The Mineralogy and Chemistry of the Anorogenic Tertiary Silicic Volcanics

Total Page:16

File Type:pdf, Size:1020Kb

The Mineralogy and Chemistry of the Anorogenic Tertiary Silicic Volcanics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. Bll, PAGES 10242-10256, NOVEMBER 10, 1981 The Mineralogyand Chemistryof the AnorogenicTertiary SilicicVolcanics of S.E. Queenslandand N.E. New South Wales, Australia A. EWART Departmentof Geology& Mineralogy,University of Queensland,St. Lucia,Brisbane, Queensland 4067 The Late Oligocene-EarlyMiocene volcanismof this regionis chemicallystrongly bimodal; the mafic lavas(volmetrically dominant) comprise basalts, hawaiites, and tholeiiticandesites, while the silicic eruptivesare mainly comendites,potassic trachytes, and potassic,high-silica rhyolites.The comendites and rhyoliteshave distinctivetrace element abundancepatterns, notably the extreme depletionsof Sr, Ba, Mg, Mn, P, Cr, V, and Eu, and the variable em'ichraentof suchelements as Rb, Zr, Pb, Nb, Zn, U, and Th. The trachytesexhibit thesecharacteristics to lesserdegrees. The comenditesare distinguished from the rhyolitesby their overall relative enrichmentof the more highly chargedcations (e.g., LREE, Nb, Y, and especiallyZr) and Zn. The phenocrystmineralogy of the trachytesand rhyolitescomprises various combinationsof the following phases:sodic plagioclase(albite-andesine), calcic anorthoclase, sanidine, quartz, ferroaugite-ferrohedenbergite,ferrohypersthene, fayalitic olivine, ilmenite, titano- magnetite,and rarely biotite (near annite) and Fe-hastingsiticamphibole. Accessories include apatite, zircon, chevkinite (ferrohedenbergite-bearingrhyolites only), and allanite (amphibole and botite rhyo- lites only). The comenditesgenerally contain Ca-poor anorthoclase-sanidine,quartz, fluorarfvedsonite, aegirine and aegirine-augite(Zr-bearing), aenigmatite,and + ilmenite. CoexistingFe-Ti oxidesare ab- sent in the comenditesand relatively uncommonin the rhyolitesand trachytes.Where present,they in- dicate equilibration temperaturesof 885ø-980øC and fo2 betweenQFM and WM buffers.The magmas arethus interpreted to havebeen strongly water undersaturated during phenocryst equilibration, which is also consistentwith the generalpaucity of pyroclastics,the rarity of hydrousmineral phases,and the ex- tremeFe-enriched ferromagnesian phenocryst compositions. The chemicaland mineralogicaldata are in- terpretedto indicatethe operationof extremefractionation processes controlling the developmentof the silicicmagmas, and the comendites,trachytes, and certaintrachyte-rhyolite series are consideredto have evolvedfrom a mafic parentage.The availableoxygen, St, and Pb isotopicdata, however,point to some modificationof the magnasthrough crustalequilibration processes. The remaining high-silicarhyolites are consideredto mostlikely representcrustal partial meltsbut are again modifiedby extensivefraction- ation. INTRODUCTION quence followed by several distinct rhyolite units (two of The region in questionforms part of the broad belt of Cai- which are consideredin this paper, namely the Binna Burra nozoic volcanism,some 3000 km long, that extendsalong the and Springbrookrhyolites) that are overlain by a younger easternand southeasterncoastal region of Australia. Wellman mafic sequence;a separatecomenditic dyke phasealso occurs. and McDougall [1974] have shownthat volcanic activity com- Volcanism is dated from 20.5-22.3 Ma [Ewart et al., 1977]. menced about 70 Ma ago and has continuedthrough the Cai- Focal Peak ShieM Volcano. This again constitutes the eroded remnants of a shield volcano situated within a com- nozoic at a nearly constantrate. More than 50 volcanic prov- inces are recognized throughout the whole coastal region. plex ring structuresome 14 km in diameter,the periphery of Although basalts, hawaiites and tholeiitic andesitesare the which is marked by rhyolite intrusionsand extrusions(the Mt. dominant lavas, some of the provincescontain minor associ- Gillies Rhyolites).The massiveMt. Barney granophyreplug ated silicic volcanism, namely trachytes, rhyolites, and/or also outcropswithin this ring structure.The generalizedvol- comendites.In certain areas,especially southern