Pos(ICRC2019)006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Search for Neutrinos from TANAMI Observed AGN Using Fermi
Search for neutrinos from TANAMI observed AGN using Fermi lightcurves with ANTARES Suche nach Neutrinos von TANAMI-AGN unter Verwendung von Fermi-Lichtkurven mit ANTARES Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrads Dr. rer. nat. vorgelegt von Kerstin Fehn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 24.03.2015 Vorsitzender des Promotionsorgans: Prof. Dr. Jörn Wilms Gutachter/in: Prof. Dr. Gisela Anton Prof. Dr. Ulrich Katz ν Abstract Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of −30◦ declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed. -
Km3net/ORCA Telescopes
Search for light sterile neutrinos with ANTARES and KM3NeT/ORCA telescopes A. Domi1,2, J. A. B. Coelho3, T. Thakore4, for the ANTARES and KM3NeT Collaborations 1 Università degli Studi di Genova, Genoa (Italy) - [email protected] 2 INFN-Genova, Genoa (Italy) 3 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay (France) - [email protected] 4 University of Cincinnati, Ohio (United States) - [email protected] VLVnT Workshop - 19/05/2021 1 Where are we with light sterile neutrinos? • Majority of experiments have confirmed the 3 flavour neutrino oscillations. • In parallel, anomalies observed in some oscillation experiments: Anomalies in Short baseline (SBL) Ref: Prog.Part.Nucl.Phys. 111 (2020) 103736 experiments •LSND: �� -> �e •MINIBooNE: �� -> �e / �� -> �e Gallium Anomalies: �e disappearance Reactor anomalies: e disappearance � Disagreement between appearance and disappearance NO ANOMALIES observed in / disappearance. Further observations needed! �� �� 2 Where are we with light sterile neutrinos? Cosmology • Constrains the effective number of relativistic species (Neff) in our universe. • A SBL neutrino would require Neff=4. • Measured Neff compatible with 3. -> Tension with SBL anomalies. • Tension relaxes when cosmological data are combined with astrophysical data. • Cosmological data alone can be compatible with • an eV-mass sterile neutrino only if its contribution to Neff is very small, • a larger Neff only if it comes from a nearly massless sterile particle. We need further observations: neutrino telescopes make it possible! 3 Sterile Neutrinos • Oscillations in the presence of sterile neutrinos are solutions of: 2 • Adding one sterile neutrino introduces 6 more free parameters: �m41 , 3 mixing angles (�14,�24,�34) and 2 more CP phases (�14, �24). -
Panel 1: 3-Flavor Neutrino Oscillation
Panel 1: 3-flavor Neutrino Oscillation Marcos Dracos,1 Mark Hartz,2, 3 Patrick Huber,4 Ryan Patterson,5 Serguey Petcov,6 and Ewa Rondio7 1IPHC, Universit´ede Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France 2TRIUMF, Canada 3Kavli IPMU (WPI), University of Tokyo 4Center for Neutrino Physics, Virginia Tech, Blacksburg, USA 5California Institute of Technology, Pasadena, USA 6SISSA/INFN, Trieste, Italy, and Kavli IPMU (WPI), University of Tokyo, Kashiwa, Japan 7National Centre for Nuclear Research (NCBJ), Warsaw, Poland (Dated: November 6, 2018) PREAMBLE tence of new fundamental symmetry in the lepton sector. The most distinctive feature of the symmetry approach to In this brief document we will focus on experimental neutrino mixing are the predictions of the values of some programs and ideas which have at some level been rec- of the neutrino mixing angles and leptonic CP phases, ognized by funding agencies, either by outright funding and/or of existence of correlations between the values of them or by at least providing significant support for the at least some the neutrino mixing angles and/or between R&D for the neutrino oscillation related aspects of the the values of the neutrino mixing angles and the Dirac program. CP phase in the PMNS matrix, etc. This implies that a sufficiently precise measurement of the Dirac phase δ of the PMNS neutrino mixing matrix in current and future neutrino oscillation experiments, combined with planned INTRODUCTION improvements of the precision on the neutrino mixing an- gles, might provide unique information about the possible The discovery of neutrino oscillation dates back two discrete symmetry origin of the observed pattern of neu- decades and to this day is the most direct laboratory ev- trino mixing and, correspondingly, about the existence of idence for the existence of physics beyond the Standard new fundamental symmetry in the lepton sector. -
