Exceptional Mobility of an Advancing Rhyolitic Obsidian Flow at CordÓN Caulle Volcano in Chile

Total Page:16

File Type:pdf, Size:1020Kb

Exceptional Mobility of an Advancing Rhyolitic Obsidian Flow at CordÓN Caulle Volcano in Chile ARTICLE Received 7 Jun 2013 | Accepted 3 Oct 2013 | Published 1 Nov 2013 DOI: 10.1038/ncomms3709 Exceptional mobility of an advancing rhyolitic obsidian flow at Cordo´n Caulle volcano in Chile Hugh Tuffen1, Mike R. James1, Jonathan M. Castro2 & C. Ian Schipper3 The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (430 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011–2012 eruption at Cordo´n Caulle, Chile. We combine high- resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, B35 m-thick flow margins creating 480 breakout lobes. In January 2013, flow front advance continued B3.6 km from the vent, despite detectable lava supply ceasing 6–8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement. 1 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. 2 University of Mainz, Institute of Geosciences, Becherweg 21, 55099 Mainz, Germany. 3 School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand. Correspondence and requests for materials should be addressed to H.T. (email [email protected]). NATURE COMMUNICATIONS | 4:2709 | DOI: 10.1038/ncomms3709 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3709 ontrols on lava flow lengths and advance rates include lava observe the emplacement of rhyolitic lava, with both exogenous viscosity and yield strength, together with effusion rate and endogenous growth of a complex of domes and spines Cand topography1–3. As lava viscosity and yield strength between May 2008 and late 2009 (refs 17,18). The mean effusion 4 increase with melt silica content , high-silica lavas are generally rate of the crystal-poor, high-silica rhyolite (75 wt% SiO2) was considerably thicker, shorter and more slow-moving than basaltic 66 m3 s À 1 over the first 2 weeks and the total erupted lava lavas2,3,5,6, although crystal-poor rhyolitic lava may be volume was B0.8 km3. Notably, no extensive rhyolitic flow was significantly less viscous than crystal-rich andesite or dacite. generated, with lava extending o1 km from the vent18. Formation of an insulating crust reduces heat loss and Constraints on the evolution of extensive rhyolite lava flows significantly enhances lava mobility2,3. Crust formation is have been previously derived indirectly from analogue known to be important in basaltic lavas7, and extensive tube- experiments2, viscous flow models5,19 and thermal models13. fed lavas are commonly compound (consisting of multiple flow In contrast, the temporal evolution of frequently observed units8–9). Basaltic flow fields often advance through extrusion basaltic lava flow fields is well constrained7,10,20, and transitions from stalled flow fronts8,10. from simple to compound flow fields that consist of multiple Despite their high viscosity and inferred effusion rates of flow units are well documented8,9. In compound basaltic flows, o100 m3 s À 1, some rhyolitic lavas can flow for distances cessation of flow front advance triggers channel overflows and exceeding 30 km (ref. 11) and produce flows with volumes of breaches, or flow inflation and lava extrusion at flow fronts via up to 10–20 km3 (refs 12,13). Ogives indicate folding of B10 m- localized breakouts or squeeze-ups10. Long-term processes in thick surface crusts5, which may boost flow mobility by providing compound basaltic lava flow fields are therefore both vertical effective thermal insulation13. However, unlike basaltic flow (flow inflation and tumulus formation) and horizontal (creation models, existing models of rhyolitic flow emplacement focus on of breakouts). Some cross-compositional commonality in lava the inflation of single lava flow units once flow fronts have effusion and emplacement mechanisms has been identified, stalled14–16. including localized lava extrusion at dacitic lava flow margins21 Before the 2011–2012 eruption of Cordo´n Caulle, the 2008– that has a direct basaltic equivalent10,22. However, similarities 2009 eruption at Chaite´n had provided the only opportunity to between rhyolitic and basaltic emplacement are largely 72°14′ W 72°10′ W 72°06′ W N Cordón 1921–22 Caulle flow < 54 ka Cordón Caulle <173 ka 40°30′ S 1921–22 pumice 2011- 1960 flow 1960 pumice Puyehue 69-1 ka 40°34′ S Cordón Caulle 2011- lava Santiago Argentina Cordón Caulle 1960 Puyehue- Cordón Caulle 1921-22 Puyehue Cordón Chile Cordón Caulle <54 ka 314-96 ka 40° S Caulle Cordón Caulle <173 ka Puerto N Montt Puyehue 69-1 ka Puyehue 314-96 ka 1960 Atlantic Caldera margin Scarp 50° Ocean Pacific Ocean 70° 60° W Figure 1 | The Puyehue–Cordo´n Caulle volcanic complex. Highly simplified geological map of the Puyehue–Cordo´n Caulle volcanic complex, redrawn from Singer et al.24 and Lara et al.25 The Cordo´n Caulle volcanic system forms a 20-km-long and 4-km-wide ridge oriented NW-SE. The main fault scarps associated with the 1960 eruption25 are shown. Scale bar, 5 km in length. Inset: map indicating position of Cordo´n Caulle volcanic complex in southern Chile, redrawn from ref. 30. Scale bar, 100 km in length. 