ivanov Communicated by A. L. Dontchev Abstract. First order characterizations of pseudoconvex functions are investigated in terms of generalized directional derivatives. A connection with the invexity is analysed. Well-known first order characterizations of the solution sets of pseudolinear programs are generalized to the case of pseudoconvex programs. The concepts of pseudoconvexity and invexity do not depend on a single definition of the generalized directional derivative. 1. Introduction. Three characterizations of pseudoconvex functions are considered in this paper. The first is new. It is well-known that each pseudo- convex function is invex. Then the following question arises: what is the type of 2000 Mathematics Subject Classification: 26B25, 90C26, 26E15. Key words: Generalized convexity, nonsmooth function, generalized directional derivative, pseudoconvex function, quasiconvex function, invex function, nonsmooth optimization, solution sets, pseudomonotone generalized directional derivative. 204 Vsevolod Ivanov Ivanov the function η from the definition of invexity, when the invex function is pseudo- convex. This question is considered in Section 3, and a first order necessary and sufficient condition for pseudoconvexity of a function is given there. It is shown that the class of strongly pseudoconvex functions, considered by Weir [25], coin- cides with pseudoconvex ones. The main result of Section 3 is applied to characterize the solution set of a nonlinear programming problem in Section 4. The base results of Jeyakumar and Yang in the paper [13] are generalized there to the case, when the function is pseudoconvex.
    [Show full text]
  • Convexity I: Sets and Functions
    Convexity I: Sets and Functions Ryan Tibshirani Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis • basic multivariate calculus • basic linear algebra • Last time: why convexity? Why convexity? Simply put: because we can broadly understand and solve convex optimization problems Nonconvex problems are mostly treated on a case by case basis Reminder: a convex optimization problem is of ● the form ● ● min f(x) x2D ● ● subject to gi(x) 0; i = 1; : : : m ≤ hj(x) = 0; j = 1; : : : r ● ● where f and gi, i = 1; : : : m are all convex, and ● hj, j = 1; : : : r are affine. Special property: any ● local minimizer is a global minimizer ● 2 Outline Today: Convex sets • Examples • Key properties • Operations preserving convexity • Same for convex functions • 3 Convex sets n Convex set: C R such that ⊆ x; y C = tx + (1 t)y C for all 0 t 1 2 ) − 2 ≤ ≤ In words, line segment joining any two elements lies entirely in set 24 2 Convex sets Figure 2.2 Some simple convexn and nonconvex sets. Left. The hexagon, Convex combinationwhich includesof x1; its : :boundary : xk (shownR : darker), any linear is convex. combinationMiddle. The kidney shaped set is not convex, since2 the line segment between the twopointsin the set shown as dots is not contained in the set. Right. The square contains some boundaryθ1x points1 + but::: not+ others,θkxk and is not convex. k with θi 0, i = 1; : : : k, and θi = 1. Convex hull of a set C, ≥ i=1 conv(C), is all convex combinations of elements. Always convex P 4 Figure 2.3 The convex hulls of two sets in R2.
