Wave Runup on Atoll Reefs

Total Page:16

File Type:pdf, Size:1020Kb

Wave Runup on Atoll Reefs MSc. Thesis Wave runup on atoll reefs Ellen Quataert January 2015 Front cover: Aerial view of the southern tip of the Kwajalein Atoll in the Republic of the Marshall Islands. Source: www.fayeandsteve.com Wave runup on atoll reefs Ellen Quataert 1210070-000 © Deltares, 2015, B Keywords Runup, atoll reef, XBeach, infragravity wave, wave-induced setup, incident swash, infragravity swash, Kwajalein Summary The aim of this research was to take the first step in understanding the wave runup process on an atoll reef using the XBeach model. Field data collected from 3 November 2013 to 13 April 2014 at Kwajalein Atoll in the Republic of the Marshall Islands was used. The dataset included data on bathymetry, waves, water levels and wave-induced runup. The data was analysed and subsequently used to model the hydrodynamics across the reef and the wave runup. The hydrostatic and non-hydrostatic XBeach models were used to capture both components of runup, infragravity and incident swash. Finally, a conceptual model was created to investigate the effect of variations in the atoll reef parameter space on the wave runup. References 1210070-000 Version Date Author Initials Review Initials Approval Initials Jan. 2015 E. Quataert A.R. van Dongeren F. Hoozemans A.A. van Rooijen State final Wave runup on atoll reefs Wave runup on atoll reefs by Ellen Quataert in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering Delft University of Technology January 2015 In collaboration with: Graduation committee: Prof. dr. ir. M.J.F. Stive Delft University of Technology ir. A.A. van Rooijen Deltares / Delft University of Technology dr. C.D. Storlazzi USGS-Pacific Coastal and Marine Science Center dr. ir. A.R. van Dongeren Deltares dr. ir. M. Zijlema Delft University of Technology Wave runup on atoll reefs Abstract Coral reefs are capable of protecting mainland and island coasts from the impacts of severe storm waves and storm surges, the impact of tsunamis, and help limit coastal erosion. Despite the protective capabilities of coral reefs, coastlines fronted by coral reefs are still threatened by the ocean. For example, a series of inundation events on islands across the western Pacific (e.g. Wake Atoll, Guam and Kwajalein Atoll) in December 2008 resulted in severe damage on the islands. Many of these islands are low-lying atolls and have maximum elevations of 3 to 5 m above mean sea level. An atoll is a circular reef that, partially, encloses a lagoon which can contain a freshwater lens. Wave-induced overwash and inundation threatens infrastructure and freshwater resources, which has consequences on the suitability of the islands for agriculture and habitation. The inundation events resulted in the need for a better understanding of the processes causing these inundation events on atoll islands. An investigation on this matter is carried out by the joint U.S. Geological Survey (USGS), National Oceanographic and Atmospheric Administration (NOAA) and University of Hawaii. The primary goal of the investigation is to determine the influence of sea-level rise on wave driven inundation and the resulting impacts to infrastructure and freshwater resources on atoll islets in the Pacific and Indian Oceans. Coasts fronted by (coral) reefs have some important physical differences with sandy coasts. The steep fore reef, the relatively long and shallow reef flat and the higher bottom roughness enforces specific hydrodynamic processes. The resulting water level variations, wave propagation and forcing across the reef and the wave-induced runup are the main processes driving inundation events. The majority of the studies that have been conducted have focused on the hydrodynamics across reefs. Little is known about the wave-induced runup in the presence of a reef. Therefore, the aim of this thesis was to take the first step in understanding the wave runup process on an atoll reef using the XBeach model. In this study, field data collected from 3 November 2013 to 13 April 2014 at Kwajalein Atoll in the Republic of the Marshall Islands was used. The dataset included measurements on bathymetry, waves, water levels and wave-induced runup. The data was analysed and subsequently used to model the hydrodynamics across the reef and the wave runup. The hydrostatic and non-hydrostatic XBeach models were used to capture both components of runup, infragravity and incident swash. Finally, a conceptual model was generated to investigate the effect of variations in the atoll reef parameter space on the wave runup. The data was analysed to derive the wave heights, wave-induced setup and wave runup along the cross-shore reef profile. The wave height evolution over the reef towards the shore showed a general trend of increasing low frequency (infragravity and very low frequency) waves and decreasing high frequency (short) waves. Especially during the energetic wave events, the IG and VLF wave heights increase substantially and became dominant near the shoreline. Furthermore, it was found that on the