Neutrino Astrophysics Astrophysics and Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Neutrino Astrophysics Astrophysics and Astronomy Neutrino Astrophysics and Astronomy Madhurima Pandey Astroparticle Physics and Cosmology Division Saha Institute of Nuclear Physics, HBNI, Kolkata WHEPP XVI, IIT Guwahati Wednesday, December 4, 2019 WHEPP XVI 1 Wednesday, December 4, 2019 WHEPP XVI 2 Solar Neutrino Wednesday, December 4, 2019 WHEPP XVI 3 Solar Neutrino Neutrino and antineutrino production mechanism [1] Rates proportional to , and - depend on specific processes, and - effective coupling constants for vector and axial – vector interaction. Antineutrinos can be probed at the Earth detector in KeV energy range. [1] E. Vitagliano et al., JCAP 12, 010 (2017) Wednesday, December 4, 2019 WHEPP XVI 4 Solar Neutrino sterile neutrinos in KeV range - 1. capture on a stable isotope of dysprosium if > 2.83 KeV [2] 2. slightly heavier sterile neutrinos include unstable isotopes[3] coherent inelastic scattering on atoms [4] and electron scattering [5] CP violation MSW effect [2] T. Lasserre et al., arXiv:1609.04671, [3] Y.F. Li et al., Phys. Lett. B 695 (2011) 205, [4] S. Ando et al., Phys. Rev. D 81 (2010) 113006, [5] M.D. Campos et al., Phys. Rev. D 94 (2016) 095010 Wednesday, December 4, 2019 WHEPP XVI 5 Atmospheric(ATM) Neutrino ATM neutrinos at Super Kamiokande (SK) experiment confirmed neutrino flavour oscillation – established the existence of neutrino masses and mixing Discovery of flavour oscillation of ATM neutrinos in 2015 Cosmic ray particles collide with the nuclei in the Earth’s atmosphere, producing pions and kaons which decay into neutrinos First observations of ATM neutrinos in 1965 at kolar Gold experiment in India and simultaneously led by Fred Reines in South Africa – looking for proton decay – the discrepancy was resolved by the SK experiments Wednesday, December 4, 2019 WHEPP XVI 6 ATM Neutrino ATM neutrino detector – 1. Hyper Kamiokande – megaton-class water Cherenkov detector, fiducial volume ~ 20 times that of SK 2. ICAL detector at India-based Neutrino Observatory – 50 Kton magnetised iron calorimeter, charge identification efficiency 3. PINGU – low energy extension of IceCube 4. ORCA proposal – low energy extension of KM3NeT detector Physics Goals - 1. and 2. 3. neutrino mass hierarchy 4. octant of 5. Non-standard interactions 6. probing sterile neutrino 7. CPT violation studies Wednesday, December 4, 2019 WHEPP XVI 7 PINGU (The Precision IceCube Next Generation Upgrade) Low energy infill 17 strings × 125 sensors + Upgrade strings, 24m inter-string spacing Effective mass – 6Mton ice Energy threshold – few GeV sample of over 60 000 atmospheric neutrinos per year PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long- baseline neutrino beam experiments. It is embedded within the IceCube DeepCore Wednesday, December 4, 2019 WHEPP XVI 8 PINGU (DeepCore Topview) Wednesday, December 4, 2019 WHEPP XVI 9 PINGU Wednesday, December 4, 2019 WHEPP XVI 10 PINGU Scientific Goals – Augmenting the low-energy program of the upgrade. ~60k up-going atmospheric neutrinos per year Neutrino mass ordering appearance – test of the unitarity of (3 × 3) PMNS matrix octant anomaly Wide breadth of other science: 1. Dark matter searches 2. Earth tomography 3. Supernovae Neutrinos (SN) 4. ........ Ref – M.G. Aartsen et al., JPG 44, 054006 (2017) Wednesday, December 4, 2019 WHEPP XVI 11 High Energy Neutrino Astronomy Neutrinos are an ideal messenger for astrophysics Neutrino telescope - 1. ANTARES and KM3NeT in the Mediterranean sea 2. GVD in Lake Baikal 3. IceCube buried in the ice of the South Pole Instrument a large volume of water or ice -> detect the cherenkov radiation ->consequence of a neutrino interaction with the detector IceCube contains 5160 DOMs within a volume of 1 km3 Number of color points and their size - amount of light - relate to the energy of the incident neutrino Color code - >information about the timing -> reconstruct the direction of the produced muon -> estimate the position of the source Spatial distribution of the hits or rather the topology of the event - flavour of the