History and Epistemology of M Olecular Biology and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

History and Epistemology of M Olecular Biology and Beyond M A X - P L A N C K - I N S T I T U T F Ü R W I S S E N S C H A F T S G E S C H I C H T E M ax Pl anc k Ins t i tut e for the His tory of Sc i enc e 2 0 0 6 P R E P R I N T 3 1 0 W o r k s h o p H i s t o r y and Ep i s t e m o logy of M o lecu la r B i o logy and Beyond : P r ob le m s and Pe r spec t i ves Collecting and Experimenting: The Moral Economies of Biological Research, 1960s-1980s. Bruno J. Strasser I. Introduction Experimentation is often singled out as the most distinctive feature of modern science. Our very idea of modern science, that we trace back to the Scientific Revolution, gives a central place to this particular way of producing knowledge. The current epistemic, social and cultural authority of science rests largely on the possibility of experimentation in the laboratory. The history of the sciences over the last four centuries reminds us that experimentation has only been one out of many ways in which scientific knowledge has been produced. However, by most accounts, experimentation has progressively come to dominate all the others, in most fields of science, from high energy physics to molecular biology. In the life sciences, the rise of experimentalism has been cast against the natural history tradition, leading to its progressive demise. In this paper, I would like to question this big picture by drawing attention to the role played by natural history practices in the rise of the experimental life sciences during the 20th century and its current importance for laboratory science. By natural history, I refer to the different practices of collecting, describing, comparing and naming natural objects, practices usually associated, not with the laboratory, but with the wonder cabinet, the botanical garden or the zoological museum.1 I will argue that collections have played, and still play, an essential role for the production of experimental knowledge.2 This paper focuses on one of the most widely used types of collections in contemporary biomedical sciences: molecular sequence databases. It traces their development from the first protein sequence collections, published as a book-format “atlas” in 1965, to their incorporation as modern computerized databases accessible online. Even though this transformation was closely interwoven with the computer revolution, its greatest challenge was not technical, but social. Indeed, as I will argue, a number of tensions between the collecting and the experimental enterprises resulted from a clash of what E.P. Thompson has called “moral economies”. Conflicts over the collection of data, scientific credit, authorship, and the intellectual value of collections reveal some of the essential features of the moral economies of contemporary life sciences. II. The rise of experimental biology Until recently, there was an overwhelming agreement in the literature on the history of biology that natural history had progressively declined from the early 19th century to give way to the experimental approach in the study of life. William Coleman’s classic textbook, Biology in the Nineteenth Century, reminds us that those who promoted the term “biology” in 1802, Gottfried Treviranus and Jean Baptiste de Lamarck, agreed that “natural history” did not have its place in 1 FARBER 2000; GHISELIN et LEVITON 2000; JARDINE et al. 1996. 2 For a similar point, see DE CHADAREVIAN 1998. 105 Bruno J. Strasser the new science and they were “hoping to reorient the interests and investigations of all who studied life”.3 The increasing emphasis on the study of function made physiology one of the key disciplines of the 19th century. The study of form, that was so central in the natural history tradition, continued in the 19th century, but became subservient to the understanding of function, such as individual development, metabolism or disease. Coleman thus concludes his book in the following terms: “In its name – experiment – was set in motion a campaign to revolutionize the goals and methods of biology”.4 Garland Allen’s textbook, Life Sciences in the Twentieth Century, picks up the story where Coleman had left it and adopts a similar perspective: “It was the twentieth century that saw the fanning out of the experimental method in all areas of biology”,5 and not just in physiology as in the previous century. Opposition to natural history was, once again, a driving force behind these changes. In the early 20th century, it was not so much natural history, in the sense of the description of whole organisms, than morphology, the description of their inner structure that was the target of the “new biology”. Allen’s narrative is thus cast as a “revolt form morphology”, in the study of development as well as heredity. More recent work has questioned the sharp break that Allen located around 1900, and shown that natural history tradition, if not anymore the core of biology, still played a role for its development at the turn of the century.6 Lynn K. Nyhart, for example, has claimed that natural history was declining relatively and growing absolutely around 1900, due to the general expansion of biology’s territory.7 For Keith Benson, “Natural history remained alive and well, primarily within museums”,8 however. Coleman and Allen’s narratives have structured much of the subsequent scholarship.9 In particular, almost all studies of natural history have focused nearly exclusively on the period from the 17th to the 19th century.10 When the 20th century is considered at all, natural history practices are studied in the context of ecology, some areas of evolutionary studies, and obviously systematic, but always far from the laboratory. Thus, in the big picture of 20th century biology, the rise of experimentation is cast against natural history and, by the mid-20th century, has become independent of natural history. III. The “molecular revolution” Nowhere is this narrative more pervasive than in the historiography of molecular biology. One of the most profound transformations in the 20th century life sciences, was the process that led to the understanding of life in terms of the structure and function of molecules. The “molecular revolution” supposedly illustrates the triumph of experimentation in the biomedical sciences. 