    [Show full text]
  • Applications of Convex Analysis Within Mathematics
    Noname manuscript No. (will be inserted by the editor) Applications of Convex Analysis within Mathematics Francisco J. Arag´onArtacho · Jonathan M. Borwein · Victoria Mart´ın-M´arquez · Liangjin Yao July 19, 2013 Abstract In this paper, we study convex analysis and its theoretical applications. We first apply important tools of convex analysis to Optimization and to Analysis. We then show various deep applications of convex analysis and especially infimal convolution in Monotone Operator Theory. Among other things, we recapture the Minty surjectivity theorem in Hilbert space, and present a new proof of the sum theorem in reflexive spaces. More technically, we also discuss autoconjugate representers for maximally monotone operators. Finally, we consider various other applications in mathematical analysis. Keywords Adjoint · Asplund averaging · autoconjugate representer · Banach limit · Chebyshev set · convex functions · Fenchel duality · Fenchel conjugate · Fitzpatrick function · Hahn{Banach extension theorem · infimal convolution · linear relation · Minty surjectivity theorem · maximally monotone operator · monotone operator · Moreau's decomposition · Moreau envelope · Moreau's max formula · Moreau{Rockafellar duality · normal cone operator · renorming · resolvent · Sandwich theorem · subdifferential operator · sum theorem · Yosida approximation Mathematics Subject Classification (2000) Primary 47N10 · 90C25; Secondary 47H05 · 47A06 · 47B65 Francisco J. Arag´onArtacho Centre for Computer Assisted Research Mathematics and its Applications (CARMA),
    [Show full text]
  • Convex) Level Sets Integration
    Journal of Optimization Theory and Applications manuscript No. (will be inserted by the editor) (Convex) Level Sets Integration Jean-Pierre Crouzeix · Andrew Eberhard · Daniel Ralph Dedicated to Vladimir Demjanov Received: date / Accepted: date Abstract The paper addresses the problem of recovering a pseudoconvex function from the normal cones to its level sets that we call the convex level sets integration problem. An important application is the revealed preference problem. Our main result can be described as integrating a maximally cycli- cally pseudoconvex multivalued map that sends vectors or \bundles" of a Eu- clidean space to convex sets in that space. That is, we are seeking a pseudo convex (real) function such that the normal cone at each boundary point of each of its lower level sets contains the set value of the multivalued map at the same point. This raises the question of uniqueness of that function up to rescaling. Even after normalising the function long an orienting direction, we give a counterexample to its uniqueness. We are, however, able to show uniqueness under a condition motivated by the classical theory of ordinary differential equations. Keywords Convexity and Pseudoconvexity · Monotonicity and Pseudomono- tonicity · Maximality · Revealed Preferences. Mathematics Subject Classification (2000) 26B25 · 91B42 · 91B16 Jean-Pierre Crouzeix, Corresponding Author, LIMOS, Campus Scientifique des C´ezeaux,Universit´eBlaise Pascal, 63170 Aubi`ere,France, E-mail: [email protected] Andrew Eberhard School of Mathematical & Geospatial Sciences, RMIT University, Melbourne, VIC., Aus- tralia, E-mail: [email protected] Daniel Ralph University of Cambridge, Judge Business School, UK, E-mail: [email protected] 2 Jean-Pierre Crouzeix et al.
    [Show full text]
  • On the Ekeland Variational Principle with Applications and Detours
    Lectures on The Ekeland Variational Principle with Applications and Detours By D. G. De Figueiredo Tata Institute of Fundamental Research, Bombay 1989 Author D. G. De Figueiredo Departmento de Mathematica Universidade de Brasilia 70.910 – Brasilia-DF BRAZIL c Tata Institute of Fundamental Research, 1989 ISBN 3-540- 51179-2-Springer-Verlag, Berlin, Heidelberg. New York. Tokyo ISBN 0-387- 51179-2-Springer-Verlag, New York. Heidelberg. Berlin. Tokyo No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 400 005 Printed by INSDOC Regional Centre, Indian Institute of Science Campus, Bangalore 560012 and published by H. Goetze, Springer-Verlag, Heidelberg, West Germany PRINTED IN INDIA Preface Since its appearance in 1972 the variational principle of Ekeland has found many applications in different fields in Analysis. The best refer- ences for those are by Ekeland himself: his survey article [23] and his book with J.-P. Aubin [2]. Not all material presented here appears in those places. Some are scattered around and there lies my motivation in writing these notes. Since they are intended to students I included a lot of related material. Those are the detours. A chapter on Nemyt- skii mappings may sound strange. However I believe it is useful, since their properties so often used are seldom proved. We always say to the students: go and look in Krasnoselskii or Vainberg! I think some of the proofs presented here are more straightforward. There are two chapters on applications to PDE.