neutrino Three neutrino sources - the sun, the supernovae SN1987A and the blazar TXS 0506 + 056 High energy part of the astrophysical energy spectrum, extending from GeV to PeV energies Wednesday, December 4, 2019 WHEPP XVI 12 IceCube Collaboration In 2013, IceCube announced first detection of High energy astrophysical neutrinos - these events are called HESE events Recent HESE analysis- 7.5 years of icecube data with 103 neutrino events ( out of which 60 events are above 60 TeV) Best fit energy spectrum is a single power law with spectral index , all flavour flux Normalization In 2018, IceCube reported the first multi-messenger evidence of a flaring blazar in coincidence with the high energy neutrino event IC - 170922A A possible source candidate could be TXS 0506+056. 13 5 neutrino excess found in 2014-2015 over 110 days in addition to the event detected in 2017. Wednesday, December 4, 2019 WHEPP XVI 13 IceCube Probing a four flavour vis-a-vis three flavour neutrino mixing for ultrahigh energy neutrino signal at a 1 Km2 detector M. Pandey et al., Phys. Rev. D 97, 103015 (2018) Wednesday, December 4, 2019 WHEPP XVI 14 From the analysis of the high-energy starting events (HESE) data (the IceCube Collaboration), they calculated a best fit power law for the neutrino flux as [ICRC2017 (2017) 981] .....2.....20) For a one component fit the neutrino flux , with the index We have computed for this flux as well and the energy range 60 TeV is to be considered for such calculations. Table 2: Same as Table 1, but here we consider the diffuse flux of UHE neutrinos obtained from the recent analysis of the IceCube (HESE) data. Figure 1: Variation of with and for (a) = 1◦ and (b) = 4◦ (the recent IceCube HESE data). IceCube Mass and Life time of heavy dark matter decaying into IceCube PeV neutrinos M. Pandey et al., Phys. Lett. B 797, 134910 (2019) Wednesday, December 4, 2019 WHEPP XVI 16 Introduction The source of other UHE neutrino events at IceCube is by and large unknown. These also include the track events for the neutrinos in and around PeV region. We explore an alternative possibility that these neutrinos could have been created by the rare or long lived decay of superheavy dark matter in the Universe. The superheavy dark matter could be created during a spontaneous symmetry breaking in Grand Unified scale and thus they were never in thermal equilibrium with the Universe. Thus their production is nonthermal in nature. They can also be created by the process of gravitational production. Here in this work, we consider the decay of the super heavy dark matter to interpret the neutrinos in and around the PeV region recorded by IceCube that includes the best fit region for muon neutrino track events given by IceCube in the same regime. In the whole process one needs to consider two decay channels, one is the hadronic decay channel while the other is the leptonic decay channel. We try to estimate the best fit value of the mass ( ) and the decay lifetime ( )of the dark matter, which undergoes a decay via the hadronic channel. Also for the fixed value of the dark matter mass we calculate the best fit value of the dark matter decay lifetime ( ) when both hadronic and leptonic channel are considered. Wednesday, December 4, 2019 WHEPP XVI 17 IceCube IceCube Data and Fit [PoS(ICRC2017)981] Wednesday, December 4, 2019 WHEPP XVI 18 Formalism [M. Pandey et al., Phys. Lett. B 797, 134910 (2019)] The neutrino spectrum from the decay of such dark matter can be written as ..... (1) where and the functions are taken from the reference [1] ...... (2) is the dimensionless energy fraction transferred to the hadron. [1] S.R. Kelner et al., Phys. Rev. D 74, 034018 (2006); Erratum: Phys. Rev. D 79, 039901 (2009). Wednesday, December 4, 2019 WHEPP XVI 19 Formalism [M. Pandey et al., Phys. Lett. B 797, 134910 (2019)] The neutrino flux can be of two type; extragalactic and galactic - The isotropic extragalactic neutrino flux from the decay of such a heavy dark matter with mass is given as ....... (3) Hubble radius The cosmological dark matter density at the present epoch is describes the neutrino energy spectrum, obtained