Emission Factor Documentation for Ap-42 Section 1.1 Bituminous and Subbituminous Coal Combustion

Total Page:16

File Type:pdf, Size:1020Kb

Emission Factor Documentation for Ap-42 Section 1.1 Bituminous and Subbituminous Coal Combustion EMISSION FACTOR DOCUMENTATION FOR AP-42 SECTION 1.1 BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION By: Acurex Environmental Corporation Research Triangle Park, North Carolina 27709 Edward Aul & Associates, Inc. Chapel Hill, North Carolina 27514 E. H. Pechan and Associates, Inc. Rancho Cordova, California 95742 Contract No. 68-DO-00120 Work Assignment No. II-68 EPA Project Officer: Alice C. Gagnon Office of Air Quality Planning and Standards Office Of Air And Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 April 1993 DISCLAIMER This report has been reviewed by the Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii TABLE OF CONTENTS Page LIST OF TABLES............................................................................................. v LIST OF FIGURES............................................................................................ vi CHAPTER 1. INTRODUCTION........................................................................ 1-1 CHAPTER 2. SOURCE DESCRIPTION.......................................................... 2-1 2.1 CHARACTERIZATION OF BITUMINOUS AND SUBBITUMINOUS APPLICATIONS....................................2-1 2.2 PROCESS DESCRIPTIONS..................... .........................2-2 2.2.1 Suspension Firing............................ .........................2-3 2.2.2 Stoker Firing..............................................................2-4 2.2.3 Fluidized Bed Combustion.........................................2-5 2.2.4 Handfeed Units..........................................................2-6 2.3 EMISSIONS.........................................................................2-7 2.3.1 Particulate Matter Emissions.....................................2-8 2.3.2 Sulfur Oxide Emissions.............................................2-9 2.3.3 Nitrogen Oxide Emissions.........................................2-9 2.3.4 Carbon Monoxide Emissions.................................... 2-11 2.3.5 Organic Compound Emissions..................................2-12 2.3.6 Trace Element Emissions..........................................2-14 2.3.7 Fugitive Emissions.....................................................2-15 2.4 CONTROL TECHNOLOGIES.................................................2-16 2.4.1 Fuel Treatment/Substitution......................................2-16 2.4.2 Combustion Modification...........................................2-18 2.4.3 Post-Combustion Control..........................................2-22 REFERENCES............................................................................ 2-47 CHAPTER 3. GENERAL EMISSION DATA REVIEW AND ANALYSIS PROCEDURE........................................................... 3-1 3.1 CRITERIA POLLUTANTS.......................................................3-1 3.1.1 Literature Search.......................................................3-1 3.1.2 Literature Evaluation..................................................3-1 3.1.3 Emission Factor Quality Rating 3.2 SPECIATED VOCs..................................................................3-5 3.2.1 Literature Search.......................................................3-5 3.2.2 Literature Evaluation 3.2.3 Data and Emission Factor Quality Rating..................3-5 3.3 AIR TOXICS............................................................................3-6 3.3.1 Literature Search.......................................................3-6 3.3.2 Literature Evaluation for Air Toxics............................3-7 iii TABLE OF CONTENTS (continued) Page 3.3.3 Data and Emission Factor Quality Rating Criteria.....3-7 3.4 N2O..........................................................................................3-8 3.4.1 Literature Search.......................................................3-8 3.4.2 Literature Evaluation..................................................3-8 3.4.3 Data and Emission Factor Quality Rating..................3-9 3.5 FUGITIVES.............................................................................3-9 3.6 PARTICLE SIZE DISTRIBUTION...........................................3-10 3.6.1 Literature Search.......................................................3-10 3.6.2 Literature Evaluation..................................................3-11 3.6.3 Data Quality Ranking.................................................3-12 REFERENCES................................................................................. 3-18 CHAPTER 4. EMISSION FACTOR DEVELOPMENT...................................... 4-1 4.1 CRITERIA POLLUTANTS.......................................................4-1 4.1.1 Review of Previous AP-42 Data................................4-1 4.1.2 Review of New Baseline Data...................................4-2 4.1.3 Compilation of Baseline Emission Factors................4-5 4.1.4 Compilation of Controlled Emission Factors.............4-13 4.2 SPECIATED VOCs.................................................................4-13 4.3 AIR TOXICS............................................................................4-14 4.3.1 Review of New Data..................................................4-14 4.3.2 Baseline Emission Factors........................................4-17 4.3.3 Controlled Emission Factors......................................4-19 4.4 N2O..........................................................................................4-20 4.5 PARTICLE SIZE DISTRIBUTION..............................................................................4-22 4.5.1 Review of Previous AP-42 Data................................4-22 4.5.2 Review of New Data..................................................4-23 4.6.3 Compilation of Uncontrolled Emission Factors......... 