2 NATURE COMMUNICATIONS | 4:2709 | DOI: 10.1038/ncomms3709 | www.nature.com/naturecommunications & 2013 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3709 ARTICLE unquantified, and advance processes in rhyolitic lava flow fields and glass water contents are o0.2 wt% (J.M. Castro, manuscript are poorly understood. Our study addresses this issue by applying in preparation). quantitative three-dimensional (3D) imaging techniques23 to the Here we show that localized extrusion from the margins of the first extensive rhyolitic lava flow field to be observed in evolution, rhyolitic lava flow field at Cordo´n Caulle greatly extended the emplaced during the 2011–2012 eruption of Cordo´n Caulle, flow field during 18 months of flow evolution, and that this Chile. process continued for several months after the supply of lava at Puyehue–Cordo´n Caulle (40.5 °S) is a large basaltic-to-rhyolitic the vent ceased. Our results demonstrate how efficient thermal volcanic complex within the Andean Southern volcanic zone, insulation by the lava crust allows prolonged advance of 125 km northeast of Puerto Montt, Chile (Fig. 1). The 20-km- compound rhyolitic flow fields, and reveal unexpected common- long, NW-trending Cordo´n Caulle fissure complex (Fig. 1) has ality with processes at basaltic lava flow fields. produced B9km3 of rhyodacitic to rhyolitic lavas and pyroclastic deposits since 16.5 ka24. Cordo´n Caulle has produced two major historic eruptions, in 1921–1922; and 1960, in which 0.25– Results 0.3 km3 of rhyolitic magma (dense rock equivalent; 69.5–70.3 wt Ground-based imaging of the evolving lava flow field. Imaging 25 % SiO2) was erupted from r5.5 km-long fissures . of the northern lava flow field was conducted on 3–4 and An explosive eruption (0.2–0.4 km3 dense rock equivalent 10 January 2012. In 2012, vent activity was characterized by pyroclastic deposits) commenced on 4 June 2011, with a 27-h- semicontinuous ash jetting punctuated by Vulcanian-like blasts, long initial Plinian phase (r15 km plume height)26,27. Ash plume creating a 2-km-high ash plume32. Visual observations and digital heights had decreased to 2–5 km by January 2012, when our photographs for 3D reconstruction were collected during observations were collected, and ash emissions ended in June B1-km-long traverses of a ridge directly overlooking the 2012. A 50-m-wide, 150-m-long lava flow was first observed on northern flow margin (Fig. 2a). See Methods for details of the 20 June 2011 (ref. 28). Although lava outflow at the vent arguably automated photo reconstruction techniques employed. We noted ended on 15 March 2012, when tremors ceased29, the flow field structural and textural features typical of documented obsidian continued to evolve into January 2013, when we witnessed flows in the lava, such as ogives on the flow surface5,6,16,19 and rockfall at an advancing breakout. Lava flow field evolution was zones of variably vesicular glassy lava14–16, including coarsely captured30 by the Earth Observing-1 spacecraft (Fig. 2). The vesicular pumice. initial lava discharge rate was estimated31 to be 20–60 m3 s À 1 and On 4 January 2012, the lava flow front was characterized by the discharged lava volume was B0.4 km3 by April 2012 (C. Silva two dominant facies (Fig. 3). Predominant rubbly lava was B30– Parejas, personal communication). Lava whole-rock composition 40 m thick and mantled by unstable talus. Angular, rotated lava 26 is rhyolitic , with 69.8–70.1 wt% SiO2 and 7.8 wt% Na2O þ K2O, blocks ranged from tens of centimetres to several metres across. ab 3b Northern 3a flow field 4 Inactive 3 2 11 January 1 2013 Rio Nilahue 40°31′ S Flow features Breakout lobe 13/01/13 Ogive 01/11/12 N Vent Strike-slip 26/01/12 shear zone N 09/10/11 Active 11 January 2013 Active 40°32′ S 11 January Not visible in 2013 09/10/11 and 26/01/12 images Southern flow field 72°10′ W 72°09′ W 72°08′ W Figure 2 | Overview of lava flow field evolution.