reef flat the wave heights, wave-induced setup and wave runup are all strongly affected by the offshore tidal variations. Runup observations were collected for the period between 3 November 2013 and 17 December 2013 and included one extreme runup event on 17 November at 16:17. The extreme wave runup event on the Kwajalein Atoll is significantly underestimated by the hydrostatic XBeach model. The non-hydrostatic model includes the incident swash in the simulations and showed an improved wave runup prediction, despite the underestimated Wave runup on atoll reefs i wave-induced setup. However, still a clear underestimation of the wave runup was found, which was explained by an instantaneous increase in surface elevation in the raw burst of data at the inner reef flat pressure sensor. For the measured extreme wave runup event at Kwajalein Atoll, it is therefore not sufficient to schematize the hydraulic conditions into hourly burst-averaged characteristics for this specific event. The XBeach hydrostatic model showed good results for the hydrodynamics across the reef, but the non-hydrostatic model performed better on the wave runup. Extrapolating these results to storm conditions, it is expected the contribution of the incident swash to the total wave runup increases significantly, as the water depth on the reef flat increases. This effect was substantiated by the conceptual model simulations. Furthermore, the impact of incident swash is expected to become stronger considering the effects of rising sea levels. However, further investigation is needed on the underestimation of the wave-induced setup on the reef flat by the non-hydrostatic model. If this issue can be solved, the non-hydrostatic model is capable to model the wave runup (and subsequently inundation events) more accurately. ii Acknowledgements With this thesis the Master of Science programme at Delft University of Technology is completed. The research was carried out at Deltares in Delft and USGS-Pacific Coastal and Marine Science Center in Santa Cruz, California. I would like to greatly thank my graduation committee for their support and enthusiasm throughout my thesis. My daily supervisors at Deltares, Ap van Dongeren and Arnold van Rooijen, for their inspiring and skilled supervision and the time they invested in me. Thanks to Marcel Stive and Marcel Zijlema for their enthusiasm and guidance during the meetings we had. Special thanks to Curt Storlazzi for the guidance during my stay in Santa Cruz. Your enthusiasm for this research was very encouraging. I have learned a lot about coral reef hydrodynamics and modelling for which I thank you all. I had the opportunity to spend three months within this research at the U.S. Geological Survey in Santa Cruz, California. Many thanks to the USGS and Deltares for giving me this opportunity, it has been a unforgettable and valuable experience. Many thanks to everyone at the USGS in Santa Cruz for making me feel at home in Santa Cruz. Special thanks to Olivia Cheriton for the help and the interesting conversations we had on data analysis. Finally, and most importantly, I would like to thank my parents and sisters for the continuous support, encouragements and patience throughout my study. Ellen Quataert Delft, January 2015 Wave runup on atoll reefs iii iv Contents Abstract i Acknowledgements iii Contents v 1 Introduction 1 1.1 Background 1 1.1.1 Hydrodynamics on reefs 2 1.1.2 Runup 3 1.1.3 Terminology 5 1.2 Scope and objectives of this study 6 1.3 Thesis outline 7 2 Kwajalein Atoll data analysis 9 2.1 Introduction 9 2.2 Study site and instrument deployment 10 2.3 Hydrodynamics across the reef 12 2.3.1 Methodology 12 2.3.2 Offshore wave conditions 14 2.3.3 Split frequency selection 15 2.3.4 Spectral evolution over the reef 16 2.3.5 Water level variations over the reef 19 2.4 Wave runup 22 2.4.1 Methodology 22 2.4.2 Wave runup observations 23 2.5 Discussion 24 2.6 Conclusions 25 3 The XBeach model 27 3.1 Introduction 27 3.2 XBeach model description 28 3.2.1 Hydrostatic model 28 3.2.2 Non-hydrostatic model 29 3.3 XBeach model applicability 30 4 Model results 33 4.1 Introduction 33 4.2 Model setup 34 4.3 Hydrodynamics across the reef 35 4.3.1 Calibration 36 4.3.2 Validation 42 4.4 Infragravity wave runup 44 4.5 Incident wave runup 46 4.5.1 Re-evaluation of the friction coefficients 46 4.5.2 Validation 50 4.6 Discussion 52 4.7 Conclusions 54 Wave runup on atoll reefs v 5 Conceptual model for wave runup on atoll reefs 55 5.1 Introduction 55 5.2 Atoll reef parameter space 56 5.3 Methodology 57 5.3.1 Conceptual model setup 57 5.3.2 Calculation of wave runup statistics 59 5.4 Conceptual model results 60 5.4.1 Infragravity wave runup 60 5.4.2 Incident wave runup 63 5.5 Conclusions 65 6 Conclusions and recommendations 66 6.1 Conclusions 66 6.2 Recommendations 68 References 70 Appendices A Additional XBeach hydrostatic results A-1 vi 1 Introduction 1.1 Background Coral reefs are capable of protecting mainland and island coasts from the impacts of severe storm waves and storm surges, the impact of tsunamis, and help limit coastal erosion (e.g.