The ANTARES and Km3net Neutrino Telescopes: Status and Outlook for Acoustic Studies
EPJ Web of Conferences 216, 01004 (2019) https://doi.org/10.1051/epjconf/201921601004 ARENA 2018 The ANTARES and KM3NeT neutrino telescopes: Status and outlook for acoustic studies Véronique Van Elewyck1,2, for the ANTARES and KM3NeT Collaborations 1APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, France 2Institut Universitaire de France, 75005 Paris, France Abstract. The ANTARES detector has been operating continuously since 2007 in the Mediterranean Sea, demonstrating the feasibility of an undersea neutrino telescope. Its superior angular resolution in the reconstruction of neutrino events of all flavors results in unprecedented sensitivity for neutrino source searches in the southern sky at TeV en- ergies, so that valuable constraints can be set on the origin of the cosmic neutrino flux discovered by the IceCube detector. The next generation KM3NeT neutrino telescope is now under construction, featuring two detectors with the same technology but different granularity: ARCA designed to search for high energy (TeV-PeV) cosmic neutrinos and ORCA designed to study atmospheric neutrino oscillations at the GeV scale, focusing on the determination of the neutrino mass hierarchy. Both detectors use acoustic devices for positioning calibration, and provide testbeds for acoustic neutrino detection. 1 Introduction Neutrinos have long been proposed as a complementary probe to cosmic rays and photons to explore the high-energy (HE) sky, as they can emerge from dense media and travel across cosmological dis- tances without being deflected by magnetic fields nor absorbed by inter- and intra-galactic matter and radiation. HE (>TeV) neutrinos are expected to be emitted in a wide range of astrophysical objects. -
Pos(ICHEP2020)886
The Outer Detector (OD) system for the Hyper-Kamiokande experiment PoS(ICHEP2020)886 Stephane Zsoldos0,1,2,∗ 0Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom 1Department of Physics, University of California, Berkeley, CA 94720, Berkeley, USA 2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA E-mail: [email protected], [email protected] Hyper-Kamiokande, scheduled to begin construction as soon as 2020, is a next generation under- ground water Cherenkov detector, based on the highly successful Super-Kamiokande experiment. It will serve as a far detector, 295 km away, of a long baseline neutrino experiment for the upgraded J-PARC beam in Japan. It will also be a detector capable of observing — far beyond the sensitivity of the Super-Kamiokande detector — proton decay, atmospheric neutrinos, and neutrinos from astronomical sources. An Outer Detector (OD) consisting of PMTs mounted behind the inner detector PMTs and facing outwards to view the outer shell of the cylindrical tank, would provide topological information to identify interactions originating from particles outside the inner detector. Any optimization would lead to a significant improvement for the physics goals of the experiment, which are the measurement of the CP leptonic phase and the determination of the neutrino mass hierarchy. An innovative new setup using small 3" PMTs is being proposed for the Hyper-Kamiokande OD. They would give better redundancy, spatial, and angular resolution, as there would be twice or three times more photosensors that the original 8" design proposal of the experiment, and for a reduced cost. -