    [Show full text]
  • Convex Functions
    Convex Functions Prof. Daniel P. Palomar ELEC5470/IEDA6100A - Convex Optimization The Hong Kong University of Science and Technology (HKUST) Fall 2020-21 Outline of Lecture • Definition convex function • Examples on R, Rn, and Rn×n • Restriction of a convex function to a line • First- and second-order conditions • Operations that preserve convexity • Quasi-convexity, log-convexity, and convexity w.r.t. generalized inequalities (Acknowledgement to Stephen Boyd for material for this lecture.) Daniel P. Palomar 1 Definition of Convex Function • A function f : Rn −! R is said to be convex if the domain, dom f, is convex and for any x; y 2 dom f and 0 ≤ θ ≤ 1, f (θx + (1 − θ) y) ≤ θf (x) + (1 − θ) f (y) : • f is strictly convex if the inequality is strict for 0 < θ < 1. • f is concave if −f is convex. Daniel P. Palomar 2 Examples on R Convex functions: • affine: ax + b on R • powers of absolute value: jxjp on R, for p ≥ 1 (e.g., jxj) p 2 • powers: x on R++, for p ≥ 1 or p ≤ 0 (e.g., x ) • exponential: eax on R • negative entropy: x log x on R++ Concave functions: • affine: ax + b on R p • powers: x on R++, for 0 ≤ p ≤ 1 • logarithm: log x on R++ Daniel P. Palomar 3 Examples on Rn • Affine functions f (x) = aT x + b are convex and concave on Rn. n • Norms kxk are convex on R (e.g., kxk1, kxk1, kxk2). • Quadratic functions f (x) = xT P x + 2qT x + r are convex Rn if and only if P 0.
    [Show full text]
  • Optimization Over Nonnegative and Convex Polynomials with and Without Semidefinite Programming
    OPTIMIZATION OVER NONNEGATIVE AND CONVEX POLYNOMIALS WITH AND WITHOUT SEMIDEFINITE PROGRAMMING GEORGINA HALL ADISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF OPERATIONS RESEARCH AND FINANCIAL ENGINEERING ADVISER:PROFESSOR AMIR ALI AHMADI JUNE 2018 c Copyright by Georgina Hall, 2018. All rights reserved. Abstract The problem of optimizing over the cone of nonnegative polynomials is a fundamental problem in computational mathematics, with applications to polynomial optimization, con- trol, machine learning, game theory, and combinatorics, among others. A number of break- through papers in the early 2000s showed that this problem, long thought to be out of reach, could be tackled by using sum of squares programming. This technique however has proved to be expensive for large-scale problems, as it involves solving large semidefinite programs (SDPs). In the first part of this thesis, we present two methods for approximately solving large- scale sum of squares programs that dispense altogether with semidefinite programming and only involve solving a sequence of linear or second order cone programs generated in an adaptive fashion. We then focus on the problem of finding tight lower bounds on polyno- mial optimization problems (POPs), a fundamental task in this area that is most commonly handled through the use of SDP-based sum of squares hierarchies (e.g., due to Lasserre and Parrilo). In contrast to previous approaches, we provide the first theoretical framework for constructing converging hierarchies of lower bounds on POPs whose computation simply requires the ability to multiply certain fixed polynomials together and to check nonnegativ- ity of the coefficients of their product.
    [Show full text]
  • Sum of Squares and Polynomial Convexity
    CONFIDENTIAL. Limited circulation. For review only. Sum of Squares and Polynomial Convexity Amir Ali Ahmadi and Pablo A. Parrilo Abstract— The notion of sos-convexity has recently been semidefiniteness of the Hessian matrix is replaced with proposed as a tractable sufficient condition for convexity of the existence of an appropriately defined sum of squares polynomials based on sum of squares decomposition. A multi- decomposition. As we will briefly review in this paper, by variate polynomial p(x) = p(x1; : : : ; xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M T (x) M (x) drawing some appealing connections between real algebra with a possibly nonsquare polynomial matrix M(x). It turns and numerical optimization, the latter problem can be re- out that one can reduce the problem of deciding sos-convexity duced to the feasibility of a semidefinite program. of a polynomial to the feasibility of a semidefinite program, Despite the relative recency of the concept of sos- which can be checked efficiently. Motivated by this computa- convexity, it has already appeared in a number of theo- tional tractability, it has been speculated whether every convex polynomial must necessarily be sos-convex. In this paper, we retical and practical settings. In [6], Helton and Nie use answer this question in the negative by presenting an explicit sos-convexity to give sufficient conditions for semidefinite example of a trivariate homogeneous polynomial of degree eight representability of semialgebraic sets. In [7], Lasserre uses that is convex but not sos-convex. sos-convexity to extend Jensen’s inequality in convex anal- ysis to linear functionals that are not necessarily probability I.
