A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle Lauren M

Total Page:16

File Type:pdf, Size:1020Kb

A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle Lauren M A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle Lauren M. Sparks, Hui Xie, Robert A. Koza, Randall Mynatt, Matthew W. Hulver, George A. Bray, and Steven R. Smith Obesity and type 2 diabetes have been associated with a ray studies have shown that genes involved in oxidative high-fat diet (HFD) and reduced mitochondrial mass phosphorylation (OXPHOS) exhibit reduced expression and function. We hypothesized a HFD may affect expres- levels in the skeletal muscle of type 2 diabetic subjects and sion of genes involved in mitochondrial function and prediabetic subjects. These changes may be mediated by biogenesis. To test this hypothesis, we fed 10 insulin- the peroxisome proliferator–activated receptor ␥ coacti- sensitive males an isoenergetic HFD for 3 days with vator-1 (PGC1) pathway. PGC1␣- and PGC1␤-responsive muscle biopsies before and after intervention. Oligonu- cleotide microarray analysis revealed 297 genes were OXPHOS genes show reduced expression in the muscle of differentially regulated by the HFD (Bonferonni ad- patients with type 2 diabetes (3,4). In addition to the justed P < 0.001). Six genes involved in oxidative cellular energy sensor AMP kinase, the peroxisome prolif- phosphorylation (OXPHOS) decreased. Four were mem- erator–activated receptor cofactors PGC1␣ (5–7) and pos- bers of mitochondrial complex I: NDUFB3, NDUFB5, sibly PGC1␤ (8) activate mitochondrial biogenesis and NDUFS1, and NDUFV1; one was SDHB in complex II and increase OXPHOS gene expression by increasing the tran- a mitochondrial carrier protein SLC25A12. Peroxisome scription, translation, and activation of the transcription proliferator–activated receptor ␥ coactivator-1 (PGC1) -and PGC1␤ mRNA were decreased by ؊20%, P < 0.01, factors necessary for mitochondrial DNA (mtDNA) repli ␣ and ؊25%, P < 0.01, respectively. In a separate exper- cation. Similarly, PGC1␣ increases the transcription of iment, we fed C57Bl/6J mice a HFD for 3 weeks and enzymes necessary for substrate oxidation, electron trans- found that the same OXPHOS and PGC1 mRNAs were port, and ATP synthesis. Morphological and functional downregulated by ϳ90%, cytochrome C and PGC1␣ studies (1,9,10), combined with the recent microarray ϳ protein by 40%. Combined, these results suggest a data, indicate that PGC1 is important in the development mechanism whereby HFD downregulates genes neces- sary for OXPHOS and mitochondrial biogenesis. These of type 2 diabetes. changes mimic those observed in diabetes and insulin Rates of ATP synthesis, measured in situ with magnetic resistance and, if sustained, may result in mitochondrial resonance spectroscopy, are decreased in subjects with a dysfunction in the prediabetic/insulin-resistant state. family history of diabetes before the onset of impaired Diabetes 54:1926–1933, 2005 glucose tolerance (2,10). Based on these results, the prevailing view is that these defects have a genetic origin (2). One common feature of diverse insulin-resistant states is an elevation in nonesterified fatty acids (11). This gave t the molecular and structural level, mitochon- rise to the concept of “lipotoxicity” and “ectopic fat” (12) drial biogenesis and mitochondrial function are and shifted attention toward the adipose tissue and in- altered in diabetes, as well as in insulin-resis- creased free fatty acid concentrations as a potential foun- A tant relatives of type 2 diabetic subjects (1,2). dation for insulin resistance (11). At the ultra-structural level, a reduction in the number, Excess dietary fat has also been implicated in the location, and morphology of mitochondria is strongly development of obesity and diabetes (13). At energy associated with insulin resistance (1). Two recent microar- balance, high-fat diets (HFDs) increase the flux of fatty acids through skeletal muscle for oxidation. The purpose From the Pennington Biomedical Research Center, Baton Rouge, Louisiana of these experiments was to identify the transcriptional Address correspondence and reprint requests to Steven R. Smith, Penning- responses of skeletal muscle to an isoenergetic HFD in ton Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808. healthy young men using oligonucleotide microarrays. We E-mail: [email protected]. Received for publication 10 December 2004 and accepted in revised form 4 found a HFD downregulated PGC1␣ and PGC1␤ mRNA, as April 2005. well as genes encoding proteins in complexes I, II, III, and Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org. IV of the electron transport chain. These changes were BHAD, ␤-hydroxyacyl-CoA dehydrogenase; HFD, high-fat diet; mtDNA, recapitulated and amplified in a murine model after a mitochondrial DNA; OXPHOS, oxidative phosphorylation; PGC1, peroxisome 3-week HFD, along with decreases in PGC1␣ and cyto- proliferator–activated receptor ␥ coactivator-1. © 2005 by the American Diabetes Association. chrome C protein. These studies implicate increased di- The costs of publication of this article were defrayed in part by the payment of page etary fat in the defects in OXPHOS genes observed in charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. diabetes and the prediabetic/insulin-resistant state. 