Neutrino Telescopes
Neutrino Telescopes Gisela Anton Erlangen Centre for Astroparticle Physics, University Erlangen-Nürnberg, Erwin–Rommel-Str. 1, 91058 Erlangen, Germany [email protected] This paper addresses the working principle of neutrino telescopes, im- portant detector parameters as well as the layout and performance of current and future neutrino telescopes. It was prepared for the book "Probing Particle Physics with Neutrino Telescopes", C. Pérez de los Heros, editor, 2020 (World Scientific) in 2018. 1 Introductory considerations Usual astronomical telescopes determine the intensity respectively the spectral density of light arriving from a certain direction at Earth. The analogue task of a neutrino telescope is the detection of neutrinos determining their direction and energy. While visible photons can be collected and directed with mirrors no analogue mechanism exists for neutrinos. This implies that the phase space (area and direction) of neutrinos cannot be changed. So, the strategy is to detect single neutrinos and for each single neutrino to determine its direction and energy from the interaction characteristics and from energy and momenta of secondary particles produced in the neutrino interaction. Neutrinos only feel the weak force resulting in a rather low probability of interaction with matter. For a large energy regime the neutrino-nucleon cross section increases linearly with energy E while for most of the expected neutrino sources the emitted flux decreases with energy as E−2 or even steeper. This implies that a neutrino telescope needs the more target mass the higher the envisaged neutrino energy regime is. To give a rough orientation, usual neutrino detectors employ a Megaton target mass for the GeV energy regime and a Gigaton mass for the TeV energy regime. -
Ankur Sharma
Ankur Sharma Date of Birth 2nd August 1991 Gender Male Nationality Indian Phone +46 76 447 51 45 Address Eklundshovsvägen 4B, Lgh 1104 Email [email protected] 752 37, Uppsala, Sweden [email protected] Research Interests Phenomenological studies of VHE emission from jets of AGNs; multi-messenger and multi-wavelength connection in blazars with neutrino, gamma-ray and X-ray data; gamma-ray astronomy; observability of point sources with Cherenkov neutrino telescopes; detection strategies for ultra-high energy neutrinos Education Jan 2017 - PhD in Physics - University of Pisa (Italy) Present Area of study - Astroparticle Physics, Neutrino Astrophysics - Astroparticles, Experimental Astrophysics & Astroparticle Physics - High Energy Experimental Physics Thesis Title - Analyzing the high energy activity of candidate blazars to constrain their observability by neutrino telescopes Supervisor - Dr. Antonio Marinelli ([email protected]) Aug 2009 - Integrated M.Sc. (M.Sc. + B.Sc.) in Applied Physics - Indian Institute of Technology (ISM), Dhanbad Feb 2015 Area of study - Applied Physics - Nuclear & Particle Physics, Classical Mechanics, Quantum Mechanics, Electrodynamics - Computer Networks, Microprocessors, C++, ForTran Sept 2013 - Erasmus Mundus India4EU II Exchange Mobility - University of Porto (Portugal) July 2014 Area of study - Master Thesis, Astronomy - Stellar Structure & Evolution, Cosmology - Optical Communication, Measurement Techniques & Instrumentation Thesis Title - Constraining the Parameter Space of Dynamical -
Geo-Neutrino Program at Baksan Neutrino Observatory Geoneutrino