Recommended publications
  • This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
    CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008)
    [Show full text]
  • A Field Experiment on a Nourished Beach
    CHAPTER 157 A Field Experiment on a Nourished Beach A.J. Fernandez* G. Gomez Pina * G. Cuena* J.L. Ramirez* Abstract The performance of a beach nourishment at" Playa de Castilla" (Huel- va, Spain) is evaluated by means of accurate beach profile surveys, vi- sual breaking wave information, buoy-measured wave data and sediment samples. The shoreline recession at the nourished beach due to "profile equilibration" and "spreading out" losses is discussed. The modified equi- librium profile curve proposed by Larson (1991) is shown to accurately describe the profiles with a grain size varying across-shore. The "spread- ing out" losses measured at " Playa de Castilla" are found to be less than predicted by spreading out formulations. The utilization of borrowed material substantially coarser than the native material is suggested as an explanation. 1 INTRODUCTION Fernandez et al. (1990) presented a case study of a sand bypass project at "Playa de Castilla" (Huelva, Spain) and the corresponding monitoring project, that was going to be undertaken. The Beach Nourishment Monitoring Project at the "Playa de Castilla" was begun over two years ago. The project is being *Direcci6n General de Costas. M.O.P.T, Madrid (Spain) 2043 2044 COASTAL ENGINEERING 1992 carried out to evaluate the performance of a beach fill and to establish effective strategies of coastal management and represents one of the most comprehensive monitoring projects that has been undertaken in Spain. This paper summa- rizes and discusses the data set for wave climate, beach profiles and sediment samples. 2 STUDY SITE & MONITORING PROGRAM Playa de Castilla, Fig. 1, is a sandy beach located on the South-West coast of Spain between the Guadiana and Gualdalquivir rivers.
    [Show full text]
  • Observations of Nearshore Infragravity Waves: Seaward and Shoreward Propagating Components A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C8, 3095, 10.1029/2001JC000970, 2002 Observations of nearshore infragravity waves: Seaward and shoreward propagating components A. Sheremet,1 R. T. Guza,2 S. Elgar,3 and T. H. C. Herbers4 Received 14 May 2001; revised 5 December 2001; accepted 20 December 2001; published 6 August 2002. [1] The variation of seaward and shoreward infragravity energy fluxes across the shoaling and surf zones of a gently sloping sandy beach is estimated from field observations and related to forcing by groups of sea and swell, dissipation, and shoreline reflection. Data from collocated pressure and velocity sensors deployed between 1 and 6 m water depth are combined, using the assumption of cross-shore propagation, to decompose the infragravity wave field into shoreward and seaward propagating components. Seaward of the surf zone, shoreward propagating infragravity waves are amplified by nonlinear interactions with groups of sea and swell, and the shoreward infragravity energy flux increases in the onshore direction. In the surf zone, nonlinear phase coupling between infragravity waves and groups of sea and swell decreases, as does the shoreward infragravity energy flux, consistent with the cessation of nonlinear forcing and the increased importance of infragravity wave dissipation. Seaward propagating infragravity waves are not phase coupled to incident wave groups, and their energy levels suggest strong infragravity wave reflection near the shoreline. The cross-shore variation of the seaward energy flux is weaker than that of the shoreward flux, resulting in cross-shore variation of the squared infragravity reflection coefficient (ratio of seaward to shoreward energy flux) between about 0.4 and 1.5.