Queensland, canic successioncomprises an older mafic sequencefollowed isolatedoutcrops of trachytesand comenditesare found with by the Mt. Gillies Rhyolites.Reported ages range between 23 apparently no associatedmafic extrusives. and 25.6 Ma [Ross, 1977]. Considerationof the overall distributionof chemistryof the Glass Houses and Maleny Centers. The Glass House erupted magmas in S.E. Queensland reveals that the vol- Mountains constitutea spectaculargroup of eroded domes canism is very strongly bimodal [Ewart et al., 1980]. Where and plugscomposed mainly of comenditesbut with subordi- both mafic and silicic eruptivesoccur within a .given center, nate trachytes.A few kilometersto the north of theseplugs is estimatessuggest that the relative volumes are at least 7:1 in the isolatedmafic Maleny eruptivecenter, which may be re- favor of the mafic eruptives. lated to the GlassHouse extrusions. This is supportedby K- The following is a brief outline of the volcanism found Ar datesof 25.2 and 25.4 Ma for a youngMaleny flow and a within someof the more prominent volcanic centersto which comendite, respectively.Extending NNE along the S.E. particularreferences are madein thispaper and whichin- Queenslandcoast are severalquite isolated silicic extrusive dicate the diversityfound among the variousprovinces. A lo- centers,namely, the Mt. Coolurn comenditeand the Fraser Is- cality map, showing the extent of the S.E. Queensland-N.E. land trachytes. New South Wales volcanic regions,is provided in Figure 1. Mt. AlfordRing Complex. This representsan erodedplug Tweed $hieM Volcano. This constitutes the eroded rem- of microdioriteand subordinategranophyre intruded by a nants of a former shield volcano some 100 km in diameter. The coreof tholeiiticandesite; the complexis cut by a semicircular generalized½olcanic succession comprises a lower mafic se- zoneof rhyolitic and trachytic ring dykes (25.2 Ma) and a sec- ondnonarcuate set of cross-cuttingrhyolite, comendite, and Copyright¸ 1981by the AmericanGeophysical Union. basalt dykes [Stevens,1962]. Paper number 1B0531. 10242 0148-0227/81/001B-0531 $01.00 EWART:QUEENSLAND TERTIARY ANOROGENIC SILIClC VOLCANICS 10243 0 100 200 km I I I •.•. '• Minerva Springsure••_• • WaddyPoint Middle Rocks Indian Head FRASER ISLAND Coolum Bunya Maleny Mountains Mountains RISBANE Blaine Mt. Fraser Pea k •ar Mt. Maroon Edwards Mt. Barney Alford Mt. Ernest Burra Springbrook Din sey Rock Mr. Gillies Warning Tweed Shield Volcano Nandewar Mountains Mt. Kaputar Warrumbungle Mauntains••l•• • A • t.Oliver Fig. 1. Map of S.E. Queenslandand N.E. New SouthWales showing the distributionof the Tertiaryvolcanic centers. Minerva Hills. The volcanic sequencefrom this rather subordinaterhyolite. These are the Minerva Hills volcanics complexcenter has been broadly divided into a basalseries of [ Veeverset al., 1964]. marielavas (some 70 m thick) that are overlainby a younger seriesof intcrcalatcdmarie lavas and trachyticpyroelastics. K- CHEMISTRY Ar datesof approximately33-34 Ma and 24-28.5 Ma are ob- It is emphasizedthat within the volcanicprovinces being tained from the two series,respectively. The pyroelasticsare consideredthere is a strongbimodality of magmacomposi- closelyassociated with a concentrationof numerousplugs, tionswith respectto their SiO2 distributions[Ewart et al., domes,thick flows,sills, and dykesof mainly trachytcwith 1980].This paperis concernedwith the siliciccompositions, 10244 EWART: QUEENSLANDTERTIARY ANOROGENIC$1LICIC VOLCANICS i.e., thosethat are greaterthan 59% SiO2. In addition, some Trace Elements mineralogicalcomparisons are made with associated,al- thoughrare, microsyenitesthat occurin certainof the vol- Three distinctpatterns of traceelement behavior axe recog- canic centers.Averaged major and trace element data and nizable within the silicic eruptivesof this province: mineralogicaldata, are summarizedin Table 1. The trachyte 1. Those behaving as incompatible elements,which thus data are basedon sequentialaverages with increasingSiOn_ show a progressiveand regular enrichment through the tra- contentsof the respectivesamples. chyte to rhyolite compositionalspectrum: Rb, Th, and to a For purposesof thispaper the distinctionbetween