Searches for Cosmic Neutrino Sources with ANTARES, Km3net and Icecube and Time Calibration of ANTARES
Total Page:16
File Type:pdf, Size:1020Kb
DOCTORAT EN FÍSICA Departament de Física Atòmica, Molecular i Nuclear Institut de Física Corpuscular (CSIC-UV) Searches for cosmic neutrino sources with ANTARES, KM3NeT and IceCube and time calibration of ANTARES Giulia Illuminati Supervisors Dr. Juan de Dios Zornoza Gómez and Dr. Alexis Coleiro Valencia, January, 2020 Giulia Illuminati Searches for cosmic neutrino sources with ANTARES, KM3NeT and IceCube and time calibration of ANTARES January, 2020 Supervisors: Dr. Juan de Dios Zornoza Gómez and Dr. Alexis Coleiro Universitat de València Física Experimental d’Astropartícules (GIUV2013-157) Institut de Física Corpuscular (CSIC-UV) Departament de Física Atòmica, Molecular i Nuclear Dr. JUAN DE DIOS ZORNOZA GÓMEZ, profesor contratado doctor al De- partamento de Física Atómica, Molecular y Nuclear de la Facultad de Física de la Universidad de Valencia, y Dr. ALEXIS COLEIRO, profesor titular al Departamento de Física de la Universidad de Paris, CERTIFICAN, Que la presente memoria, Searches for cosmic neutrino sources with ANTARES, KM3NeT and IceCube and time calibration of ANTARES, ha sido realizada bajo su dirección en el Instituto de Física Corpuscular (Centro Mixto Universidad de Valencia - CSIC) por Giulia Illuminati y constituye su Tesis Doctoral en el Departamento de Física Atómica Molecular y Nuclear de la Universidad de Valencia para optar al grado de Doctor en Física. Y para que conste, en cumplimiento de la legislación vigente, firman el presente certificado en Paterna, el 13 de enero de 2020. Dr. Juan de Dios Zornoza Gómez Dr. Alexis Coleiro Ai miei genitori Contents 1 Neutrino astronomy3 1.1 Cosmic Rays...............................3 1.2 Astrophysical neutrino production..................6 1.3 Neutrino source candidates......................9 1.4 The IceCube signals........................... 10 2 Neutrino detection 16 2.1 Neutrino interactions.......................... 17 2.2 Cherenkov radiation.......................... 20 2.3 Light propagation............................ 21 2.4 Physical background.......................... 22 3 Neutrino telescopes 25 3.1 ANTARES................................ 26 3.1.1 Detector layout......................... 26 3.1.2 Site characteristics....................... 28 3.1.3 Data acquisition and triggers................. 30 3.1.4 Detector calibration....................... 31 3.2 KM3NeT................................. 33 3.2.1 Detector layout......................... 33 3.2.2 Data acquisition and triggers................. 35 3.3 IceCube.................................. 37 3.3.1 Detector layout......................... 37 3.3.2 Ice properties.......................... 38 4 Monte Carlo simulations and event reconstruction 40 4.1 Monte Carlo simulations........................ 40 4.1.1 Event generation........................ 41 vi 4.1.2 Particles and light propagation................ 44 4.1.3 Detector response........................ 45 4.2 Event reconstruction.......................... 46 4.2.1 Tracks in ANTARES: AAFit.................. 46 4.2.2 Showers in ANTARES: TANTRA and Dusj......... 49 4.2.3 Tracks in KM3NeT: JGandalf................. 53 5 Time calibration in ANTARES 55 5.1 Time calibration methods....................... 55 5.1.1 The clock system........................ 56 5.1.2 Onshore time-offset calibration................ 58 5.1.3 In-situ time-offset calibration................. 58 LED and laser optical beacon calibration.......... 59 40K calibration.......................... 60 Atmospheric-muon calibration................ 60 5.2 Effects of the front-end electronics.................. 61 Walk effect............................ 61 Early-photon effect....................... 61 Token-ring effect........................ 62 DNL effect............................ 62 5.3 Time-offset calibration with 40K and atmospheric muons..... 63 5.3.1 Inter-line calibration with atmospheric muons....... 64 5.3.2 Intra-storey calibration with 40K events........... 69 5.3.3 Inter-storey calibration with atmospheric muons...... 69 6 Search methods for point-like and extended sources of astrophysical neutrinos 71 6.1 Unbinned likelihood method..................... 72 6.1.1 Likelihood and test statistic definition............ 72 6.1.2 Likelihood PDFs........................ 75 6.2 Pseudo-experiments.......................... 79 6.3 Significance, upper limits, discovery potential, and sensitivity.. 82 7 Results of the searches for point-like and extended neutrino sources 86 7.1 Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data............................ 87 vii 7.1.1 Data sample........................... 87 7.1.2 Search method......................... 88 7.1.3 Results.............................. 