from the decay of super heavy dark matter and this neutrino spectrum is a function of the neutrino energy at redshift The galactic neutrino flux from similar decay is described by ..... (4) is the dark matter density and we consider Navarro-Frenk-White (NFW) profile. defines the neutrino spectrum decaying from the super heavy dark matter , where , are the galactic coordinate . The total flux is obtained as ...... (5) Wednesday, December 4, 2019 WHEPP XVI 20 Calculation and Results We have consider the UHE region in the energy range GeV to PeV. [2] [2] The IceCube Collaboration, 35th International Cosmic Ray Conference, ICRC2017, PoS ICRC2017 (2017) 981. Ref - [M. Pandey et al., Phys. Lett. B 797, 134910 (2019)] Wednesday, December 4, 2019 WHEPP XVI 21 Calculation and Results Wednesday, December 4, 2019 WHEPP XVI 22 Calculations and Results The for our fit ...... (6), where is the number of chosen points (Table 1) are the energies of the chosen points. is the theoretical flux obtained from Eq. (5). corresponding to experimental data are given in Table 1. is the error of chosen experimental points (Table 1). Figure The best fit value is (only hadronic channel is considered for dark matter decay) 23 Wednesday, December 4, 2019 WHEPP XVI Calculations and Results We make one parameter analysis (using Eq. (6) for all set of points given in Table 1) and obtained the best fit value of for the best fit value of (Figure 2) when both the hadronic and the leptonic channels are considered.
Recommended publications
  • Search for Neutrinos from TANAMI Observed AGN Using Fermi
    Search for neutrinos from TANAMI observed AGN using Fermi lightcurves with ANTARES Suche nach Neutrinos von TANAMI-AGN unter Verwendung von Fermi-Lichtkurven mit ANTARES Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrads Dr. rer. nat. vorgelegt von Kerstin Fehn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.03.2015 Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms Gutachter/in: Prof. Dr. Gisela Anton Prof. Dr. Ulrich Katz ν Abstract Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of −30◦ declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed.
    [Show full text]
  • Panel 1: 3-Flavor Neutrino Oscillation
    Panel 1: 3-flavor Neutrino Oscillation Marcos Dracos,1 Mark Hartz,2, 3 Patrick Huber,4 Ryan Patterson,5 Serguey Petcov,6 and Ewa Rondio7 1IPHC, Universit´ede Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France 2TRIUMF, Canada 3Kavli IPMU (WPI), University of Tokyo 4Center for Neutrino Physics, Virginia Tech, Blacksburg, USA 5California Institute of Technology, Pasadena, USA 6SISSA/INFN, Trieste, Italy, and Kavli IPMU (WPI), University of Tokyo, Kashiwa, Japan 7National Centre for Nuclear Research (NCBJ), Warsaw, Poland (Dated: November 6, 2018) PREAMBLE tence of new fundamental symmetry in the lepton sector. The most distinctive feature of the symmetry approach to In this brief document we will focus on experimental neutrino mixing are the predictions of the values of some programs and ideas which have at some level been rec- of the neutrino mixing angles and leptonic CP phases, ognized by funding agencies, either by outright funding and/or of existence of correlations between the values of them or by at least providing significant support for the at least some the neutrino mixing angles and/or between R&D for the neutrino oscillation related aspects of the the values of the neutrino mixing angles and the Dirac program. CP phase in the PMNS matrix, etc. This implies that a sufficiently precise measurement of the Dirac phase δ of the PMNS neutrino mixing matrix in current and future neutrino oscillation experiments, combined with planned INTRODUCTION improvements of the precision on the neutrino mixing an- gles, might provide unique information about the possible The discovery of neutrino oscillation dates back two discrete symmetry origin of the observed pattern of neu- decades and to this day is the most direct laboratory ev- trino mixing and, correspondingly, about the existence of idence for the existence of physics beyond the Standard new fundamental symmetry in the lepton sector.