trachytes lesserextent Pb are the most notable examplesin this prov- and rhyolitesis taken as 73% SiOn_.The peralkalinetypes are ince. For example,there is an almostlogarithmic relationship readily distinguishedby their distinctivesodic mineralogy. between Rb versusK/Rb [Ewart et al., 1976], which suggests Very rare lavasoccur that are describedas dacites;these are that Rb is effectivelyexcluded from fractionatingphenocryst re•.dilydistinguished from trachytesby the absenceof both phases(except biotite, which is, however,a very rare phasein phenocrystalalkali feldsparand quartz.In this paper,four theextrusives of theregion). This is confirmedby analysesof distincttypes of rhyolitesare recognizedon the basisof both phenocrystphases from the silicic eruptives.Thus, measured occurrenceand mineralogica!criteria (Table 1). Rb partition coefficientsfor alkali feldsparsrange between 0.31 and 0.65 (averaging 0.46) and are <0.1 for all other Major Elements phases(except biotite). Th partition coefficientsare also low, A. Metaluminous and œeraluminousrhyolites and tra- except for certain accessories(zircon, allanRe, and chevki- chytes. The majorityof the trachytesand rhyolitesanalyzed nite), while Pb partition coefficientsare uniformly higher for are chemicallyvery closeto the metaluminous/peraluminousthe feldspars(0.5 to 1.7). boundary,and
Recommended publications
  • Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada
    January 2004 Issue 80 Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada Michelle DeWolfe Harold L. Gibson Mineral Exploration Research Centre Laurentian University Ramsey Lake Road, Sudbury, Ontario, P3E 6B5, Email: [email protected] David Richardson Falconbridge Limited Kidd Mining Division, PO Box 2002, Hwy 655, Timmins, Ontario, P4N 7K1 John Ayer Ontario Geological Survey Willet Green Miller Centre, Ramsey Lake Road, Sudbury, Ontario, P3E 6B5 Fig. 1. General geology map showing the Abitibi greenstone belt and Introduction the location of the Kidd Creek mine approximately 24 km north of A succession of volcanic rocks collectively known as the Timmins (modified from Bleeker and Hester, 1999). North Rhyolite (NR) is located directly northeast of the giant Kidd Creek Cu-Zn-Ag volcanogenic massive sulfide (VMS) thermal alteration away from the deposit. Understanding the deposit, within the Abitibi greenstone belt of the Superior prov- large-scale volcanic environment, which hosts the NR and the ince (Figs. 1 and 2). The NR has been interpreted as a lateral Kidd Creek orebodies, will allow a better comparison between extension of the Kidd Creek mine stratigraphy (Hannington et the environment in which the Kidd Creek deposit formed and the al., 1999a). However, detailed work on the stratigraphy and environment of formation for other VMS deposits. This may structure of the NR, and its relationship to the mine stratigraphy, also help to create a better understanding of the environments
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • 4/5/2010 1 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region
    4/5/2010 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region Geodetic Markers and Accuracy of the GPS units we use Chronology: 1871 Department formed by Joseph LeConte 1887 Charles Palache graduates from Berkeley High and enters Cal as a Freshman, continues on in graduate school 1892 Andrew Lawson teaches the first “systematic field geology class in the US” using Berkeley Hills 1893 Charles Palache publishes the results of the first doctoral thesis in geology at UC: “The Soda Rhyolite North of Berkeley” UC Bulletin of the Dept. of Geology, v. 1, p. 61-72 1902 Lawson and Palache publish “The Berkeley Hills- A Detail of Coast Range Geology” Bulletin of the Dept. of Geology,v. 2, p. 349-450 1 4/5/2010 The start of our Berkeley Field Tradition Lawson ’s first fie ld c lass 1892 Strawberry Creek Stadium Missing the Rhyolite Tuffs Hayward Fault Claremont Canyon Lawson and Palache’s map of the Berkeley Hills Global vs Local control on lithology Recall the explanation of the Miocene stratigraphic sequence Global climatic change Sudden global cooling FtiflFormation of polar ice caps Marine Regression causing the litho-sequence 2 4/5/2010 Rhyolites and Basalts Dacites SiO2 (Silica) 3 4/5/2010 Brimhall 2004 4 4/5/2010 Constraints on the Origin of Rhyolite Tuffs in the Berkeley/Oakland Hills Tecuya Formation in S CA Basalts Mixing lines as the result of ridge/trench collision Rhyolites Franciscan Initial Cole and Basu (1992) 5 4/5/2010 Source region for rhyolite magmas involves continental crust: Franciscan or its derivatives eg Orinda Rhyolite
