Origin of Andesite and Dacite: Evidence of Mixing at Glass Mountain in California and at Other Circum-Pacific Volcanoes

Total Page:16

File Type:pdf, Size:1020Kb

Origin of Andesite and Dacite: Evidence of Mixing at Glass Mountain in California and at Other Circum-Pacific Volcanoes Origin of andesite and dacite: Evidence of mixing at Glass Mountain in California and at other circum-Pacific volcanoes JOHN C. EICHELBERGER* Department of Geology, Stanford University, Stanford, California 94305 ABSTRACT subtracting appropriate proportions of appropriate phases from a hypothetical parent liquid. Likewise, by choosing an appropriate The intimate association of basalt, andesite, dacite, and rhyolite hypothetical source rock and adjusting conditions, nearly any ob- within a volcanic center suggests that these rocks are genetically served composition could be produced by partial melting. The test related. Individual lava flows that show a gradation in composition of such models is whether they agree with the phase assemblages in may preserve maximum evidence of the magmatic processes pro- magmas. It is often impossible to make this evaluation for intrusive ducing this association. One such flow of rhyolite to dacite compo- rocks because it is difficult to look back through the crystallization sition, Glass Mountain in northern California, was formed by con- process to the magmatic stage. However, fresh volcanic rocks rep- tamination of rhyolite magma as it intruded the basaltic flows of resent quenched magma samples in which the liquid remains as a the Medicine Lake Highland shield volcano. Although dacite flows metastable glass or finely crystalline groundmass, and the crystal and domes commonly show less variation in composition than the phases remain as phenocrysts. Although it cannot be assumed that Glass Mountain flow, many show similar evidence of contamina- volcanic rocks are representative of all igneous rocks, they do allow tion by basalt by the presence of abundant basaltic inclusions and interpretation of magmatic processes with a minimum of assump- phenocrysts and phenocryst clots from those inclusions. Similarly, tions. many andesite flows contain rhyolitic inclusions, rhyolitic bands, The association of rocks of different composition at a volcano and phenocrysts appropriate to rhyolite. These observations indi- suggests a genetic relationship. If magmas evolve from one another, cate that andesite and dacite are hybrid rocks that are formed when it is reasonable to expect that some volcanic products will show rising primary basalt and rhyolite magmas either become contami- gradations in composition, thereby preserving evidence of funda- nated with the glassy debris of the volcanic pile or mix with each mental petrogenetic processes. Zonation has been studied in ash other directly. Linear variation in bulk composition, phenocryst sheets, but these are formed when magma is disaggregated at the assemblages of intermediate rock, and frequency distribution of vent and reassembled elsewhere, producing serious obstacles to lava compositions in the southern Cascade Range, Chilean Andes, interpretation. The ideal object of study is a compositionally zoned Taupo volcanic zone, and Tongan Islands support this hypothesis. lava flow in which the original zonation of the magma body can be It appears that partial melting usually produces magma of rhyolitic inferred from the mode of flow emplacement. Further requirements and basaltic compositions and that any subsequent fractional crys- are lack of chemical alteration and complete exposure of the flow. tallization is of limited importance. Key words: igneous petrology, These requirements are fulfilled by the Glass Mountain lava flow, contamination of magma, mixing of magma, basalt, andesite, da- Medicine Lake Highland, California. cite, rhyolite. METHOD INTRODUCTION A volcanic unit represents a rearrangement of material that was The basalt-andesite-dacite-rhyolite series of volcanic and chemi- previously beneath the Earth's surface. A key problem is to dis- cally equivalent plutonic rocks is a particularly perplexing problem cover the mode of flow emplacement in order to infer the orienta- in igneous petrology. Lava ranging in composition from basalt to tion of compositional gradients within the magma prior to erup- rhyolite can be erupted from the same volcano or found within the tion. This was accomplished at Glass Mountain by mapping flow same plutonic complex, and rocks of differing composition com- fronts, lava streams, levees, and shear zones and by observing pres- monly occur in apparently random sequences. Models that have sure ridge patterns on aerial photographs. All mappable features of been proposed to account for the series include crystal-liquid frac- the flow were recorded. These were phenocryst content, inclusion tionation of parental basalt, andesite, or both; production of the content, glossiness of the glass, and amount of surface pumice. entire suite by partial melting; and magma contamination or mix- Lava streams were then sampled at regular intervals from distal end ing. Experimental studies have shown how these processes could to vent to obtain