    [Show full text]
  • Subgradients
    Subgradients Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: gradient descent Consider the problem min f(x) x n for f convex and differentiable, dom(f) = R . Gradient descent: (0) n choose initial x 2 R , repeat (k) (k−1) (k−1) x = x − tk · rf(x ); k = 1; 2; 3;::: Step sizes tk chosen to be fixed and small, or by backtracking line search If rf Lipschitz, gradient descent has convergence rate O(1/) Downsides: • Requires f differentiable next lecture • Can be slow to converge two lectures from now 2 Outline Today: crucial mathematical underpinnings! • Subgradients • Examples • Subgradient rules • Optimality characterizations 3 Subgradients Remember that for convex and differentiable f, f(y) ≥ f(x) + rf(x)T (y − x) for all x; y I.e., linear approximation always underestimates f n A subgradient of a convex function f at x is any g 2 R such that f(y) ≥ f(x) + gT (y − x) for all y • Always exists • If f differentiable at x, then g = rf(x) uniquely • Actually, same definition works for nonconvex f (however, subgradients need not exist) 4 Examples of subgradients Consider f : R ! R, f(x) = jxj 2.0 1.5 1.0 f(x) 0.5 0.0 −0.5 −2 −1 0 1 2 x • For x 6= 0, unique subgradient g = sign(x) • For x = 0, subgradient g is any element of [−1; 1] 5 n Consider f : R ! R, f(x) = kxk2 f(x) x2 x1 • For x 6= 0, unique subgradient g = x=kxk2 • For x = 0, subgradient g is any element of fz : kzk2 ≤ 1g 6 n Consider f : R ! R, f(x) = kxk1 f(x) x2 x1 • For xi 6= 0, unique ith component gi = sign(xi) • For xi = 0, ith component gi is any element of [−1; 1] 7 n
    [Show full text]
  • EE364 Review Session 2
    EE364 Review EE364 Review Session 2 Convex sets and convex functions • Examples from chapter 3 • Installing and using CVX • 1 Operations that preserve convexity Convex sets Convex functions Intersection Nonnegative weighted sum Affine transformation Composition with an affine function Perspective transformation Perspective transformation Pointwise maximum and supremum Minimization Convex sets and convex functions are related via the epigraph. • Composition rules are extremely important. • EE364 Review Session 2 2 Simple composition rules Let h : R R and g : Rn R. Let f(x) = h(g(x)). Then: ! ! f is convex if h is convex and nondecreasing, and g is convex • f is convex if h is convex and nonincreasing, and g is concave • f is concave if h is concave and nondecreasing, and g is concave • f is concave if h is concave and nonincreasing, and g is convex • EE364 Review Session 2 3 Ex. 3.6 Functions and epigraphs. When is the epigraph of a function a halfspace? When is the epigraph of a function a convex cone? When is the epigraph of a function a polyhedron? Solution: If the function is affine, positively homogeneous (f(αx) = αf(x) for α 0), and piecewise-affine, respectively. ≥ Ex. 3.19 Nonnegative weighted sums and integrals. r 1. Show that f(x) = i=1 αix[i] is a convex function of x, where α1 α2 αPr 0, and x[i] denotes the ith largest component of ≥ ≥ · · · ≥ ≥ k n x. (You can use the fact that f(x) = i=1 x[i] is convex on R .) P 2. Let T (x; !) denote the trigonometric polynomial T (x; !) = x + x cos ! + x cos 2! + + x cos(n 1)!: 1 2 3 · · · n − EE364 Review Session 2 4 Show that the function 2π f(x) = log T (x; !) d! − Z0 is convex on x Rn T (x; !) > 0; 0 ! 2π .
    [Show full text]