    [Show full text]
  • Analogues for Radioactive Waste For~1S •
    PNL-2776 UC-70 3 3679 00049 3611 ,. NATURALLY OCCURRING GLASSES: ANALOGUES FOR RADIOACTIVE WASTE FOR~1S • Rodney C. Ewing Richard F. Haaker Department of Geology University of New Mexico Albuquerque, ~ew Mexico 87131 April 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacifi c i'lorthwest Laboratory Richland, Washington 99352 TABLE OF CONTENTS List of Tables. i i List of Figures iii Acknowledgements. Introduction. 3 Natural Glasses 5 Volcanic Glasses 9 Physical Properties 10 Compos i ti on . 10 Age Distributions 10 Alteration. 27 Devitrification 29 Hydration 32 Tekti tes. 37 Physical Properties 38 Composition . 38 Age Distributions . 38 Alteration, Hydration 44 and Devitrification Lunar Glasses 44 Summary . 49 Applications to Radioactive Waste Disposal. 51 Recommenda ti ons 59 References 61 Glossary 65 i LIST OF TABLES 1. Petrographic Properties of Natural Glasses 6 2. Average Densities of Natural Glasses 11 3. Density of Crystalline Rock and Corresponding Glass 11 4. Glass and Glassy Rocks: Compressibility 12 5. Glass and Glassy Rocks: Elastic Constants 13 6. Glass: Effect of Temperature on Elastic Constants 13 7. Strength of Hollow Cylinders of Glass Under External 14 Hydrostatic Pressure 8. Shearing Strength Under High Confining Pressure 14 9. Conductivity of Glass 15 10. Viscosity of Miscellaneous Glasses 16 11. Typical Compositions for Volcanic Glasses 18 12. Selected Physical Properties of Tektites 39 13. Elastic Constants 40 14. Average Composition of Tektites 41 15. K-Ar and Fission-Track Ages of Tektite Strewn Fields 42 16. Microprobe Analyses of Various Apollo 11 Glasses 46 17.
    [Show full text]
  • Chemical and Isotopic Studies of Monogenetic Volcanic Fields: Implications for Petrogenesis and Mantle Source Heterogeneity
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Christine Rasoazanamparany Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ Elisabeth Widom, Director ______________________________________ William K. Hart, Reader ______________________________________ Mike R. Brudzinski, Reader ______________________________________ Marie-Noelle Guilbaud, Reader ______________________________________ Hong Wang, Graduate School Representative ABSTRACT CHEMICAL AND ISOTOPIC STUDIES OF MONOGENETIC VOLCANIC FIELDS: IMPLICATIONS FOR PETROGENESIS AND MANTLE SOURCE HETEROGENEITY by Christine Rasoazanamparany The primary goal of this dissertation was to investigate the petrogenetic processes operating in young, monogenetic volcanic systems in diverse tectonic settings, through detailed field studies, elemental analysis, and Sr-Nd-Pb-Hf-Os-O isotopic compositions. The targeted study areas include the Lunar Crater Volcanic Field, Nevada, an area of relatively recent volcanism within the Basin and Range province; and the Michoacán and Sierra Chichinautzin Volcanic Fields in the Trans-Mexican Volcanic Belt, which are linked to modern subduction. In these studies, key questions include (1) the role of crustal assimilation vs. mantle source enrichment in producing chemical and isotopic heterogeneity in the eruptive products, (2) the origin of the mantle heterogeneity, and (3) the cause of spatial-temporal variability in the sources of magmatism. In all three studies it was shown that there is significant compositional variability within individual volcanoes and/or across the volcanic field that cannot be attributed to assimilation of crust during magmatic differentiation, but instead is attributed to mantle source heterogeneity. In the first study, which focused on the Lunar Crater Volcanic Field, it was further shown that the mantle heterogeneity is formed by ancient crustal recycling plus contribution from hydrous fluid related to subsequent subduction.