a suite of samples representing the eruptive se- operate. Much attention has been focused on the mineral content quence. of coarse-grained plutonic rocks and on the bulk composition of Phases within selected samples were analyzed on an ARL-EMX volcanic and plutonic rocks, but these data do not necessarily yield electron microprobe, using an accelerating potential of 15 kv and information on conditions and processes prior to final crystalliza- sample current of 0.03 ¡xa. For glasses, a 30-/u.m beam diameter tion or recystallization. The common igneous rocks contain six to was necessary to avoid loss of sodium. Crystalline phases were eight principal components and could have contained at least this analyzed with a 15-/xm beam. For concentration profiles, a 5-/xm number of different crystalline phases during magmatic evolution. beam was used. Complete analysis of the glasses was done with a Thus it is possible to account for nearly any bulk composition by microlite-free obsidian standard of nearly identical composition. An 55 plagioclase was used as the standard for plagioclase pheno- * Present address: Geosciences Group, Los Alamos Scientific Laboratory, University crysts, and clinopyroxene was used for the clinopyroxene, or- of California, Los Alamos, New Mexico 87544 thopyroxene, and olivine phenocrysts. Correction was made for Geological Society of America Bulletin, v. 86, p. 1381-1391, 7 figs., October 1975, Doc. no. 51007. 1381 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/86/10/1381/3418239/i0016-7606-86-10-1381.pdf by guest on 29 September 2021 1382 J. C. EICHELBERGER background and drift. Primary standards were checked with sec- lobes. Craters are limited to the part of the flow within 1 km of the ondary standards and found to deviate relative to known values by vent, and therefore they may represent a change in physical proper- 2 percent or less. ties of the last magma extruded or more explosive gas release due to less stirring by flow movement than earlier erupted material. A SETTING, HISTORY, AND DESCRIPTION less common surface feature is upwellings 2 to 5 m high and as OF GLASS MOUNTAIN much as 10 m long, which resemble an open book. They consist of flakes of lava folded back away from and on either side of a linear Glass Mountain is located in the Medicine Lake Highland (Fig. vent. 1), one of the most active centers of volcanism in the Cascade In contrast to the flow surface, the surface of the domes consists Range (Powers, 1932; Anderson, 1941). The dominant and earliest entirely of polished spines with very little debris, and the lava is structure of Quaternary volcanism was a broad shield volcano of uniformly gray and finely vesicular. From each dome there is a basalt and basaltic andesite lava flows and tuff 50 km in diameter gradation from domelike features into the flowlike features of the and 1 km high; but even early in its evolution, rhyolite and dacite last stream that issued from that vent. The transition occurs over a flows were present. Prior to the end of glaciation, the summit of the distance of about 0.5 km. The difference, in surface morphology is shield volcano collapsed by about 150 m to form an ellipsoidal clearly a result of lack of horizontal movement in the domes, and caldera 8 km by 6 km. Then viscous andesite (olivine free, unlike the variety of vesicularity of the flow-surface lava probably results most shield lava) erupted along the caldera rim to form a rampart from the variety of conditions for vesiculation provided by churn- of small steep cones. After glaciation occurred, numerous rhyolite ing of the flow. flows, dacite flows, and the Glass Mountain rhyolite and dacite flow erupted at high elevations inside and outside the caldera. Development of the Flow Fresh cinder cones and associated floods of basalt and basaltic andesite, one of which is as young as Glass Mountain, mantle the A reconstruction of the probable sequence of flow emplacement flanks of the Medicine Lake Highland. Nowhere is the shield consistent with the lava stream pattern and the overlapping of deeply eroded. lobes is presented in Figure 2. Contrary to suggestions of Anderson The most stark and imposing feature of the Medicine Lake High- (1933) and Chesterman (1955), the entire mass of fresh lava at land is Glass Mountain, located on the east rim of the caldera. The Glass Mountain was extruded during a single uninterrupted pulse mountain is a single flow with a volume of 1 km3, composed of of activity. Although the uppermost northeast lobe from the north rhyolite and dacite, nearly free from vegetation or alteration, and vent overlies the main lobe from the middle vent, lava from both free from the effects of weathering and erosion. A charred but vents coalesces to the west. From some vantage points, the upper standing cedar engulfed by blocks at the flow's edge yielded C14 lobe appears to be a separate flow surrounded by a margin of talus, ages of 100 to 400 yr (Friedman, 1968). Such an age is consistent but the west slope is a series of pressure ridges connecting the north with Modoc Indian legends and early reports of seismic and vent and the upper lobe with the rest of the flow.