4-25 4.6.4 Control Technology Emission Factors...................... 4-26 REFERENCES............................................................................. 4-57 CHAPTER 5. AP-42 SECTION 1.1: BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION.................................................................... 5-1 APPENDIX A. BACKGROUND FILE SPOT CHECK SUMMARY..................... A-1 APPENDIX B. CONVERSION FACTORS..........................................................B-1 APPENDIX C. MARKED-UP 1988 AP-42 SECTION 1.1................................. C-1 iv LIST OF TABLES Table Page 2-1 U.S. Coal Consumption by Sector, 1990..................................................2-30 2-2 Boiler Usage by Sector.............................................................................2-31 2-3 Total 1985 U.S. Emissions from Coal Combustion by Use Sector...........2-32 2-4 NSPS Summary for Fossil Fuel-fired Boilers............................................2-33 2-5 Commercially Available NOx Control Techniques for Pulverized Coal-fired Boilers.................................................................. 2-34 2-6 Commercially Available NOx Control Techniques for Stoker Coal-fired Boilers......................................................................... 2-36 2-7 Post Combustion SO2 Controls for Combustion Sources.........................2-37 3-1 Speciated VOC Literature Search Results................................................3-14 3-2 Literature Search Checklist.......................................................................3-15 3-3 Evaluation of Air Toxics References.........................................................3-16 3-4 N2O Literature Search Checklist...............................................................3-17 4-1 Background Document Check..................................................................4-29 4-2 New SO2 Baseline Data For Bituminous Coal...........................................4-30 4-3 New NOx Baseline Data For Bituminous Coal...........................................4-32 4-4 New CO Baseline Data..............................................................................4-35 4-5 New PM Baseline Data For Bituminous Coal............................................4-38 4-6 New CH4 Baseline Data For Bituminous Coal...........................................4-39 4-7 Controlled Particulate Emissions...............................................................4-40 4-8 Controlled SOx Emissions.........................................................................4-42 4-9 Controlled NOx Emissions.........................................................................4-43 4-10 Metal Enrichment Behaviors.....................................................................4-45 4-11 Enrichment Ratios for Classes of Elements..............................................4-45 4-12 Enrichment Ratios for Boilers and ESP.....................................................4-46 4-13 HAP Emission Factors (English Units) for Uncontrolled Bituminous Coal-fired Boilers.................................................................. 4-47 4-14 HAP Emission Factors (Metric Units) for Uncontrolled Bituminous Coal-fired Boilers.................................................................. 4-48 4-15 HAP Emission Factors (English Units) for Controlled Bituminous Coal-fired Boilers.................................................................. 4-49 4-16 HAP Emission Factors (Metric Units) for Controlled Bituminous Coal-fired Boilers.................................................................. 4-50 4-17 Average Trace Element Removal Efficiency For Control Devices............4-51
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • NUCLEAR TECHNIQUES in the COAL INDUSTRY IAEA, VIENNA, 1995 IAEA-TECDOC-845 ISSN 1011-4289 IAEA© , 1995 Printed by the IAEA in Austria November 1995 FOREWORD
    IAEA-TECDOC-845 Nuclear techniques coalinthe industry Proceedings finala of Research Co-ordination Meeting held in Krakow, Poland, 9-12 May 1994 W INTERNATIONAL ATOMIC ENERGY AGENCY ULr^ïïfî IAEe Th A doe t normallsno y maintain stock f reportso thin si s series. However, microfiche copie f thesso e reportobtainee b n sca d from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 0 10 x P.OBo . A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons orderee whicb y hdma separately fro INIe mth S Clearinghouse. The originating Section of this publication in the IAEA was: Industrial Application Chemistrd san y Section International Atomic Energy Agency Wagramerstrasse 5 0 10 P.Ox Bo . A-1400 Vienna, Austria NUCLEAR TECHNIQUES IN THE COAL INDUSTRY IAEA, VIENNA, 1995 IAEA-TECDOC-845 ISSN 1011-4289 IAEA© , 1995 Printed by the IAEA in Austria November 1995 FOREWORD e yearlasw fe Th t s have witnessed many important advance e developmenth n i s d an t application nucleaf so r technique coae th l n sindustryi . Nuclear borehole logging techniques basen do measurement of natural radioactivity, X and gamma ray absorption and scattering and neutron interactions are extensively employed for exploration programmes and in situ evaluation of coal. On-line analysis based on a variety of techniques is widely used to optimize coal processing operations increasee th ; d product yiel assuref do d qualit reductiod yan energn ni y usage have resulted in enormous economic benefits to the coal industry.