    [Show full text]
  • Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2016 Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses Jordan Lubbers Michigan Technological University, [email protected] Copyright 2016 Jordan Lubbers Recommended Citation Lubbers, Jordan, "Rhyolite and Trachyte Formation at Lake City Caldera: Insight from Quantitative Textural and Geochemical Analyses", Open Access Master's Thesis, Michigan Technological University, 2016. https://doi.org/10.37099/mtu.dc.etdr/99 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Geology Commons RHYOLITE AND TRACHYTE FORMATION AT LAKE CITY CALDERA: INSIGHT FROM QUANTITATIVE TEXTURAL AND GEOCHEMICAL ANALYSES By Jordan E. Lubbers A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2016 © 2016 Jordan E. Lubbers This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Geological and Mining Engineering and Sciences ThesisDepartment Advisor: ofChad Deering Committee Member: Olivier Bachmann Committee Member: William Rose Department Chair: John Gierke Table of Contents Acknowledgements ................................................................................................................................................. 6 Abstract ......................................................................................................................................................................
    [Show full text]
  • GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis­ experience-the one that brings supreme exultation­ tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti­ William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun­ One of the dominating peaks of the Pacific North­ tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.
    [Show full text]
  • Volcanoes a to Z
    Mount St Helens National Volcanic Monument – Teacher’s Corner -Teacher Info. Gifford Pinchot National Forest USDA Forest Service Volcanoes A to Z – Bus Activity Time Requirement: all day Exhibit / Trail Used: all exhibits/trails visited Locations: all locations visited, review on the bus en route back to your school. This activity is to be completed throughout the day and between other activities. Students will make note of key words while reading exhibits, interpretive signs, or labels, or by hearing them from each other, their teacher, movies or rangers. Consider distributing on the bus and collecting on the bus. Goal: 1) The student will become familiar with terminology related to the study of volcanoes, geology, or the ecosystems that surround them. Objectives: 1) The student will listen attentively. 2) The student will recall and list vocabulary words for things and concepts encountered on a field trip to Mount St. Helens National Volcanic Monument. 3) The student will distinguish nouns from other parts of speech. WASHINGTON EALRS and OREGON BENCHMARK STANDARDS Washington Social Studies 2.0- The student understands the complex physical and human characteristics of places and regions. Geography 2.1- Describe the natural characteristics of places and regions. Science 4.2 Use writing and speaking skills to organize and express science ideas. a. Use science vocabulary appropriately in written explanations, conversations and verbal presentations. Oregon Science-CCG The Dynamic Earth- Understand the properties and limited availability of the materials which make up the Earth. BM1- Recognize physical differences in Earth materials. Language-CCG Select functional, precise, and descriptive words appropriate to audience and purpose.
    [Show full text]
  • Putting the Lava in the Lava Beds
    Lava Beds National Monument National Park Service Putting the Lava in the Lava Beds Reporting To the average layman, perhaps, it may seem that when geologists write reports, they write them for other geologists to read and study. They speak to each other in a language that only they can fully comprehend. Most of us have difficulty understanding all their terms and how they are used and simple processes can become too complex to comprehend. Understanding We have an advantage here when we study the geology of Lava Beds National Monument. We do not have to identify several different types of sandstone, different types of limestones, various qualities of shales, or different granites, quartzes, or mineral ores. We have one basic rock to study and that is lava. While there are four types of lava (basalt, andesite, dacite, and rhyolite), it takes a trained geologist to tell one from the other; to most of us, they are all just lava. They differ only in the amounts of silica they contain. As you may know, clear glass is nearly all silica. Rhyolite may contain as much as 77% silica and thus is responsible for the forming of obsidian, or "volcanic glass." Basalt, on the other hand, is less than one-half silica and is therefore less spectacular and looks more like what we might expect cooled, hardened lava to be. Over 90% of the lava we see in Lava Beds National Monument is basalt. Andesite, with only slightly more silica, accounts for nearly all the rest. Volcanism Many visitors ask if these lava flows were formed by the eruptions of Mount Shasta.
    [Show full text]
  • Rocks and Geology: General Information
    Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]