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada
    January 2004 Issue 80 Volcanic Reconstruction of the Archean North Rhyolite, Kidd Creek Mine, Timmins, Ontario, Canada Michelle DeWolfe Harold L. Gibson Mineral Exploration Research Centre Laurentian University Ramsey Lake Road, Sudbury, Ontario, P3E 6B5, Email: [email protected] David Richardson Falconbridge Limited Kidd Mining Division, PO Box 2002, Hwy 655, Timmins, Ontario, P4N 7K1 John Ayer Ontario Geological Survey Willet Green Miller Centre, Ramsey Lake Road, Sudbury, Ontario, P3E 6B5 Fig. 1. General geology map showing the Abitibi greenstone belt and Introduction the location of the Kidd Creek mine approximately 24 km north of A succession of volcanic rocks collectively known as the Timmins (modified from Bleeker and Hester, 1999). North Rhyolite (NR) is located directly northeast of the giant Kidd Creek Cu-Zn-Ag volcanogenic massive sulfide (VMS) thermal alteration away from the deposit. Understanding the deposit, within the Abitibi greenstone belt of the Superior prov- large-scale volcanic environment, which hosts the NR and the ince (Figs. 1 and 2). The NR has been interpreted as a lateral Kidd Creek orebodies, will allow a better comparison between extension of the Kidd Creek mine stratigraphy (Hannington et the environment in which the Kidd Creek deposit formed and the al., 1999a). However, detailed work on the stratigraphy and environment of formation for other VMS deposits. This may structure of the NR, and its relationship to the mine stratigraphy, also help to create a better understanding of the environments
    [Show full text]
  • The Mineralogy and Chemistry of the Anorogenic Tertiary Silicic Volcanics
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. Bll, PAGES 10242-10256, NOVEMBER 10, 1981 The Mineralogyand Chemistryof the AnorogenicTertiary SilicicVolcanics of S.E. Queenslandand N.E. New South Wales, Australia A. EWART Departmentof Geology& Mineralogy,University of Queensland,St. Lucia,Brisbane, Queensland 4067 The Late Oligocene-EarlyMiocene volcanismof this regionis chemicallystrongly bimodal; the mafic lavas(volmetrically dominant) comprise basalts, hawaiites, and tholeiiticandesites, while the silicic eruptivesare mainly comendites,potassic trachytes, and potassic,high-silica rhyolites.The comendites and rhyoliteshave distinctivetrace element abundancepatterns, notably the extreme depletionsof Sr, Ba, Mg, Mn, P, Cr, V, and Eu, and the variable em'ichraentof suchelements as Rb, Zr, Pb, Nb, Zn, U, and Th. The trachytesexhibit thesecharacteristics to lesserdegrees. The comenditesare distinguished from the rhyolitesby their overall relative enrichmentof the more highly chargedcations (e.g., LREE, Nb, Y, and especiallyZr) and Zn. The phenocrystmineralogy of the trachytesand rhyolitescomprises various combinationsof the following phases:sodic plagioclase(albite-andesine), calcic anorthoclase, sanidine, quartz, ferroaugite-ferrohedenbergite,ferrohypersthene, fayalitic olivine, ilmenite, titano- magnetite,and rarely biotite (near annite) and Fe-hastingsiticamphibole. Accessories include apatite, zircon, chevkinite (ferrohedenbergite-bearingrhyolites only), and allanite (amphibole and botite rhyo- lites only). The comenditesgenerally contain
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Chapter 2 Alaska’S Igneous Rocks
    Chapter 2 Alaska’s Igneous Rocks Resources • Alaska Department of Natural Resources, 2010, Division of Geological and Geophysical Surveys, Alaska Geologic Materials Center website, accessed May 27, 2010, at http://www.dggs.dnr.state.ak.us/?link=gmc_overview&menu_link=gmc. • Alaska Resource Education: Alaska Resource Education website, accessed February 22, 2011, at http://www.akresource.org/. • Barton, K.E., Howell, D.G., and Vigil, J.F., 2003, The North America tapestry of time and terrain: U.S. Geological Survey Geologic Investigations Series I-2781, 1 sheet. (Also available at http://pubs.usgs.gov/imap/i2781/.) • Danaher, Hugh, 2006, Mineral identification project website, accessed May 27, 2010, at