Neutrino Geoscience 2019 Prague / Book of Abstracts The deep-sea neutrino detector KM3NeT/ORCA, currently being built in the Mediterranean Seanear Toulon (France), is optimized for the study of oscillations of atmospheric neutrinos in the few-GeV energy range, with the main goal to determine the neutrino mass hierarchy. This is possible due to matter effects that modify the probability of neutrino oscillations along their path through theEarth. Measuring the energy and angular distributions of neutrinos with ORCA can therefore also provide tomographic information on the Earth’s interior and more specifically on the electron density along the trajectory of the detected neutrino, complementary to standard geophysics methods. In this contribution the latest results of a study of the potential of ORCA for Earth tomography are presented. They are based on a full Monte Carlo simulation of the detector response and including systematic effects. It is shown that after ten years of operation ORCA can measure the electron density in both the lower mantle and the outer core with a precision of a few percent in the case of normal neutrino mass hierarchy. 40 Geo-neutrino program at Baksan Neutrino Observatory Authors: Albert Gangapshev1 ; Andrey Sidorenkov2 ; Bayarto Lubsandorzhiev2 ; Daniil Kudrin2 ; Dmitry Voronin2 ; Evgeny Veretenkin2 ; Evgeny Yanovich2 ; Galina Novikova2 ; Makhti Kochkarov2 ; Nikita Ushakov2 ; Tatiana Ibragimova2 ; Valery Kuzminov1 ; Valery Petkov3 ; Vladimir Gavrin2 ; Vladimir Kazalov2 ; Yury Gavrilyuk2 ; Yury Malyshkin4 1 INR RAS, KBSU 2 INR RAS 3 INR RAS, IA RAS 4 INR RAS, INFN A new neutrino program has been recently lunched at Baksan Neutrino Observatory. It is planned to deploy a 10-kiloton scale detector based on liquid scintillator in the existing shaft at a depth of 4800 m.w.e. -
Methods and Problems in Low Energy Neutrino Experiments (Solar, Reactors, Geo-)
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE NEUTRINO PHYSICS AND ASTROPHYSICS July 26th - August 5th, 2011 Varenna - Italy Summary of the topics -Neutrino detection overview -Radiochemical methodology -Scintillation methods -Cerenkov approach -Low background implications in low energy neutrino search With examples of applications taken from experiments and geo-neutrinos (anti-ν)ν)ν) (not discussed here) fundamental Neutrino production in the Sun In our star > 99% of the energy is created in this reaction The pp chain reaction The CNO cycle In the Sun < 1% More important in heavier stars There are different steps in which energy (and neutrinos) are produced pp ν νν from: Monocrhomatic ν’s (2 bodies in the final state) pp pep CNO ννν from: 7Be 13 N 8B 15 O hep 17 F Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano Neutrino production in the Sun Neutrino energy spectrum as predicted by the Solar Standard Model (SSM) John Norris Bahcall (Dec. 30 , 1934 – Aug. 17 , 2005 ) 7Be: 384 keV (10%) 862 keV (90%) Pep: 1.44 MeV Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano Solar neutrino experiments: a more than four decades long saga Radiochemical experiments Homestake (Cl) Gallex/GNO (Ga) Sage (Ga) Real time Cherenkov experiments Kamiokande/Super-Kamiokande SNO Scintillator experiments Borexino Rome - 3 July, 2009 Gioacchino Ranucci - I.N.F.N. Sez. di Milano This is equivalent to find a needle in a haystack -
Sensitivity to Light Sterile Neutrino Mixing Parameters with Km3net/ORCA
Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA S. Aielloa, A. Albertbb,b, M. Alshamsic, S. Alves Garred, Z. Alye, A. Ambrosonef,g, F. Amelih, M. Andrei, G. Androulakisj, M. Anghinolfik, M. Anguital, G. Antonm, M. Ardidn, S. Ardidn, J. Aublinc, C. Bagatelasj, B. Baretc, S. Basegmez du Preeo, M. Bendahmanc,p, F. Benfenatiq,r, E. Berbeeo, A. M. van den Bergs, V. Bertine, S. Biagit, M. Bissingerm, M. Boettcheru, M. Bou Cabov, J. Boumaazap, M. Boutaw, M. Bouwhuiso, C. Bozzax, H.Br^anza¸sy, F. Bretaudeauz, R. Bruijno,aa, J. Brunnere, R. Brunoa, E. Buisab, R. Buompanef,ac, J. Bustoe, B. Caiffik, D. Calvod, S. Campionad,h, A. Caponead,h, V. Carreterod, P. Castaldiq,ae, S. Celliad,h, M. Chababaf, N. Chauc, A. Chenag, S. Cherubinit,ah, V. Chiarellaai, T. Chiarusiq, M. Circellaaj, R. Cocimanot, J. A. B. Coelhoc,˚, A. Coleiroc, M. Colomer