    [Show full text]
  • The ANTARES and Km3net Neutrino Telescopes: Status and Outlook for Acoustic Studies
    EPJ Web of Conferences 216, 01004 (2019) https://doi.org/10.1051/epjconf/201921601004 ARENA 2018 The ANTARES and KM3NeT neutrino telescopes: Status and outlook for acoustic studies Véronique Van Elewyck1,2, for the ANTARES and KM3NeT Collaborations 1APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, France 2Institut Universitaire de France, 75005 Paris, France Abstract. The ANTARES detector has been operating continuously since 2007 in the Mediterranean Sea, demonstrating the feasibility of an undersea neutrino telescope. Its superior angular resolution in the reconstruction of neutrino events of all flavors results in unprecedented sensitivity for neutrino source searches in the southern sky at TeV en- ergies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by the IceCube detector. The next generation KM3NeT neutrino telescope is now under construction, featuring two detectors with the same technology but different granularity: ARCA designed to search for high energy (TeV-PeV) cosmic neutrinos and ORCA designed to study atmospheric neutrino oscillations at the GeV scale, focusing on the determination of the neutrino mass hierarchy. Both detectors use acoustic devices for positioning calibration, and provide testbeds for acoustic neutrino detection. 1 Introduction Neutrinos have long been proposed as a complementary probe to cosmic rays and photons to explore the high-energy (HE) sky, as they can emerge from dense media and travel across cosmological dis- tances without being deflected by magnetic fields nor absorbed by inter- and intra-galactic matter and radiation. HE (>TeV) neutrinos are expected to be emitted in a wide range of astrophysical objects.
    [Show full text]
  • Neutrino Telescopes
    Neutrino Telescopes Gisela Anton Erlangen Centre for Astroparticle Physics, University Erlangen-Nürnberg, Erwin–Rommel-Str. 1, 91058 Erlangen, Germany [email protected] This paper addresses the working principle of neutrino telescopes, im- portant detector parameters as well as the layout and performance of current and future neutrino telescopes. It was prepared for the book "Probing Particle Physics with Neutrino Telescopes", C. Pérez de los Heros, editor, 2020 (World Scientific) in 2018. 1 Introductory considerations Usual astronomical telescopes determine the intensity respectively the spectral density of light arriving from a certain direction at Earth. The analogue task of a neutrino telescope is the detection of neutrinos determining their direction and energy. While visible photons can be collected and directed with mirrors no analogue mechanism exists for neutrinos. This implies that the phase space (area and direction) of neutrinos cannot be changed. So, the strategy is to detect single neutrinos and for each single neutrino to determine its direction and energy from the interaction characteristics and from energy and momenta of secondary particles produced in the neutrino interaction. Neutrinos only feel the weak force resulting in a rather low probability of interaction with matter. For a large energy regime the neutrino-nucleon cross section increases linearly with energy E while for most of the expected neutrino sources the emitted flux decreases with energy as E−2 or even steeper. This implies that a neutrino telescope needs the more target mass the higher the envisaged neutrino energy regime is. To give a rough orientation, usual neutrino detectors employ a Megaton target mass for the GeV energy regime and a Gigaton mass for the TeV energy regime.