    [Show full text]
  • Mapping Turbidity Currents Using Seismic Oceanography Title Page Abstract Introduction 1 2 E
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 8, 1803–1818, 2011 www.ocean-sci-discuss.net/8/1803/2011/ Ocean Science doi:10.5194/osd-8-1803-2011 Discussions OSD © Author(s) 2011. CC Attribution 3.0 License. 8, 1803–1818, 2011 This discussion paper is/has been under review for the journal Ocean Science (OS). Mapping turbidity Please refer to the corresponding final paper in OS if available. currents using seismic E. A. Vsemirnova and R. W. Hobbs Mapping turbidity currents using seismic oceanography Title Page Abstract Introduction 1 2 E. A. Vsemirnova and R. W. Hobbs Conclusions References 1Geospatial Research Ltd, Department of Earth Sciences, Tables Figures Durham University, Durham DH1 3LE, UK 2Department of Earth Sciences, Durham University, Durham DH1 3LE, UK J I Received: 25 May 2011 – Accepted: 12 August 2011 – Published: 18 August 2011 J I Correspondence to: R. W. Hobbs ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1803 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD Using a combination of seismic oceanographic and physical oceanographic data ac- quired across the Faroe-Shetland Channel we present evidence of a turbidity current 8, 1803–1818, 2011 that transports suspended sediment along the western boundary of the Channel. We 5 focus on reflections observed on seismic data close to the sea-bed on the Faroese Mapping turbidity side of the Channel below 900m. Forward modelling based on independent physi- currents using cal oceanographic data show that thermohaline structure does not explain these near seismic sea-bed reflections but they are consistent with optical backscatter data, dry matter concentrations from water samples and from seabed sediment traps.
    [Show full text]
  • USER MANUAL SWASH Version 7.01
    SWASH USER MANUAL SWASH version 7.01 SWASH USER MANUAL by : TheSWASHteam mail address : Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section P.O. Box 5048 2600 GA Delft The Netherlands website : http://www.tudelft.nl/swash Copyright (c) 2010-2020 Delft University of Technology. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back- Cover Texts. A copy of the license is available at http://www.gnu.org/licenses/fdl.html#TOC1. iv Contents 1 About this manual 1 2 Generaldescriptionandinstructionsforuse 3 2.1 Introduction................................... 3 2.2 Background,featuresandapplications . ...... 3 2.2.1 Objectiveandcontext ......................... 3 2.2.2 Abird’s-eyeviewofSWASH. 4 2.2.3 ModelfeaturesandvalidityofSWASH . 7 2.2.4 Relation to Boussinesq-type wave models . .... 8 2.2.5 Relation to circulation and coastal flow models. ...... 9 2.3 Internal scenarios, shortcomings and coding bugs . ......... 9 2.4 Unitsandcoordinatesystems . 10 2.5 Choiceofgridsandtimewindows . .. 11 2.5.1 Introduction............................... 11 2.5.2 Computationalgridandtimewindow . 12 2.5.3 Inputgrid(s)andtimewindow(s) . 13 2.5.4 Input grid(s) for transport of constituents . ...... 14 2.5.5 Outputgrids .............................. 15 2.6 Boundaryconditions .............................. 16 2.7 Timeanddatenotation ............................ 17 2.8 Troubleshooting................................. 17 3 Input and output files 19 3.1 General ..................................... 19 3.2 Input/outputfacilities . .. 19 3.3 Printfileanderrormessages . .. 20 4 Description of commands 21 4.1 Listofavailablecommands.
    [Show full text]
  • Coastal Landform Processes 29/03/2018 Do Now Copy Below: When Waves Lose Energy Material Is Deposited
    Coastal Landform Processes 29/03/2018 Do Now Copy below: When waves lose energy material is deposited. This typical happens in sheltered areas such as bays, this explains why beaches are found here. Wave refraction is where the energy of the wave is reduced Aim ▪ To understand process acting on the coast that lead to landforms Wave energy converges on the headlands Wave energy is diverged Wave energy converges on the headlands Sediment moves and is deposited http://www.bbc.co.uk/education/cli ps/zsmb4wx Erosion Destructive waves will erode the coastline in four different ways: 1. Hydraulic Power Complete your 2. Corrasion erosion sheet 3. Attrition 4. Corrosion 5. Abrasion Longshore Drift • “Longshore drift is a process by which sediments such as sand or other materials are transported along a beach.” • The general direction of longshore drift around the coasts of the British Isles is controlled by the direction of the dominant wind. http://www.bbc.co.uk/learningzo ne/clips/the-coastline- longshore-drift-and- spits/3086.html Longshore Drift: A bird’s eye view Cliff Beach Sea Longshore Drift: A bird’s eye view Cliff Eroded material Beach from the cliffs is left on the beach Bob the pebble Sea Longshore Drift: A bird’s eye view Cliff Beach Waves The waves from the sea come onto the beach at an angle and pick Bob and other material up and move them up the beach. Sea Longshore Drift: A bird’s eye view Cliff Beach Swash This movement of the waves is called SWASH. The waves come in at an angle due to Sea wind direction Longshore Drift: A bird’s eye view Cliff Beach The waves then move back down the beach in a straight Swash direction due to gravity.