1926 DIABETES, VOL. 54, JULY 2005 L.M. SPARKS AND ASSOCIATES RESEARCH DESIGN AND METHODS TABLE 1 ADAPT is a short-term intervention study designed to examine inter-individual Characteristics of the study population before the high-fat diet differences in the ability to increase fat oxidation after consuming an Ϯ Ϯ Age (years) 23.0 3.1 isoenergetic HFD (14,15). Ten healthy young men, aged 23.0 3.1 years and Ϯ Ϯ 2 Height (cm) 179.7 6.3 with BMIs of 24.3 3.0 kg/m underwent physical examination, medical Ϯ laboratory tests, and anthropometry. The subjects had high preference for Weight (kg) 78.9 13.2 dietary fat as indicated by food preference questionnaire (114.16 Ϯ 18.14). BMI (kg/m²) 24.3 Ϯ 3.0 ⅐ Ϫ1 ⅐ Ϫ1 Ϯ This measure is highly correlated with self-selected fat intake (16). Partici- VO2max (ml kg min ) 48.8 3.3 pants presented to Pennington inpatient unit on day Ϫ4 and ate a weight- Waist-to-hip ratio (AU) 0.88 Ϯ 0.1 maintaining (35% fat, 16% protein, and 49% carbohydrate) diet prepared by the RQ–metabolic cart (AU) 0.87 Ϯ 0.1 metabolic kitchen. On day Ϫ3, a euglycemic-hyperinsulinemic clamp was Fasting glucose (ml/dl) 78.4 Ϯ 4.7 performed, and this diet was continued on days Ϫ2, Ϫ1, and 1. On day 1, Fasting insulin (␮l/ml) 4.6 Ϯ 1.4 participants ate the same weight-maintaining 35% fat diet, and total daily GDR (mg ⅐ kg FFMϪ1 ⅐ minϪ1) 14.7 Ϯ 4.1 energy expenditure, fat oxidation, protein oxidation, and carbohydrate oxida- Free fatty acids (mmol) 0.4 Ϯ 0.1 tion were measured at energy balance as previously described in a whole- Body fat (%) 16.2 Ϯ 3.2 room calorimeter (17,18). On days 2, 3, and 4 subjects ate a 50% fat, 16% Fat cell size (␮l) 0.93 Ϯ 0.2 protein, 34% carbohydrate diet with an isoenergetic energy clamp procedure. Each meal was served to the subjects and consumed within 20 min. Data are means Ϯ SD. GDR, glucose disposal rate; RQ, respiratory Euglycemic-hyperinsulinemic clamp. Insulin sensitivity was measured only quotient. at baseline (day Ϫ3) by euglycemic-hyperinsulinemic clamp (19) before HFD. After an overnight fast, glucose and insulin (80 mIU/m2 BSA) were adminis- tered. The glucose disposal rate (M value) was adjusted for kilograms of lean differentially expressed genes before versus after the HFD. Differentially body mass. expressed genes were identified based on a Bonferroni adjusted P Ͻ 0.01. Maximal aerobic capacity. Maximal oxygen uptake was determined by a Real-time quantitative RT-PCR for RNA. RNA sample pairs (1 ␮g) were progressive treadmill test to exhaustion (20). The volume of O2 and CO2 was reverse transcribed using iScript cDNA synthesis kit (BioRad, Hercules, CA). measured continuously using a metabolic cart (V-Max29 Series; Sensor- All primers and probes were designed using Primer Express version 2.1 Medics, Yorba Linda, CA). (Applied Biosystems-Roche, Branchburg, NJ). Sequences of primers and Body composition. Body fat mass and lean body mass were measured on a probes are shown in Supplemental Table 1 (online appendix [available at Hologic Dual Energy X-ray Absorptiometer (QDR 4500; Hologic, Waltham, http://diabetes.diabetesjournals.org]). MA). Real-time quantitative RT-PCR reactions (26) were performed as one-step Indirect calorimetry. Respiratory quotient and 24-h energy expenditure reactions in ABI PRISM 7900 (Applied Biosystems) using the following were determined in the whole-room calorimeter before and during 3 days of parameters: one cycle of 48°C for 30 min, then 95°C for 10 min, followed by 40 isocaloric HFD and confirmed an increase in fat oxidation (data not shown). cycles at 95°C for 15 s and 60°C for 1 min. For all assays performed using Energy expenditure was set at 1.4 times the resting metabolic rate measured SYBR Green I (Applied Biosystems-Roche), 18S was the internal control; and by metabolic cart and clamped across the 4-day chamber stay. for all assays performed using Taqman primers and probe, RPLP0, which is Animal study. Male C57BL/6J mice were housed at room temperature with a the human equivalent of the murine 36B4 (27), was the internal control. 12-h-light/12-h-dark cycle for 5 weeks. Six mice consumed control diet ad Cyclophilin B was used for all murine assays. All expression data were libitum (D12450B [Research Diets, New Brunswick, NJ]: 10% of energy from normalized by dividing target gene by internal control. fat, 20% of energy from protein, and 70% of energy from carbohydrate), and Real-time PCR for mtDNA and genomic DNA copy number.