http://www.fremontica.com/minerals/. • Digital Library for Earth System Education, [n.d.], Find a resource—Bowens reaction series: Digital Library for Earth System Education website, accessed June 10, 2010, at http://www.dlese.org/library/query.do?q=Bowens%20reaction%20series&s=0. • Edwards, L.E., and Pojeta, J., Jr., 1997, Fossils, rocks, and time: U.S. Geological Survey website. (Available at http://pubs.usgs.gov/gip/fossils/contents.html.) • Garden Buildings Direct, 2010, Rocks and minerals: Garden Buildings Direct website, accessed June 4, 2010, at http://www.gardenbuildingsdirect.co.uk/Article/rocks-and- minerals. • Illinois State Museum, 2003, Geology online–GeoGallery: Illinois State Museum Society database, accessed May 27, 2010 at http://geologyonline.museum.state.il.us/geogallery/. • Knecht, Elizebeth, designer, Pearson, R.W., and Hermans, Majorie, eds., 1998, Alaska in maps—A thematic atlas: Alaska Geographic Society, 100 p. Lillie, R.J., 2005, Parks and plates—The geology of our National parks, monuments, and seashores: New York, W.W.
    [Show full text]
  • Module 7 Igneous Rocks IGNEOUS ROCKS
    Module 7 Igneous Rocks IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material IGNEOUS ROCKS ▪ Igneous Rocks form by crystallization of molten rock material ▪ Molten rock material below Earth’s surface is called magma ▪ Molten rock material erupted above Earth’s surface is called lava ▪ The name changes because the composition of the molten material changes as it is erupted due to escape of volatile gases Rocks Cycle Consolidation Crystallization Rock Forming Minerals 1200ºC Olivine High Ca-rich Pyroxene Ca-Na-rich Amphibole Intermediate Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar of liquid increases liquid of 2 Temperature decreases Temperature SiO Low K-feldspar Muscovite Quartz 700ºC BOWEN’S REACTION SERIES Rock Forming Minerals Olivine Ca-rich Pyroxene Ca-Na-rich Amphibole Na-Ca-rich Continuous branch Continuous Discontinuous branch Discontinuous Biotite Na-rich Plagioclase feldspar K-feldspar Muscovite Quartz BOWEN’S REACTION SERIES Rock Forming Minerals High Temperature Mineral Suite Olivine • Isolated Tetrahedra Structure • Iron, magnesium, silicon, oxygen • Bowen’s Discontinuous Series Augite • Single Chain Structure (Pyroxene) • Iron, magnesium, calcium, silicon, aluminium, oxygen • Bowen’s Discontinuos Series Calcium Feldspar • Framework Silicate Structure (Plagioclase) • Calcium, silicon, aluminium, oxygen • Bowen’s Continuous Series Rock Forming Minerals Intermediate Temperature Mineral Suite Hornblende • Double Chain Structure (Amphibole)
    [Show full text]
  • Depth and Degree of Melting of Komatiites
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. B4, PAGES 4521-4540, APRIL 10, 1992 Depth and Degree of Melting of Komatiites CLAUDE HERZBERG Departmentof GeologicalSciences, Rutgers University,New Brunswick,New Jersey Mineral PhysicsInstitute, State Universityof New York, StonyBrook, New York High pressuremelting experimentsßhove ." v .......... new constraintsto be placedon the depthand degreeof partial melting of komatiites. Komatiitesfrom GorgonaIsland were formed by relatively low degreesof pseudoinvariantmelting(< 30 %)involving L + O1 + Opx + Cpx + Gt on the solidusat 40 kbar, about 130 km depth. Munro-typekomatiites were separatedfrom a harzburgiteresidue (L + O1 + Opx) at pressuresthat are poorly constrained,but were probablyaround 50 kbar, about 165 km depth;the degreeof partial melting was <40%. Komatiites from the BarbertonMountain Land were formed by high degrees(-50 %) of pseudoinvariantmelting (L + O1 + Gt + Cpx) of fertile mantleperidotitc in the 80- to 100-kbarrange, about 260- to 330- km depth. Secularvariations in the geochemistryof komatiitescould have formed in response to a reductionin the temperatureand pressureof meltingwith time. The 3.5 Ga Barbertonkomatiites and the 2.7 Ga Munro-typekomatiites could have formedin plumesthat were hotterthan the present-daymantle by 500ø and 30(Y',respectively. When excesstemperatures are this size, melting is deeperand volcanismchanges from basalticto komatiitic. The komatiitesfrom Gorgona Island, which are Mesozoic in age, may be representativeof komatiitesthat are predictedto occur in oceanicplateaus of Cretaceousage throughoutthe Pacific [Storey et al., 1991]. 