    [Show full text]
  • Methods and Problems in Low Energy Neutrino Experiments (Solar, Reactors, Geo-)
    Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE NEUTRINO PHYSICS AND ASTROPHYSICS July 26th - August 5th, 2011 Varenna - Italy Summary of the topics -Neutrino detection overview -Radiochemical methodology -Scintillation methods -Cerenkov approach -Low background implications in low energy neutrino search With examples of applications taken from experiments and geo-neutrinos (anti-ν)ν)ν) (not discussed here) fundamental Neutrino production in the Sun In our star > 99% of the energy is created in this reaction The pp chain reaction The CNO cycle In the Sun < 1% More important in heavier stars There are different steps in which energy (and neutrinos) are produced pp ν νν from: Monocrhomatic ν’s (2 bodies in the final state) pp pep CNO ννν from: 7Be 13 N 8B 15 O hep 17 F Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano Neutrino production in the Sun Neutrino energy spectrum as predicted by the Solar Standard Model (SSM) John Norris Bahcall (Dec. 30 , 1934 – Aug. 17 , 2005 ) 7Be: 384 keV (10%) 862 keV (90%) Pep: 1.44 MeV Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano Solar neutrino experiments: a more than four decades long saga Radiochemical experiments Homestake (Cl) Gallex/GNO (Ga) Sage (Ga) Real time Cherenkov experiments Kamiokande/Super-Kamiokande SNO Scintillator experiments Borexino Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano This is equivalent to find a needle in a haystack
    [Show full text]
  • The ANTARES Collaboration
    PROCEEDINGS OF THE 31st ICRC, ŁOD´ Z´ 2009 1 The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009 Abstract The Antares neutrino telescope, operating at 2.5 km depth in the Mediterranean Sea, 40 km off the Toulon shore, represents the world’s largest operational underwater neutrino telescope, optimized for the detection of Cerenkov light produced by neutrino-induced muons. The main goal of Antares is the search of high energy neutrinos from astrophysical point or transient sources. Antares is taking data in its full 12 lines configuration since May 2008: in this paper we collect the 16 contributions by the ANTARES collaboration that were submitted to the 31th International Cosmic Ray Conference ICRC 2009. These contributions includes the detector performances, the first preliminary results on neutrino events and the current physics analysis including the sensitivity to point like sources, the possibility to detect high energy neutrinos in coincidence with GRB, the search for dark matter or exotic particles. arXiv:1002.0701v1 [astro-ph.HE] 3 Feb 2010 2 THE ANTARES COLLABORATION ANTARES Collaboration J.A. Aguilar1, I. Al Samarai2, A. Albert3, M. Anghinolfi4, G. Anton5, S. Anvar6, M. Ardid7, A.C. Assis Jesus8, T. Astraatmadja8; a, J.J. Aubert2, R. Auer5, B. Baret9, S. Basa10, M. Bazzotti11; 12, V. Bertin2, S. Biagi11; 12, C. Bigongiari1, M. Bou-Cabo7, M.C. Bouwhuis8, A. Brown2, J. Brunner2; b, J. Busto2, F. Camarena7, A. Capone13; 14, C.C^arloganu15, G. Carminati11; 12, J. Carr2, E. Castorina16; 17, V. Cavasinni16; 17, S. Cecchini12; 18, Ph.
    [Show full text]
  • ANNUAL REPORT (APRIL 2016 – MARCH 2017) Editorial Board MIYOKI, Shinji YOSHIKOSHI, Takanori TAKENAGA, Yumiko FUKUDA, Hironobu
    INSTITUTE FOR COSMIC RAY RESEARCH THE UNIVERSITY OF TOKYO ANNUAL REPORT (APRIL 2016 – MARCH 2017) Editorial Board MIYOKI, Shinji YOSHIKOSHI, Takanori TAKENAGA, Yumiko FUKUDA, Hironobu c Institute for Cosmic Ray Research, The University of Tokyo 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582, Japan Telephone: (81) 4-7136-3102 Facsimile: (81) 4-7136-3115 WWW URL: http://www.icrr.u-tokyo.ac.jp/ TABLE OF CONTENTS Preface Research Divisions ......................................................................................... 1 Neutrino and Astroparticle Division 2 High Energy Cosmic Ray Division 28 Astrophysics and Gravity Division 52 Observatories and a Research Center ......................................................................... 65 Norikura Observatory 66 Akeno Observatory 72 Kamioka Observatory 75 Kagra Observatory 76 Research Center for Cosmic Neutrinos 77 Appendix A. ICRR Workshops and Ceremonies ............................................................. 79 Appendix B. ICRR Seminars .............................................................................. 82 Appendix C. List of Publications .......................................................................... 82 (a) Papers Published in Journals (b) Conference Papers (c) ICRR Reports Appendix D. Doctoral Theses ............................................................................. 89 Appendix E. Public Relations ............................................................................. 89 (a) ICRR News (b) Public Lectures (c) Visitors Appendix F. Inter-University
    [Show full text]
  • Arxiv:1806.05058V1 [Hep-Ph] 13 Jun 2018