    [Show full text]
  • 3.2.6. Methods for Field Measurement and Remote Sensing of the Swash Zone
    © Author(s) 2014. CC Attribution 4.0 License. ISSN 2047-0371 3.2.6. Methods for field measurement and remote sensing of the swash zone Sebastian J. Pitman1 1 Ocean and Earth Sciences, National Oceanography Centre, University of Southampton ([email protected]) ABSTRACT: Swash action is the dominant process responsible for the cross-shore exchange of sediment between the subaerial and subaqueous zones, with a significant part of the littoral drift also taking place as a result of swash motions. The swash zone is the area of the beach between the inner surfzone and backbeach that is intermittently submerged and exposed by the processes of wave uprush and backwash. Given the dominant role that swash plays in the morphological evolution of a beach, it is important to understand and quantify the main processes. The extent of swash (horizontally and vertically), current velocities and suspended sediment concentrations are all parameters of interest in the study of swash processes. In situ methods of measurements in this energetic zone were instrumental in developing early understanding of swash processes, however, the field has experienced a shift towards remote sensing methods. This article outlines the emergence of high precision technologies such as video imaging and LIDAR (light detection and ranging) for the study of swash processes. Furthermore, the applicability of these methods to large-scale datasets for quantitative analysis is demonstrated. KEYWORDS: run-up, morphodynamics, coastal imaging, video, LIDAR. Introduction al., 2004) and its dominant responses are largely well understood. It is the most The beachface is a highly spatially and energetic zone in terms of bed sediment temporally dynamic zone, predominantly due movement and is characterised by strong and to swash processes such as wave run up.
    [Show full text]
  • Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing
    Journal of Marine Science and Engineering Article Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing Stephanie Contardo 1,*, Graham Symonds 2, Laura E. Segura 3, Ryan J. Lowe 4 and Jeff E. Hansen 2 1 CSIRO Oceans and Atmosphere, Crawley 6009, Australia 2 Faculty of Science, School of Earth Sciences, The University of Western Australia, Crawley 6009, Australia; [email protected] (G.S.); jeff[email protected] (J.E.H.) 3 Departamento de Física, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] 4 Faculty of Engineering and Mathematical Sciences, Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia; [email protected] * Correspondence: [email protected] Received: 18 September 2019; Accepted: 23 October 2019; Published: 28 October 2019 Abstract: An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea 1 breeze cycle at the study site (wind speeds frequently > 10 m s− ) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment.
    [Show full text]
  • Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
    Remote Sens. 2014, 6, 6961-6987; doi:10.3390/rs6086961 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data Thomas Mann 1,* and Hildegard Westphal 1,2 1 Leibniz Center for Tropical Marine Ecology, Fahrenheitstrasse 6, D-28359 Bremen, Germany; E-Mail: [email protected] 2 Department of Geosciences, University of Bremen, D-28359 Bremen, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-421-2380-0132; Fax: +49-421-2380-030. Received: 30 May 2014; in revised form: 7 July 2014 / Accepted: 18 July 2014 / Published: 25 July 2014 Abstract: Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying “outlier” shoreline positions.