3 COLEMAN [1971], p. 2. For precedents, see MCLAUGHLIN 2002. 4 COLEMAN [1971], p. 166. Coleman’s picture has been refined by a number of authors, and the boundaries between his categories of form, function and transformation have been questioned. 5 ALLEN 1978 , p. xvi. 6 RAINGER et al. 1988. 7 NYHART 1996, p. 442. 8 BENSON 1988, p. 77. 9 For example, BOWLER et MORUS 2005, chapter 7. 10 For example, JARDINE et al. 1996. 106 Collecting and Experimenting: The Moral Economies of Biological Research, 1960s-1980s. This transformation has generally been identified with the rise of a particular discipline, “molecular biology”, even though it is better understood as a larger process in which “molecular biology” is only an episode.11 Just as Robert Boyle or Francis Bacon at the time of the Scientific Revolution claimed that they were in the process of making a revolution, a number of the proponents of “molecular biology” insisted on the radical break that their science represented with the past. Several of them were trained in physics or chemistry and positioned themselves against “traditional biology”, by which they meant nothing else than natural history. They often described biologists disdainfully as naturalists who were merely collecting observations, and providing unnecessarily complex explanations who would end up in large monographs, such as atlases or obscure essays of Naturphilosophie. The molecular biologists, on the other hand, self- fashioned their scientific personae along the lines of the experimental physicist. In 1969 for example, the Swiss physicist-turned-molecular biologists Eduard Kellenberger, commented that Max Delbrück, also a former physicist, had demonstrated “that biology could be studied in the same precise, logical and quantitative way as physics”.12 Forty years later, Kellenberger claimed that the head of the biology department at his home university warned him he “could not get a PhD in biology, because as a physicist, [he] did not know the names of all the different plants and animals”.13 Statements of this sort, expressing contempt for “traditional biology”, qua natural history, were so pervasive that a number of biologists, such as the evolutionary biologist Edward O. Wilson at Harvard, fought back to defend their professional status in what he perceived as a “molecular war”.14 It shouldn’t be necessary to insist on how much the characterization of “traditional biology” by the molecular biologists was a gross misrepresentation of the practices of biology in the middle of the 20th century, and should rather be understood as an element of the molecular biologists’ discipline building strategies and struggles to create a divide between them, the Moderns, and the others, the Ancients.15 Knowing the pivotal role that experimentation has played for the rise of molecular biology, practically and rhetorically, and the expansion of molecular approaches to most areas of biological research, one might expect natural history practices to have vanished completely from contemporary research. Or at least, that they would be confined to some areas of ecology and evolutionary biology, far from the laboratory. Looking closer at the research practices carried out in almost all biomedical research laboratories around the world reveals a very different picture. Natural history is not dead, it is thriving. Today, paradoxically, the production of biomedical knowledge rests on a “way of knowing”, to borrow John Pickstone’s notion,16 that seems closer to the practices of natural history, than to the experimental tradition that should have been distinctive of the new approaches to biomedical research.
Recommended publications
  • Problem Statement 1
    DATA BASE LEGISLATION IN THE DIGITAL AGE: BALANCING THE PUBLIC GOOD AND THE OWNERS' RIGHTS By Lynn M. Kennedy A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Communication, Information and Library Studies Written under the direction of Montague Kern, Ph. D. and approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey May 2013 Abstract of the Dissertation DATA BASE LEGISLATION IN THE DIGITAL AGE: BALANCING THE PUBLIC GOOD AND THE OWNERS' RIGHTS By Lynn M. Kennedy Dissertation Director: Montague Kern, Ph. D. This dissertation is a study of the impact of federal legislative proposals considered between 1997 and 2004 that offer protection to databases. It investigates the effect that the proposals had on the balance between the economic interests of owners and the right of the public to unfettered access to information. This identified legislation included proposed amendments to copyright law and laws that were proposed to specifically protect databases via misappropriation or unfair trade practices. The legislative proposals originated in the U.S House of Representatives, Committee on the Judiciary and Commerce Committee. ii The study identifies approaches to protection proposed by different constituent groups. For this work, witnesses testifying at Congressional hearings are categorized and associations are made between these categories and positions on the bills, views of the issue, and potential solutions are presented. The testimonies are analyzed by extracting the witnesses‘ descriptions of the issue, the source of the issue and recommended policy solutions.