90 Full-Sky Search......................... 90 Candidate List Searches.................... 90 TXS 0506+056.......................... 94 7.1.4 Systematic uncertainties.................... 96 7.2 ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky............. 97 7.2.1 Data sample........................... 97 7.2.2 Search method......................... 99 7.2.3 Results.............................. 101 Southern-sky search and Galactic Centre region search.. 102 Candidate list search...................... 103 Sagittarius A*.......................... 107 RX J1713.7-3946......................... 108 7.3 ANTARES neutrino search for time and space correlations with IceCube high-energy neutrino events................. 109 7.3.1 IceCube neutrino candidates................. 110 7.3.2 Search method......................... 110 7.3.3 Results.............................. 113 7.4 Estimation of the future sensitivity of KM3NeT/ARCA Phase 1 to point-like sources............................ 117 7.4.1 Monte Carlo sample...................... 117 7.4.2 Search method and expected performances......... 119 Bibliography 140 viii Preface More than 100 years after the discovery of cosmic rays, their origin and accelera- tion mechanisms are yet an unresolved puzzle that neutrinos have the chance to solve. Neutrinos are expected to be produced alongside γ-rays in the interaction of the accelerated high-energy cosmic rays with ambient matter or photon fields in the vicinity of their acceleration sites. However, while γ-rays can also be produced in leptonic mechanisms, neutrinos are the smoking gun signature for hadronic processes and therefore are a unique tracer of cosmic-ray acceleration. Being neutral and weakly-interacting, neutrinos can travel long distances without being deflected by cosmic magnetic fields and can escape dense environments. Since neutrinos allow for precise pointing to their production sites, their detection will make it possible to unequivocally identify the sources of cosmic rays. While being the perfect cosmic messengers, neutrinos are extremely difficult to detect, requiring the construction of huge telescopes in challenging environ- ments. An established approach to perform high-energy neutrino astronomy is the observation of the Cherenkov radiation induced by the passage in a transparent medium of the charged leptons produced in neutrino interactions. Three-dimentional arrays of photomultiplier tubes deployed deep underwater or in under-ice sites are used to detect the Cherenkov light and reconstruct the parent neutrino energy and direction. Operating high-energy neutrino telescopes like ANTARES, a ∼0.01 km3 volume detector in the Mediterranean Sea, and IceCube, a cubic-kilometer-sized detector located at the South Pole below the surface of the Antarctic ice, and the future largest network of neutrino telescopes, KM3NeT, currently being deployed in the Mediterranean Sea, rely on this detection principle. IceCube recently reported the first observation of a diffuse flux of high-energy neutrinos of extraterrestrial origin together with the first compelling association of astrophysical neutrinos with an individual cosmic source. These recent discoveries reveal the potential of high-energy neutrino astronomy to explore the high-energy Universe and strongly encourage additional studies. 1 The search for individual sources of cosmic neutrinos is the main objective of the work realized during this Thesis. Three different analyses of the data recorded by high-energy neutrino telescopes have been performed. The first analysis is an update of the ANTARES standard point-like source search using 11 years of ANTARES data. The second analysis is a search for point-like and extended sources of astrophysical neutrinos in the Southern Sky using the combined data of ANTARES and IceCube. In the third analysis, a search for time and space correlations between ANTARES data and IceCube high-energy astrophysical neutrino candidates is performed. While no significant neutrino source was detected, these analyses put strong constraints on a potential high- energy neutrino emission, especially in the Southern Sky. Moreover, an additional result of this Thesis is the first estimation of the sensitivity to point-like sources of the first construction phase of the future detector dedicated to high-energy astronomy, KM3NeT/ARCA. The method employed to search for individual sources of cosmic neutrinos is described in Chapter6, while the results of the four analyses are presented in Chapter7. A further goal of the work performed within this Thesis is the time calibration of the ANTARES detector performed for two years (2017 and 2018) of the data taking period. The time calibration procedure and the results are described in Chapter5. In order to contextualise