    [Show full text]
  • Chemical and Physical Structural Studies on Two Inertinite-Rich Lump
    CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • Spontaneous Combustion of South American Coal
    Graduate Theses, Dissertations, and Problem Reports 2016 Spontaneous Combustion of South American Coal Brunno C. C. Vieira Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Vieira, Brunno C. C., "Spontaneous Combustion of South American Coal" (2016). Graduate Theses, Dissertations, and Problem Reports. 6875. https://researchrepository.wvu.edu/etd/6875 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Spontaneous Combustion of South American Coal Brunno C. C. Vieira Thesis submitted to the Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Yi Luo, Ph.D., Chair Felicia Peng, Ph.D. Brijes Mishra, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Spontaneous Combustion, Coal, South American, Safety, Mine fires, Self- heating temperature Copyright 2016 Brunno C. C. Vieira Abstract Many causes can lead to mine fires and explosions in coal mines but one of the most relevant cause is the spontaneous combustion of coal.
    [Show full text]
  • On the Fundamental Difference Between Coal Rank and Coal Type
    International Journal of Coal Geology 118 (2013) 58–87 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Review article On the fundamental difference between coal rank and coal type Jennifer M.K. O'Keefe a,⁎, Achim Bechtel b,KimonChristanisc, Shifeng Dai d, William A. DiMichele e, Cortland F. Eble f,JoanS.Esterleg, Maria Mastalerz h,AnneL.Raymondi, Bruno V. Valentim j,NicolaJ.Wagnerk, Colin R. Ward l, James C. Hower m a Department of Earth and Space Sciences, Morehead State University, Morehead, KY 40351, USA b Department of Applied Geosciences and Geophysics, Montan Universität, Leoben, Austria c Department of Geology, University of Patras, 265.04 Rio-Patras, Greece d State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China e Department of Paleobiology, Smithsonian Institution, Washington, DC 20013-7012, USA f Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, USA g School of Earth Sciences, The University of Queensland, QLD 4072, Australia h Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405-2208, USA i Department of Geology and Geophysics, College Station, TX 77843, USA j Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences, University of Porto and Geology Centre of the University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal k School Chemical & Metallurgical Engineering, University of Witwatersrand, 2050, WITS, South Africa l School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia m University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA article info abstract Article history: This article addresses the fundamental difference between coal rank and coal type.
    [Show full text]
  • Iea Statistics
    IEA STATISTICS COAL INFORMATION Corrigendum Please note that despite our best efforts to ensure quality control, errors have slipped into the Coal Information 2015. New pages from IV.435 to IV.444 (Plus, “Achevé d’imprimer” changed to “second edition, October 2015”) See next pages 2015 Secure Sustainable Together COAL INFORMATION (2015 edition) PART IV - IV.435 COUNTRY NOTES In many cases, data submitted by Member countries to Greenhouse and Energy Reporting (NGER) data as the secretariat do not conform to the standard report- the main energy consumption data source for the ing methodology or have other particular characteris- Australian Energy Statistics. As a result, there are tics. Information set out below will assist readers to breaks in the time series for many data between 2002 interpret data for particular countries and aid in the and 2003. The revisions have also introduced some comparison of data among countries. methodological problems. The national statistics appear The notes given below refer to data for the years 1960 to have problems identifying inputs and outputs to cer- to 2013 and may also refer to 2014p preliminary data tain transformation processes such as gas works plants, as well as the information on CD-ROM and the on- electricity plants and CHP plants. Energy industry own line data service. In general, more detailed notes are use and inputs to the transformation processes are available for data since 1990. sometimes not reported separately in the correct cate- gories. More detail is given in the notes below. Data for anthracite, coking coal, other bituminous coal, sub-bituminous coal and lignite are available separately For the 2002 data, the Australian administration began from 1978.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • C) an Introduction to Coal Quality
    Chapter C The National Coal Resource Assessment An Introduction to Coal Quality Overview By Stanley P. Schweinfurth1 Click here to return to Volume Table of Contents Chapter C of The National Coal Resource Assessment Overview Edited by Brenda S. Pierce and Kristin O. Dennen U.S. Geological Survey Professional Paper 1625–F 1U.S. Geological Survey, Reston, Virginia 20192 This report, although in the USGS Professional Paper series, is available only on CD–ROM U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2009 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Schweinfurth, S.P., 2009, An introduction to coal quality, in Pierce, B.S., and Dennen, K.O., eds., The National Coal Resource Assessment Overview: U.S. Geological Survey Professional Paper 1625–F, Chapter C, 16 p.