    [Show full text]
  • January, 1971 Vol
    SCIENCE &S!gCHNOLOGY , ESEiS irSll JliL ! 5 January, 1971 Vol. 20, No.1 CD Computer Chooses Carnations ~---------~~---------- PER I ODIC ALS SEC 1263 399045 ...................... 01 0 4 1 80 W SAN CARLO S ST *0 1271 S AN J OSE CA 95113 Now. A monolithic memory lets you forget stop-and-go keypunching. IBM announces a keypunch that isn't stop-and­ The U9's monolithic memory will store up to six different go. It's another reason we're the company behind card formats so your operators can change them easily the computer. without interrupting their work flow. We have a keypunch that's designed to help your people Exclusive options: An "accumulate" feature will total become more productive. selected card fields. Another feature provides a count of It's called the IBM 129 Card Data Recorder. keystrokes and cards. It comes in models that both punch and verify cards. It has all these new advantages. Yet it has the same And it lets your operators key data into a monolithic familiar keyboard. So your operators won't have to be memory that serves as a buffer before the cards are punched. retrained to use it. What does this new technology mean to you? We believe our job is to help you get the most out of your It means that your operators can key data continuollsly. computer. Even while another card is being punched and stacked. And that is another reason we're the company behind It means that thev can make corrections before a card is the computer.
    [Show full text]
  • Lie Therory and Hermite Polynomials
    International Journal For Research In Advanced Computer Science And Engineering ISSN: 2208-2107 A Computational Method for Sequence analyzing Rekardo Fosalli, Teriso Joloobi School of Computer Science, University of De Cyprus, Cyprus Abstract: To study how normal cellular activities are altered in different disease states, the biological data must be combined to form a comprehensive picture of these activities. Therefore, the field of bioinformatics has evolved such that the most pressing task now involves the analysis and interpretation of various types of data. This includes nucleotide and amino acid sequences, protein domains, and protein structures. Common uses of bioinformatics include the identification of candidate genes and nucleotides (SNPs). Often, such identification is made with the aim of better understanding the genetic basis of disease, unique adaptations, desirable properties (esp. in agricultural species), or differences between populations. In a less formal way, bioinformatics also tries to understand the organisational principles within nucleic acid and protein sequences. Keywords: Clustering, RNA sequences, RNA-Seq, Data Mining, Bioinformatics, Graph Mining. 1. INTRODUCTION Bioinformatics has become an important part of many areas of biology. In experimental molecular biology, bioinformatics techniques such as image and signal processing allow extraction of useful results from large amounts of raw data. In the field of genetics and genomics, it aids in sequencing and annotating genomes and their observed mutations. It plays a role in the text mining of biological literature and the development of biological and gene ontologies to organize and query biological data. It also plays a role in the analysis of gene and protein expression and regulation.