Recommended publications
  • Dual Mutations Reveal Interactions Between Components of Oxidative Phosphorylation in Kluyveromyces Lactis
    Copyright 2001 by the Genetics Society of America Dual Mutations Reveal Interactions Between Components of Oxidative Phosphorylation in Kluyveromyces lactis G. D. Clark-Walker and X. J. Chen Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, 2601, Australia Manuscript received April 10, 2001 Accepted for publication August 3, 2001 ABSTRACT Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for ␳0-lethality has been identified by disruption of nuclear genes encoding electron transport and F0-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphoryla- tion results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, ⌬⌿, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F1F0-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or ␳0-lethality can be suppressed by the atp2.1 ␤ mutation in the -subunit of F1-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F1, allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain ⌬⌿. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F1 acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • Original Article Bioinformatic Analysis of Gene Expression Profile in Prostate Epithelial Cells Exposed to Low-Dose Cadmium
    Int J Clin Exp Med 2018;11(3):1669-1678 www.ijcem.com /ISSN:1940-5901/IJCEM0062792 Original Article Bioinformatic analysis of gene expression profile in prostate epithelial cells exposed to low-dose cadmium Qiling Liu1,2*, Rongqiang Zhang2*, Xiang Wang1, Peili Wang2, Xiaomei Ren2, Na Sun2, Xiangwen Li2, Xinhui Li2, Chunxu Hai1 1Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Op- erational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, Medical University of The Air Force, Xi’an, Shaanxi 710032, China; 2Department of Epidemic and Health Statis- tics, The College of Public Health for The Shaanxi University of Chinese Medicine, Shaanxi 712046, China. *Equal contributors. Received July 25, 2017; Accepted February 5, 2018; Epub March 15, 2018; Published March 30, 2018 Abstract: Objective: This study was to identify key genes and biological pathways involved in responses of prostate epithelial cells after low-dose Cd exposure by using bioinformatic analysis. Methods: The gene chip data of prostate epithelial cells after low-dose Cd exposure were collected from public databases Gene Expression Omnibus. After identification of differentially expressed genes (DEGs), data were input into Qlucore Omics Explorer, Network Analyst, String, and Genclip for further analysis of gene expression profiles, protein-protein interactions (PPI) and protein- chemicals interactions, and critical molecular pathways. Results: A total of 384 DEGs were identified in Cd treated group compared with control group. The number of DEGs gradually decreased over time, with the largest number at 0 h. Furthermore, NDUFB5 (A, S), CYC1, UQCRB, ETFA (B), SNRPD2, and LSM3 (5, 6) were the hub proteins in the PPI network.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • (BPA) Exposure Biomarkers in Ovarian Cancer
    Journal of Clinical Medicine Article Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer Aeman Zahra 1, Qiduo Dong 1, Marcia Hall 1,2 , Jeyarooban Jeyaneethi 1, Elisabete Silva 1, Emmanouil Karteris 1,* and Cristina Sisu 1,* 1 Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; [email protected] (A.Z.); [email protected] (Q.D.); [email protected] (M.H.); [email protected] (J.J.); [email protected] (E.S.) 2 Mount Vernon Cancer Centre, Northwood HA6 2RN, UK * Correspondence: [email protected] (E.K.); [email protected] (C.S.) Abstract: Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease- associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern Citation: Zahra, A.; Dong, Q.; Hall, as a consequence of the disease.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Molecular and Biochemical Characterisation of the Electron Transport Chain of Plasmodium Falciparum
    Molecular and biochemical characterisation of the electron transport chain of Plasmodium falciparum Thomas ANTOINE Ph.D. February 2012 Molecular and biochemical characterisation of the electron transport chain of Plasmodium falciparum Thesis is submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Thomas ANTOINE February 2012 Declaration This thesis is the result of my own work. The material contained in the thesis has not been presented, nor is currently being presented, either wholly or as a part, for any other degree or other qualification. The research work was carried out in the Liverpool School of Tropical Medicine, University of Liverpool, United Kingdom. ……………………………………….. Thomas ANTOINE (2012) i Acknowledgments First of all, I would like to express my gratitude to my supervisors Pr. Steve Ward, Dr. Giancarlo Biagini and Dr. Nick Fisher for their supervision, continued support and constant encouragement throughout my PhD. A special thank goes to the InterMal PhD program and the Marie Curie Fellowship for providing the generous funding which allowed me to undertake this research, but also for giving me the opportunity to attend conferences and workshops as well as meet so many interesting people. I am grateful to Prof. Alister Craig and Prof. Sylke Muller for accepting to be the two members of my oral defense committee. The members of the Ward's research group have contributed immensely to my personal and professional time at Liverpool. I am very grateful to Ashley Warman for insightful comments in my work, for reviewing my thesis and providing valuable feedback as well as for many motivating discussions.