    [Show full text]
  • Handbook of Coal Analysis
    HANDBOOK OF COAL ANALYSIS James G. Speight A JOHN WILEY & SONS, INC., PUBLICATION HANDBOOK OF COAL ANALYSIS HANDBOOK OF COAL ANALYSIS James G. Speight A JOHN WILEY & SONS, INC., PUBLICATION Copyright 2005 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
    [Show full text]
  • Bituminous Coal and Lignite Surface Mining 1997 Issued October 1999
    Bituminous Coal and Lignite Surface Mining 1997 Issued October 1999 EC97N-2121A 1997 Economic Census Mining Industry Series U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU ACKNOWLEDGMENTS The staff of the Manufacturing and Con- The Geography Division staff developed struction Division prepared this report. geographic coding procedures and associ- Judy M. Dodds, Assistant Chief for Cen- ated computer programs. sus and Related Programs, was respon- The Economic Statistical Methods and Pro- sible for the overall planning, manage- gramming Division, Charles P. Pautler ment, and coordination. Patricia L. Jr., Chief, developed and coordinated the Horning, Chief, Construction and Miner- computer processing systems. Martin S. als Branch, assisted by M. Susan Bucci Harahush, Assistant Chief for Quinquen- and Susan L. DiCola, Section Chiefs, per- nial Programs, assisted by Barbara Lam- formed the planning and implementation. bert and Christina Arledge were respon- Richard Hough, Christopher D. sible for design and implementation of the Perrien, John F. Roehl, Eva J. Snapp, computer systems. Gary T. Sheridan, and Sarah B. Teichner provided primary Chief, Manufacturing and Construction staff assistance. Branch, Lori A. Guido and Roy A. Smith, Brian Greenberg, Assistant Chief for Section Chiefs, supervised the preparation Research and Methodology Programs, of the computer programs. assisted by Stacey Cole, Chief, Manufac- turing Programs Methodology Branch, and Computer Services Division, Debra Will- Robert Struble, Section Chief, provided iams, Chief, performed the computer pro- the mathematical and statistical tech- cessing. niques as well as the coverage operations. The staff of the Administrative and Cus- Jeffrey Dalzell and Cathy Ritenour pro- tomer Services Division, Walter C.
    [Show full text]
  • Emissions of Hazardous Air Pollutants from Coal-Fired Power Plants
    Emissions of Hazardous Air Pollutants from Coal-fired Power Plants EMISSIONS OF HAZARDOUS AIR POLLUTANTS FROM COAL-FIRED POWER PLANTS Prepared For: Paul Billings Vice President for National Policy and Advocacy American Lung Association 1301 Pennsylvania Ave., NW Suite 800 Washington, DC 20004-1725 Prepared By: Environmental Health & Engineering, Inc. 117 Fourth Avenue Needham, MA 02494-2725 EH&E Report 17505 March 7, 2011 P:17505\Report\Final ©2011 by Environmental Health & Engineering, Inc. All rights reserved i | Emissions of Hazardous Air Pollutants from Coal-Fired Power Plants About the Report Scientists from Environmental Health and Engineering, Inc. (EH&E) were commissioned by the American Lung Association to prepare a report on public health and environmental impacts of hazardous air pollutant emissions from coal-fired power plants that would be a useful resource for the general public. This report represents the integrated effort of numerous talented individuals within our organization whose contributions were made under the direction of David L. MacIntosh, Sc.D., C.I.H., and John D. Spengler, Ph.D. David L. MacIntosh, Sc.D. C.I.H., is a Principal Scientist and Associate Director of Advanced Analytics and Building Science at EH&E where he manages a group of scientists and engineers who specialize in determining the complex relationships among sources, pathways, and receptors of environmental stressors that influence public health in the built environment. Dr. MacIntosh is a former tenured faculty member of the University of Georgia and is currently an Adjunct Associate Professor at the Harvard School of Public Health where he teaches courses on exposure assessment and environmental management.
    [Show full text]