    Prospects of indirect searches for dark matter annihilations in the earth with ICAL@INO Deepak Tiwari,1, ∗ Sandhya Choubey,1, 2, y and Anushree Ghosh3, z 1Harish-Chandra Research Institute (HBNI), Chhatnag Road, Jhunsi, Allahabad 211 019, India 2Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden 3Universidad Tecnica Federico Santa Maria - Departamento de Fisica Casilla 110-V, Avda. Espana 1680, Valparaiso, Chile Abstract We study the prospects of detecting muon events at the upcoming Iron CALorimeter (ICAL) detector to be built at the proposed India-based Neutrino Observatory (INO) facility due to neutrinos arising out of annihilation of Weakly Interactive Massive Particles (WIMP) in the centre of the earth. The atmospheric neutrinos coming from the direction of earth core presents an irreducible background. We consider 50kt × 10 years of ICAL running and WIMP masses between 10-100 GeV and present 90 % C.L. exclusion sensitivity limits on σSI which is the WIMP-nucleon Spin Independent (SI) interaction cross-section. The expected sensitivity limits calculated for ICAL for the WIMP annihilation in the earth are more stringent than the limits obtained by any other indirect detection experiment. For a WIMP mass of 52:14 GeV, where the signal fluxes are enhanced due to resonance capture of WIMP in earth due to Fe nuclei, the sensitivity −44 2 + − limits, assuming 100% branching ratio for each channel, are : σSI = 1:02 × 10 cm for the τ τ −44 2 ¯ channel and σSI = 5:36 × 10 cm for the b b channel. arXiv:1806.05058v1 [hep-ph] 13 Jun 2018 ∗Electronic address: [email protected] yElectronic address: [email protected] zElectronic address: [email protected] 1 I.
    [Show full text]
  • Prediction for the Neutrino Mass in the KATRIN Experiment from Lensing by the Galaxy Cluster A1689
    Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689 Theo M. Nieuwenhuizen Center for Cosmology and Particle Physics, New York University, New York, NY 10003 On leave of: Institute for Theoretical Physics, University of Amsterdam, Science Park 904, P.O. Box 94485, 1090 GL Amsterdam, The Netherlands Andrea Morandi Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel [email protected]; [email protected] ABSTRACT The KATRIN experiment in Karlsruhe Germany will monitor the decay of tritium, which produces an electron-antineutrino. While the present upper bound for its mass is 2 eV/c2, KATRIN will search down to 0.2 eV=c2. If the dark matter of the galaxy cluster Abell 1689 is modeled as degenerate isothermal fermions, the strong and weak lensing data may be explained by degenerate neutrinos with mass of 1.5 eV=c2. Strong lensing data beyond 275 kpc put tension on the standard cold dark matter interpretation. In the most natural scenario, the electron antineutrino will have a mass of 1.5 eV/c2, a value that will be tested in KATRIN. Subject headings: Introduction, NFW profile for cold dark matter, Isothermal neutrino mass models, Applications of the NFW and isothermal neutrino models, Fit to the most recent data sets, Conclusion 1. Introduction The neutrino sector of the Standard Model of elementary particles is one of today's most intense research fields (Kusenko, 2010; Altarelli and Feruglio 2010; Avignone et al. 2008). While neutrino oscillations give information of differences in mass-squared values, no absolute neutrino mass is known.
    [Show full text]
  • Pos(ICRC2017)1026 ∗ [email protected] Speaker
    Sensitivity of the ANTARES neutrino telescope to atmospheric neutrino oscillation parameters PoS(ICRC2017)1026 I. Salvadori∗ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France E-mail: [email protected] On behalf of the ANTARES Collaboration A new analysis, aimed at improving the current ANTARES measurement of the atmospheric neu- trino oscillation parameters, is presented in these proceedings. Two different track reconstruction procedures are combined in order to increase the sensitivity. Furthermore, a novel method to estimate the neutrino energy is applied. A complete 3-flavour description of the oscillation prob- ability including matter effects in the Earth is used. By performing a two-dimensional fit of the event rate as a function of reconstructed energy and zenith angle, expectations on the sensitivity to the oscillation parameters are derived. Using the same analysis chain, a study on the ANTARES sensitivity to sterile neutrinos is performed. 35th International Cosmic Ray Conference - ICRC2017- 10-20 July, 2017 Bexco, Busan, Korea ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ ANTARES Atmospheric Neutrino Oscillations I. Salvadori 1. Introduction The ANTARES neutrino telescope [1] is situated in the Mediterranean Sea, 40 km from the coast of Toulon (France). It is composed of 12 detection lines, each one equipped with 25 floors of 3 optical modules (OMs), with a vertical spacing of 14:5 m. The horizontal spacing among the lines is around 60 m. The main goal of ANTARES is the observation of high energy neutrinos from galactic and extra-galactic sources.