Mollac,d, R. Coniglionet, P. Coylee, A. Creusotc, A. Cruzak, G. Cuttonet, R. Dallierz, B. De Martinoe, M. De Palmaaj,al, I. Di Palmaad,h, A. F. D´ıazl, D. Diego-Tortosan, C. Distefanot, A. Domik,am,˚, C. Donzaudc, D. Dornice, M. D¨orran, D. Drouhinbb,b, T. Eberlm, A. Eddyamouip, T. van Eedeno, D. van Eijko, I. El Bojaddainiw, D. Elsaesseran, A. Enzenh¨ofere, V. Espinosan, P. Fermaniad,h, G. Ferrarat,ah, M. D. Filipovi´cao, F. Filippiniq,r, L. A. Fuscoe, T. Galm, J. Garc´ıaM´endezn, A. Garcia Sotoo, F. Garufif,g, Y. Gateletc, N. Geißelbrechtm, L. Gialanellaf,ac, E. Giorgiot, S. R. Gozziniad,h, R. Graciao, K. Grafm, G. Grellaap, D. -
The Hyper-Kamiokande Experiment Francesca Di Lodovico Queen Mary University of London
The Hyper-Kamiokande Experiment Francesca Di Lodovico Queen Mary University of London On behalf of the Hyper-K UK collaboration PPAP Meeting July 26, 2016 A Multi-purpose Experiment Comprehensive study of oscillation • CPV Supernova • Mass hierarchy with beam+atmosph. • 23 octant • Test of exotic scenarios Nucleon decay discovery potential Sun • All visible modes including p → 푒+ 0 + Accelerator and p→휈 퐾 can be advanced beyond (J-PARC) SK. • Reaching 1035yrs sensitivity Unique Astrophysics T2HK • Precision measurement of solar • High statistics Supernova with pointing capability and energy info. • Supernova relic (non-burst ) Proton observation is also possible decay Earth core's chemical composition Etc. 2 Inaugural Symposium of the HK proto- collaboration@Kashiwa, Jan-2015 12 countries, ~250 members and growing KEK-IPNS and • Proto-collaboration formed. UTokyo-ICRR • International steering group signed a MoU for • International conveners cooperation • International chair for international on the Hyper- board of representative (IBR) Kamiokande project. 26/July/2016 The Hyper-Kamiokande Experiment 3 Proto-Collaboration IRFU, CEA Saclay (France) Gifu University (Japan) Laboratoire Leprince-Ringuet, Ecole Polytechnique (France) High Energy Accelerator Research Organization (KEK) (Japan) Lancaster University (UK) Kobe University (Japan) Los Alamos National Laboratory (USA) Kyoto University (Japan) Louisiana State University (USA) Miyagi University of Education (Japan) National Centre for Nuclear Research (Poland) Nagoya University -
The ANTARES Collaboration
PROCEEDINGS OF THE 31st ICRC, ŁOD´ Z´ 2009 1 The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009 Abstract The Antares neutrino telescope, operating at 2.5 km depth in the Mediterranean Sea, 40 km off the Toulon shore, represents the world’s largest operational underwater neutrino telescope, optimized for the detection of Cerenkov light produced by neutrino-induced muons. The main goal of Antares is the search of high energy neutrinos from astrophysical point or transient sources. Antares is taking data in its full 12 lines configuration since May 2008: in this paper we collect the 16 contributions by the ANTARES collaboration that were submitted to the 31th International Cosmic Ray Conference ICRC 2009. These contributions includes the detector performances, the first preliminary results on neutrino events and the current physics analysis including the sensitivity to point like sources, the possibility to detect high energy neutrinos in coincidence with GRB, the search for dark matter or exotic particles. arXiv:1002.0701v1 [astro-ph.HE] 3 Feb 2010 2 THE ANTARES COLLABORATION ANTARES Collaboration J.A. Aguilar1, I. Al Samarai2, A. Albert3, M. Anghinolfi4, G. Anton5, S. Anvar6, M. Ardid7, A.C. Assis Jesus8, T. Astraatmadja8; a, J.J. Aubert2, R. Auer5, B. Baret9, S. Basa10, M. Bazzotti11; 12, V. Bertin2, S. Biagi11; 12, C. Bigongiari1, M. Bou-Cabo7, M.C. Bouwhuis8, A. Brown2, J. Brunner2; b, J. Busto2, F. Camarena7, A. Capone13; 14, C.C^arloganu15, G. Carminati11; 12, J. Carr2, E. Castorina16; 17, V. Cavasinni16; 17, S. Cecchini12; 18, Ph.