1. INTRODUCTION range of CaO and A1203contents in the 80- to 160-kbar range. A calibration has been made of the effect of pressure on Komatiites are high MgO volcanic rocks that can be CaO/(CaO + A1203)and MgO in komatiiticliquids formed on roughly explained by high degrees of melting of mantle the solidus, and an examinationhas been made of the effect of peridotitc,typically 50 to 100 % [e.g., Vi.ljoenand Vi.ljoen, FeO.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Lecture 8: Volcanism
    Lecture 8: Volcanism EAS 2200 Introduction to the Earth System Today’s Plan Introduction Melting in the Earth mid-ocean ridges subduction zones mantle plumes Crystallization of igneous rocks Volcanic eruptions Introduction Volcanic eruptions are among the most spectacular natural phenomena. Where does the magma come from? Why does most volcanism occur only in certain areas? What causes eruptions to sometimes be catastrophic and sometimes quiescent? Why is there such a variety of igneous rocks? Where does magma come from? Early ideas: Hot vapors produce melting Burning coals layers provide heat for melting Global layer of molten rock at depth Modern ideas: Decompression melting Flux melting Intrusions of magma into the crust (but this begs the question of the origin of the original magma). Deep burial of low melting point material (rare). Melting of Rock Complex (“multi-phase”) substances progressively melt over a range of temperatures. The lowest temperature at which melt exists (temperature at which melting begins) is known as the solidus. The highest temperature at which solid persists (temperature at which melting is complete) is known as the liquidus. The melting range for most rocks (diference in solidus and liquidus) is several hundred degrees C. In essentially all cases, melting in the Earth is believed to be partial (i.e., liquidus temperature Volcanoes are like Clouds Decompression Melting Solidus temperature of rock decreases with decreasing pressure. Temperature of rising mantle rock also decreases with pressure (adiabatic decompression). Adiabat is steeper than solidus, so that rising mantle rock eventually reaches solidus and Melting and Mantle Convection We can expect melting to occur within hot, rising mantle convection cells.
    [Show full text]
  • Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara Ezra Kavana Acacia Mining PLc, North Mara Gold Mine, Department of Geology, P. O. Box 75864, Dar es Salaam, Tanzania Email: [email protected] Keywords: Musoma Mara Greenstone Belt, Mnanka volcanics, Archaean rocks and lithology ABSTRACT The Mnanka area is situated within the Musoma Mara Greenstone Belt, the area is near to Nyabigena, Gokona and Nyabirama gold mines. Mnanka area comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments. Gold mineralizations in Mnanka area is structure controlled and occur mainly as hydrothermal disseminated intrusion related deposits. Hence the predominant observed structures are joints and flow banding. Measurements from flow banding plotted on stereonets using win-TENSOR software has provided an estimate for the general strike of the area lying 070° to 100° dipping at an average range angle of 70° to 85° while data from joints plotted on stereonets suggest multiple deformation events one of which conforms to the East Africa Rift System (striking WSW-ENE, NNE-SSW and N-S). 1. INTRODUCTION This paper focuses on performing a systematic geological mapping and description of structures and rocks of the Mnanka area. The Mnanka area is located in the Mara region, Tarime district within the Musoma Mara Greenstone Belt. The gold at Mnanka is host ed by volcanic rocks that belong to the Musoma Mara Greenstone Belt (Figure 1). The Mnanka volcanics are found within the Kemambo group that comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments south of the Nyarwana fault.