    [Show full text]
  • Sophie Dumont
    Sophie Dumont University of California, San Francisco 513 Parnassus Ave, HSW-613, San Francisco, CA 94143-0512, USA Office: (415) 502-1229 / Cell: (510) 229-9846 [email protected] ; http://dumontlab.ucsf.edu/ EDUCATION 9/2000-12/2005 Ph.D., Biophysics, University of California, Berkeley, CA 10/1999-8/2000 Candidate for D.Phil., Theoretical Physics, University of Oxford, UK 9/1995-6/1999 B.A., Physics, magna cum laude, Princeton University, Princeton, NJ RESEARCH POSITIONS & TRAINING 7/2012-present Assistant Professor, University of California, San Francisco Dept of Cell & Tissue Biology and Dept of Cellular & Molecular Pharmacology Member, QB3 California Institute for Quantitative Biosciences Member, NSF Center for Cellular Construction Affiliate Member, UCSF Cancer Center Graduate program member: Bioengineering, Biomedical Sciences, Biophysics, Tetrad 7/2006-5/2012 Postdoctoral Fellow, Harvard Medical School Mentor: Prof. Timothy Mitchison (Systems Biology) 7/2006-6/2009 Junior Fellow, Harvard Society of Fellows 9/2000-12/2005 Graduate Student, University of California, Berkeley Advisor: Prof. Carlos Bustamante (Physics and Molecular & Cell Biology) 10/1999-8/2000 Graduate Student, University of Oxford Advisor: Prof. Douglas Abraham (Theoretical Physics) 6/1997-5/1999 Undergraduate Student, Princeton University Advisor: Prof. Stanislas Leibler (Physics) AWARDS 2016-2021 NSF CAREER Award 2016 Margaret Oakley Dayhoff Award of the Biophysical Society 2015-2020 NIH New Innovator Award (DP2) 2013-2018 Rita Allen Foundation and Milton
    [Show full text]
  • Information Theory, Evolution, and the Origin of Life
    Information theory, evolution, and the origin of life HUBERT P. YOCKEY CAMBRIDGE UNIVERSITY PRESS CA\15RIDG£ \J);IVE;<SITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473• USA wv1rw.cambridge.org Information on this tide: www.cambridge.org/978opu69585 © Hubert P. Yockey 2005 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2005 Reprinred 2006 First paperback edition 2010 A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data Yockey, Hubert P. Information theory, evolution, and the origin of life I Huberr P. Yockey. p. em. Includes bibliographical references (p. ) . ISS� 0·521·80293-8 (hardback: alk. paper) r. Molecular biology. 2. Information theory in biology. 3· Evolution (Biology) 4· Life-Origin. r. Title. QHso6.Y634 2004 572.8 dc22 2004054518 ISBN 978-0·)21-80293-2 Hardback ISBN 978-0-52H6958-5 Paperback Cambridge University Press has no responsibility for rhe persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information theory, evolution, and the origin of life Information TheOI)\ Evolution, and the Origin of Life presents a timely introduction to the use of information theory and coding theory in molecular biology.
    [Show full text]
  • Sophie Dumont
    Sophie Dumont University of California, San Francisco 513 Parnassus Ave, HSW-613, San Francisco, CA 94143-0512, USA Office: (415) 502-1229 / Cell: (510) 229-9846 [email protected] ; http://dumontlab.ucsf.edu/ EDUCATION 9/2000-12/2005 Ph.D., Biophysics, University of California, Berkeley, CA 10/1999-8/2000 Candidate for D.Phil., Theoretical Physics, University of Oxford, UK 9/1995-6/1999 B.A., Physics, magna cum laude, Princeton University, Princeton, NJ RESEARCH POSITIONS & TRAINING 7/2012-present Assistant Professor, University of California, San Francisco Dept of Cell & Tissue Biology Dept of Cellular & Molecular Pharmacology Member, NSF Center for Cellular Construction Member, QB3 California Institute for Quantitative Biosciences Associate Member, UCSF Cancer Center Graduate program member: Biomedical Sciences Biophysics Bioengineering Tetrad 7/2006-5/2012 Postdoctoral Fellow, Harvard Medical School 7/2006-6/2009 Junior Fellow, Harvard Society of Fellows Mentor: Prof. Timothy Mitchison (Systems Biology) Collaborator: Prof. Edward Salmon (UNC Chapel Hill) Topic: Mechanochemistry of cell division 9/2000-12/2005 Graduate Student, University of California, Berkeley Advisor: Prof. Carlos Bustamante (Physics and Molecular & Cell Biology) Collaborators: Prof. Ignacio Tinoco & Prof. Jan Liphardt (UC Berkeley) Prof. Anna Marie Pyle (Yale University) Thesis: Force and helicase-catalyzed mechanical unfolding of single RNA molecules 10/1999-8/2000 Graduate Student, University of Oxford Advisor: Prof. Douglas Abraham (Theoretical Physics) Topic: Statistical mechanics of neural networks 6/1997-5/1999 Undergraduate Student, Princeton University Advisor: Prof. Stanislas Leibler (Physics) Thesis: Thermal sensing network of E. coli Page 1 of 5 AWARDS 2016-2021 NSF CAREER Award 2016 Margaret Oakley Dayhoff Award of the Biophysical Society 2015-2020 NIH New Innovator Award (DP2) 2013-2018 Rita Allen Foundation and Milton E.