    [Show full text]
  • Mouse Ndufb3 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Ndufb3 Knockout Project (CRISPR/Cas9) Objective: To create a Ndufb3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ndufb3 gene (NCBI Reference Sequence: NM_025597 ; Ensembl: ENSMUSG00000026032 ) is located on Mouse chromosome 1. 3 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 3 (Transcript: ENSMUST00000027193). Exon 2~3 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 0.32% of the coding region. Exon 2~3 covers 100.0% of the coding region. The size of effective KO region: ~4711 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 Legends Exon of mouse Ndufb3 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • THE FUNCTIONAL SIGNIFICANCE of MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in Partial Fulfillment
    THE FUNCTIONAL SIGNIFICANCE OF MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Drs. Margaret M. Sedensky & Philip G. Morgan Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to my family, my teachers and all of my beloved ones for their love and support ii ACKNOWLEDGEMENTS My advanced academic journey began 5 years ago on the opposite side of the world. I traveled to the United States from Thailand in search of a better understanding of science so that one day I can return to my homeland and apply the knowledge and experience I have gained to improve the lives of those affected by sickness and disease yet unanswered by science. Ultimately, I hoped to make the academic transition into the scholarly community by proving myself through scientific research and understanding so that I can make a meaningful contribution to both the scientific and medical communities. The following dissertation would not have been possible without the help, support, and guidance of a lot of people both near and far. I wish to thank all who have aided me in one way or another on this long yet rewarding journey. My sincerest thanks and appreciation goes to my advisors Philip Morgan and Margaret Sedensky.
    [Show full text]
  • Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency
    0031-3998/06/6003-0321 PEDIATRIC RESEARCH Vol. 60, No. 3, 2006 Copyright © 2006 International Pediatric Research Foundation, Inc. Printed in U.S.A. Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency JANINE REICHENBACH, RALF SCHUBERT, RITA HORVA` TH, JENS PETERSEN, NANCY FU¨ TTERER, ELISABETH MALLE, ANDREAS STUMPF, BORIS R. GEBHARDT, ULRIKE KOEHL, BURKHART SCHRAVEN, AND STEFAN ZIELEN Department of General Paediatrics [J.R., R.S., A.S., B.R.G., S.Z.], Department of Paediatric Haematology, Oncology and Haemostaselogy [U.K.], J.W. Goethe University Frankfurt, 60590 Frankfurt, Germany; Institutes of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics [R.H., E.M.], Academic Hospital Schwabing Munich, Children’s Hospital and Institute of Medical Genetics [N.F.], Technical University Munich, Metabolic Disease Center, Munich-Schwabing, 80804 Munich, Germany; Department of Neurology [J.P.], Friedrich-Baur-Institut, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; Institute of Immunology [B.S.], Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany ABSTRACT: We present the clinical and laboratory features of a MDS is defined as a reduction of mtDNA copy number boy with a new syndrome of mitochondrial depletion syndrome and compared with nDNA in different tissues, which leads to T cell immunodeficiency. The child suffered from severe recurrent insufficient synthesis of RC complexes I, III, IV, and V (3). infectious diseases, anemia, and thrombocytopenia. Clinically, he Autosomal recessive mutations of five nuclear genes have presented with severe psychomotor retardation, axial hypotonia, and a disturbed pain perception leading to debilitating biting of the been identified in MDS patients with different clinical presen- thumb, lower lip, and tongue.
    [Show full text]
  • Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces Cerevisiae
    life Review Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae Leticia V. R. Franco 1,2,* , Luca Bremner 1 and Mario H. Barros 2 1 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] 2 Department of Microbiology,Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil; [email protected] * Correspondence: [email protected] Received: 27 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast. Keywords: mitochondrial diseases; respiratory chain; yeast; Saccharomyces cerevisiae; pet mutants 1.
    [Show full text]