Recommended publications
  • Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada
    January 2004 Issue 80 Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada Michelle DeWolfe Harold L. Gibson Mineral Exploration Research Centre Laurentian University Ramsey Lake Road, Sudbury, Ontario, P3E 6B5, Email: [email protected] David Richardson Falconbridge Limited Kidd Mining Division, PO Box 2002, Hwy 655, Timmins, Ontario, P4N 7K1 John Ayer Ontario Geological Survey Willet Green Miller Centre, Ramsey Lake Road, Sudbury, Ontario, P3E 6B5 Fig. 1. General geology map showing the Abitibi greenstone belt and Introduction the location of the Kidd Creek mine approximately 24 km north of A succession of volcanic rocks collectively known as the Timmins (modified from Bleeker and Hester, 1999). North Rhyolite (NR) is located directly northeast of the giant Kidd Creek Cu-Zn-Ag volcanogenic massive sulfide (VMS) thermal alteration away from the deposit. Understanding the deposit, within the Abitibi greenstone belt of the Superior prov- large-scale volcanic environment, which hosts the NR and the ince (Figs. 1 and 2). The NR has been interpreted as a lateral Kidd Creek orebodies, will allow a better comparison between extension of the Kidd Creek mine stratigraphy (Hannington et the environment in which the Kidd Creek deposit formed and the al., 1999a). However, detailed work on the stratigraphy and environment of formation for other VMS deposits. This may structure of the NR, and its relationship to the mine stratigraphy, also help to create a better understanding of the environments
    [Show full text]
  • The Mineralogy and Chemistry of the Anorogenic Tertiary Silicic Volcanics
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. Bll, PAGES 10242-10256, NOVEMBER 10, 1981 The Mineralogyand Chemistryof the AnorogenicTertiary SilicicVolcanics of S.E. Queenslandand N.E. New South Wales, Australia A. EWART Departmentof Geology& Mineralogy,University of Queensland,St. Lucia,Brisbane, Queensland 4067 The Late Oligocene-EarlyMiocene volcanismof this regionis chemicallystrongly bimodal; the mafic lavas(volmetrically dominant) comprise basalts, hawaiites, and tholeiiticandesites, while the silicic eruptivesare mainly comendites,potassic trachytes, and potassic,high-silica rhyolites.The comendites and rhyoliteshave distinctivetrace element abundancepatterns, notably the extreme depletionsof Sr, Ba, Mg, Mn, P, Cr, V, and Eu, and the variable em'ichraentof suchelements as Rb, Zr, Pb, Nb, Zn, U, and Th. The trachytesexhibit thesecharacteristics to lesserdegrees. The comenditesare distinguished from the rhyolitesby their overall relative enrichmentof the more highly chargedcations (e.g., LREE, Nb, Y, and especiallyZr) and Zn. The phenocrystmineralogy of the trachytesand rhyolitescomprises various combinationsof the following phases:sodic plagioclase(albite-andesine), calcic anorthoclase, sanidine, quartz, ferroaugite-ferrohedenbergite,ferrohypersthene, fayalitic olivine, ilmenite, titano- magnetite,and rarely biotite (near annite) and Fe-hastingsiticamphibole. Accessories include apatite, zircon, chevkinite (ferrohedenbergite-bearingrhyolites only), and allanite (amphibole and botite rhyo- lites only). The comenditesgenerally contain
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens
    Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens Materials Included in this Box: • Teacher Background Information • 3-D models of Mt. St. Helens (before and after eruption) • Examples of stratovolcano rock products: Tuff (pyroclastic flow), pumice, rhyolite/dacite, ash • Sandbox crater formation exercise • Laminated photos/diagrams Teacher Background There are several shapes and types of volcanoes around the world. Some volcanoes occur on the edges of tectonic plates, such as those along the ‘ring of fire’. But there are also volcanoes that occur in the middle of tectonic plates like the Yellowstone volcano and Kilauea volcano in Hawaii. When asked to draw a volcano most people will draw a steeply sided, conical mountain that has a depression (crater) at the top. This image of a 'typical' volcano is called a stratovolcano (a.k.a. composite volcano). While this is the often visualized image of a volcano, there are actually many different shapes volcanoes can be. A volcano's shape is mostly determined by the type of magma/lava that is created underneath it. Stratovolcanoes get their shape because of the thick, sticky (viscous) magma that forms at subduction zones. This magma/lava is layered between ash, pumice, and rock fragments. These layers of ash and magma will build into high elevation, steeply sided, conical shaped mountains and form a 'typical' volcano shape. Stratovolcanoes are also known for their explosive and destructive eruptions. Eruptions can cause clouds of gas, ash, dust, and rock fragments to eject into the atmosphere. These clouds of ash can become so dense and heavy that they quickly fall down the side of the volcanoes as a pyroclastic flow.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Volcanic Eruptions