    [Show full text]
  • High Energy Neutrino Detection with the ANTARES Underwater Čerenkov Telescope
    Scuola di Dottorato “Vito Volterra” Dottorato di Ricerca in Fisica – XXII ciclo High energy neutrino detection with the ANTARES underwater Čerenkov telescope Thesis submitted to obtain the degree of Doctor of Philosophy (“Dottore di Ricerca”) in Physics October 2009 by Manuela Vecchi Program Coordinator Thesis Advisors Prof. Vincenzo Marinari Prof. Antonio Capone Dr. Fabrizio Lucarelli to my parents Contents Introduction ix 1 Neutrino astronomy in the context of multimessenger approach 1 1.1 AstrophysicalNeutrinos . 1 1.2 Themulti-messengerconnection . 4 1.3 Galactic Sources of High Energy Neutrinos . 6 1.3.1 SuperNovaRemnants ...................... 8 1.3.2 Microquasars ........................... 9 1.4 Extra-Galactic Sources of High Energy Neutrinos . 10 1.4.1 GammaRayBursts ....................... 10 1.4.2 ActiveGalacticNuclei . 12 2 High energy neutrino detection 17 2.1 Recent developments in neutrino physics . 17 2.2 High energy neutrino detection methods . 20 2.3 Highenergyneutrinotelescopes. 24 2.3.1 Čerenkov high energy neutrino detectors . 24 2.3.2 Radiodetectiontechnique . 27 2.3.3 Acoustic detection technique . 29 2.3.4 The Pierre Auger Observatory as a neutrino telescope . 31 3 The ANTARES high energy neutrino telescope 33 3.1 Detector layout and site dependent properties . ..... 33 3.1.1 Light transmission properties at the ANTARES site . 37 3.2 Environmentalbackground . 38 3.3 The biofouling effect at the ANTARES site . 39 3.3.1 Experimentaltechnique . 40 3.3.2 Dataanalysis ........................... 41 3.4 Calibration ................................ 46 3.4.1 TimeCalibration......................... 46 3.4.2 Alignment............................. 47 3.4.3 ChargeCalibration. 47 3.5 Physicalbackground ........................... 49 3.6 Data acquisition system, trigger and event selection .
    [Show full text]
  • Measuring the Atmospheric Neutrino Oscillation
    Published for SISSA by Springer Received: December 21, 2018 Revised: April 24, 2019 Accepted: May 19, 2019 Published: June 21, 2019 Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model JHEP06(2019)113 with ten years of ANTARES data The ANTARES collaboration A. Albert,a M. Andr´e,b M. Anghinolfi,c G. Anton,d M. Ardid,e J.-J. Aubert,f J. Aublin,g T. Avgitas,g B. Baret,g J. Barrios-Mart´ı,h S. Basa,i B. Belhorma,j V. Bertin,f S. Biagi,k R. Bormuth,l;m J. Boumaaza,n S. Bourret,g M.C. Bouwhuis,l H. Br^anza¸s,o R. Bruijn,l;p J. Brunner,f J. Busto,f A. Capone,q;r L. Caramete,o J. Carr,f S. Celli,q;r;s M. Chabab,t R. Cherkaoui El Moursli,n T. Chiarusi,u M. Circella,v A. Coleiro,h;g M. Colomer,g;h R. Coniglione,k H. Costantini,f P. Coyle,f A. Creusot,g A.F. D´ıaz,w A. Deschamps,x C. Distefano,k I. Di Palma,q;r A. Domi,c;y R. Don`a,u C. Donzaud,g;z D. Dornic,f D. Drouhin,a T. Eberl,d I. El Bojaddaini,aa N. El Khayati,n D. Els¨asser,ab A. Enzenh¨ofer,d;f A. Ettahiri,n F. Fassi,n P. Fermani,q;r G. Ferrara,k L. Fusco,g;ac P. Gay,ad;g H. Glotin,ae R. Gozzini,h T. Gr´egoire,g R. Gracia Ruiz,a K.
    [Show full text]