    [Show full text]
  • 4/5/2010 1 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region
    4/5/2010 EPS 101/271 Lecture 16: Dacite “Rhyolite” Source Region Geodetic Markers and Accuracy of the GPS units we use Chronology: 1871 Department formed by Joseph LeConte 1887 Charles Palache graduates from Berkeley High and enters Cal as a Freshman, continues on in graduate school 1892 Andrew Lawson teaches the first “systematic field geology class in the US” using Berkeley Hills 1893 Charles Palache publishes the results of the first doctoral thesis in geology at UC: “The Soda Rhyolite North of Berkeley” UC Bulletin of the Dept. of Geology, v. 1, p. 61-72 1902 Lawson and Palache publish “The Berkeley Hills- A Detail of Coast Range Geology” Bulletin of the Dept. of Geology,v. 2, p. 349-450 1 4/5/2010 The start of our Berkeley Field Tradition Lawson ’s first fie ld c lass 1892 Strawberry Creek Stadium Missing the Rhyolite Tuffs Hayward Fault Claremont Canyon Lawson and Palache’s map of the Berkeley Hills Global vs Local control on lithology Recall the explanation of the Miocene stratigraphic sequence Global climatic change Sudden global cooling FtiflFormation of polar ice caps Marine Regression causing the litho-sequence 2 4/5/2010 Rhyolites and Basalts Dacites SiO2 (Silica) 3 4/5/2010 Brimhall 2004 4 4/5/2010 Constraints on the Origin of Rhyolite Tuffs in the Berkeley/Oakland Hills Tecuya Formation in S CA Basalts Mixing lines as the result of ridge/trench collision Rhyolites Franciscan Initial Cole and Basu (1992) 5 4/5/2010 Source region for rhyolite magmas involves continental crust: Franciscan or its derivatives eg Orinda Rhyolite
    [Show full text]
  • Chemical and Isotopic Studies of Monogenetic Volcanic Fields: Implications for Petrogenesis and Mantle Source Heterogeneity
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Christine Rasoazanamparany Candidate for the Degree DOCTOR OF PHILOSOPHY ______________________________________ Elisabeth Widom, Director ______________________________________ William K. Hart, Reader ______________________________________ Mike R. Brudzinski, Reader ______________________________________ Marie-Noelle Guilbaud, Reader ______________________________________ Hong Wang, Graduate School Representative ABSTRACT CHEMICAL AND ISOTOPIC STUDIES OF MONOGENETIC VOLCANIC FIELDS: IMPLICATIONS FOR PETROGENESIS AND MANTLE SOURCE HETEROGENEITY by Christine Rasoazanamparany The primary goal of this dissertation was to investigate the petrogenetic processes operating in young, monogenetic volcanic systems in diverse tectonic settings, through detailed field studies, elemental analysis, and Sr-Nd-Pb-Hf-Os-O isotopic compositions. The targeted study areas include the Lunar Crater Volcanic Field, Nevada, an area of relatively recent volcanism within the Basin and Range province; and the Michoacán and Sierra Chichinautzin Volcanic Fields in the Trans-Mexican Volcanic Belt, which are linked to modern subduction. In these studies, key questions include (1) the role of crustal assimilation vs. mantle source enrichment in producing chemical and isotopic heterogeneity in the eruptive products, (2) the origin of the mantle heterogeneity, and (3) the cause of spatial-temporal variability in the sources of magmatism. In all three studies it was shown that there is significant compositional variability within individual volcanoes and/or across the volcanic field that cannot be attributed to assimilation of crust during magmatic differentiation, but instead is attributed to mantle source heterogeneity. In the first study, which focused on the Lunar Crater Volcanic Field, it was further shown that the mantle heterogeneity is formed by ancient crustal recycling plus contribution from hydrous fluid related to subsequent subduction.
    [Show full text]