    Volcanic Eruptions •Distinguish between nonexplosive and explosive volcanic eruptions. • Identify the features of a volcano. • Explain how the composition of magma affects the type of volcanic eruption that will occur. • Describe four types of lava and four types of pyroclastic material. I. Volcanic Eruptions A. A volcano is a vent or fissure in the Earth’s surface through which molten rock and gases are expelled. B. Molten rock is called magma. C. Magma that flows onto the Earth’s surface is called lava. II. Nonexplosive Eruptions A. Nonexplosive eruptions are the most common type of volcanic eruptions. These eruptions produce relatively calm flows of lava in huge amounts. B. Vast areas of the Earth’s surface, including much of the sea floor and the Northwestern United States, are covered with lava form nonexplosive eruptions. Kilauea Volcano in Hawaii Island III. Explosive Eruptions A. While explosive eruptions are much rarer than non-explosive eruptions, the effects can be incredibly destructive. B. During an explosive eruption, clouds of hot debris, ash, and gas rapidly shoot out from a volcano. C. An explosive eruption can also blast millions of tons of lava and rock from a volcano, and can demolish and entire mountainside. Alaska's Mount Redoubt eruption in March 2009 IV. What Is Inside a Volcano? A. The interior of a volcano is made up of two main features. B. The magma chamber is the body of molten rock deep underground that feeds a volcano. C. The vent is an opening at the surface of the Earth through which volcanic material passes.
    [Show full text]
  • Analogues for Radioactive Waste For~1S •
    PNL-2776 UC-70 3 3679 00049 3611 ,. NATURALLY OCCURRING GLASSES: ANALOGUES FOR RADIOACTIVE WASTE FOR~1S • Rodney C. Ewing Richard F. Haaker Department of Geology University of New Mexico Albuquerque, ~ew Mexico 87131 April 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacifi c i'lorthwest Laboratory Richland, Washington 99352 TABLE OF CONTENTS List of Tables. i i List of Figures iii Acknowledgements. Introduction. 3 Natural Glasses 5 Volcanic Glasses 9 Physical Properties 10 Compos i ti on . 10 Age Distributions 10 Alteration. 27 Devitrification 29 Hydration 32 Tekti tes. 37 Physical Properties 38 Composition . 38 Age Distributions . 38 Alteration, Hydration 44 and Devitrification Lunar Glasses 44 Summary . 49 Applications to Radioactive Waste Disposal. 51 Recommenda ti ons 59 References 61 Glossary 65 i LIST OF TABLES 1. Petrographic Properties of Natural Glasses 6 2. Average Densities of Natural Glasses 11 3. Density of Crystalline Rock and Corresponding Glass 11 4. Glass and Glassy Rocks: Compressibility 12 5. Glass and Glassy Rocks: Elastic Constants 13 6. Glass: Effect of Temperature on Elastic Constants 13 7. Strength of Hollow Cylinders of Glass Under External 14 Hydrostatic Pressure 8. Shearing Strength Under High Confining Pressure 14 9. Conductivity of Glass 15 10. Viscosity of Miscellaneous Glasses 16 11. Typical Compositions for Volcanic Glasses 18 12. Selected Physical Properties of Tektites 39 13. Elastic Constants 40 14. Average Composition of Tektites 41 15. K-Ar and Fission-Track Ages of Tektite Strewn Fields 42 16. Microprobe Analyses of Various Apollo 11 Glasses 46 17.
    [Show full text]
  • Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, [email protected] Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ......................................................................................................................................................................
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Periodic Behavior in Lava Dome Eruptions
    Earth and Planetary Science Letters 199 (2002) 173^184 www.elsevier.com/locate/epsl Periodic behavior in lava dome eruptions A. Barmin a, O. Melnik a;b, R.S.J. Sparks b;Ã a Institute of Mechanics, Moscow State University, 1-Michurinskii prosp., Moscow 117192, Russia b Centre for Geophysical and Environmental Flows, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK Received 16 September 2001; accepted 20 February 2002 Abstract Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980^1987) and Santiaguito (1922^2000) was analyzed with the help of the model.
    [Show full text]
  • Rocks and Geology: General Information
    Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks.
    [Show full text]