    [Show full text]
  • Climate Change Report for Gulf of the Farallones and Cordell
    Chapter 6 Responses in Marine Habitats Sea Level Rise: Intertidal organisms will respond to sea level rise by shifting their distributions to keep pace with rising sea level. It has been suggested that all but the slowest growing organisms will be able to keep pace with rising sea level (Harley et al. 2006) but few studies have thoroughly examined this phenomenon. As in soft sediment systems, the ability of intertidal organisms to migrate will depend on available upland habitat. If these communities are adjacent to steep coastal bluffs it is unclear if they will be able to colonize this habitat. Further, increased erosion and sedimentation may impede their ability to move. Waves: Greater wave activity (see 3.3.2 Waves) suggests that intertidal and subtidal organisms may experience greater physical forces. A number of studies indicate that the strength of organisms does not always scale with their size (Denny et al. 1985; Carrington 1990; Gaylord et al. 1994; Denny and Kitzes 2005; Gaylord et al. 2008), which can lead to selective removal of larger organisms, influencing size structure and species interactions that depend on size. However, the relationship between offshore significant wave height and hydrodynamic force is not simple. Although local wave height inside the surf zone is a good predictor of wave velocity and force (Gaylord 1999, 2000), the relationship between offshore Hs and intertidal force cannot be expressed via a simple linear relationship (Helmuth and Denny 2003). In many cases (89% of sites examined), elevated offshore wave activity increased force up to a point (Hs > 2-2.5 m), after which force did not increase with wave height.
    [Show full text]
  • Under Pressure Coastal Stack & Stump: Sediment Are Thrown Against Weathering (Freeze- the Cliffs by Waves
    Tides: UP1 –Waves & Tides Constructive Waves: Longshore Drift: Transportation: • These are the rise and fall of the sea level, due • Traction: mainly to the pull of the moon • Strong swash and weak backwash that • Waves approach the beach at an angle due Large boulders and sediments • As the moon travels around the Earth, it push sand and pebbles up the beach to the prevailing wind direction are rolled along the sea bed. attracts the sea and pulls it upwards. The sun • Low waves with longer gaps between the • As the wave breaks, the swash carries They are too heavy to be helps too – but its much further away. So its crests (6-8 per min – low frequency) material up the beach at the same angle pull is not as strong. • Under 1m (oblique angle) as the prevailing wind picked up fully by the waves. • High tide occurs about every 12 and ½ hours, • Known as spilling waves as they ‘spill’ up • The backwash carries material back down with low tides in between. The difference the beach the beach at a right angle (90o) due to • Saltation: between the high and low tide is called the tidal • Gently sloping wave front gravity where small pieces of shingle range • Formed by storms often 100s KMs away • This means that material is moved along the or large sand grains are • Gentle beach beach in a zig zag route bounced along the sea bed. Waves: Destructive Waves: • Suspension: • Are formed by wind that blows over the sea, friction with the surface of water causes • Weak swash and strong backwash pulling small particles such as silts ripples to form and these develop into waves.
    [Show full text]
  • ENVIRONMENT in COASTAL ENGINEERING: DEFINITIONS and EXAMPLES** Cyril Galvin, M. ASCE* ABSTRACT in Current Usage, Environmental A
    ENVIRONMENT IN COASTAL ENGINEERING: DEFINITIONS AND EXAMPLES** Cyril Galvin, M. ASCE* ABSTRACT In current usage, environmental aspects of coastal engineering design include aspects of ecology and aesthe- tics, as well as environment. In practice, the aspect of environment is a limited one, considering man's surround- ings, with the works of man left out. The increased consid- eration of environmental aspects over the past 15 years has brought real benefits to the coastal engineering profession, as well as obvious problems. One problem is a mythology of coastal processes that has become widely accepted. Priori- ties in coastal engineering design remain a structure that will last a useful lifetime and perform its intended func- tion without creating new problems. After satisfying these fundamental requirements, the structure should minimize ecological change, and fit pleasingly in its setting. INTRODUCTION Design and THE Environment. A coastal structure must remain standing when hit by the most severe waves, currents, and winds that can reasonably be expected during its intended lifetime. Waves, currents, and winds are basic elements of the physical environment. In this structural sense, good coastal engineering is always sensitive to the environment. But the designer who creates a structure that doesn't fall down has not necessarily solved a coastal problem. The structure must also perform a function, without creating significant new problems. it must reduce beach erosion, prevent flooding, maintain a channel, provide a quiet anchorage, convey liquids across the shore, or serve other functions. There are groins standing out at sea after the beach has eroded away; jetties exist that enclose a deposit of sand rather than a navigable waterway; some seawalls are regularly overtopped by moderate seas; water intakes are silted in.
    [Show full text]