    [Show full text]
  • Open Source Bioinformatics:The Intersectionbetween Formal Intellectual Property Laws and User Generated Laws in the Scientific Research Commons
    OPEN SOURCE BIOINFORMATICS:THE INTERSECTION BETWEEN FORMAL INTELLECTUAL PROPERTY LAWS AND USER GENERATED LAWS IN THE SCIENTIFIC RESEARCH COMMONS Thesis submitted to the Faculty of Law at the University of Tasmania for the degree of Doctor of Philosophy by James Scheibner, BComp-LLB (Hons), Grad Cert Research Centre for Law and Genetics,University of Tasmania November 2018 99,950 Words Declaration of Originality This thesis contains no material which has been accepted for a degree or diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in this thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of this thesis, nor does the thesis contain any material which infringes copyright Authority of Access This thesis may be made available for loan and limited copyright and communication in accordance with the Copyright Act 1968. Statement of Ethical Conduct The research associated with this thesis abides the international and Australian cods on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. DATE OF SUBMISSION 26 November 2018 SIGNED DATE - JAMES KEVIN SCHEIBNER i Open Source Bioinformatics: The Intersection between Formal Intellectual Property Laws and User Generated Laws in the Scientific Research Commons This thesis examines the interplay between national copyright and patent laws, and informal user generated norms in the governance of open source bioinformatics projects.
    [Show full text]
  • Cancer Letter May 16 1997
    Vol. 23 No. 19 May 16, 1997 © Copyright 1997 The Cancer Letter Inc. All rights reserved. Price $265 Per Year US $285 Per Year Elsewhere Senators Urge Grassroots Support For Health Research Fund Legislation Senators Arlen Specter (R-PA) and Tom Harkin (D-IA) last week urged cancer researchers and patient advocates to generate grassroots support for legislation that would institute a 1 percent surcharge on Professional Societies: insurance premiums and channel these new funds to medical research. ASCO Opposes FDA The bill to create the National Fund for Health Research (S. 441), On Stem Cell introduced by Specter and Harkin, seeks to raise as much as $6 billion Transplant Regs annually for NIH, of which about $1.1 billion, would go to NCI, the . Page 4 bill’s sponsors say. The two senators requested grassroots support for the trust fund at (Continued to page 2) Haylock, Krebs Lead Oncology Nurses In Brief . Page 5 Baltimore Named President, Caltech; Watson, Weinberg, Win National Medals of Science DAVID BALTIMORE has been appointed president of the NCI Programs: California Institute of Technology. Baltimore, professor at the Institute Partners Massachusetts Institute of Technology, will assume the post this fall, With Two Groups according to a statement by the Caltech Board of Trustees. Baltimore On Psychosocial Issues succeeds Thomas Everhart, who has been president for the past 10 years. Page 6 Baltimore, who received a Nobel Prize in 1975 for his work in virology, was founding director of the Whitehead Institute for Biomedical Research at MIT from 1982 to 1990, and president of Rockefeller University, until he was forced to resign in 1991 after defending a colleague, Theresa ORI Finds Hopkins Imanishi-Kari, from allegations of scientific fraud.
    [Show full text]
  • THE MANY STEPS and EVOLUTION in the DEVELOPMENT of COMPUTED TOMOGRAPHY TECHNOLOGY and IMAGING METHODS, the QUEST for ENHANCED VISIBILITY the First Fifty Years
    MEDICAL PHYSICS INTERNATIONAL Journal, Special Issue, History of Medical Physics 4, 2020 THE MANY STEPS AND EVOLUTION IN THE DEVELOPMENT OF COMPUTED TOMOGRAPHY TECHNOLOGY AND IMAGING METHODS, THE QUEST FOR ENHANCED VISIBILITY The First Fifty Years Perry Sprawls Emory University and Sprawls Educational Foundation, www.sprawls.org. USA • Abstract— Computed Tomography (CT) is considered the second most significant contribution of physics and technology to medicine following Roentgen’s discovery and introduction of x-ray imaging, radiography. CT is an x-ray imaging process but greatly extends the scope of structures, functions, and conditions within a human body that can be visualized for medical diagnosis. Compared to radiography CT provides two major advantages, It is a tomographic method that provides close viewing (within millimeters) of objects and locations within a human body without interference from overlying body sections. The second value is its high contrast sensitivity, the ability to produce visible contrast among different soft tissues, even when enclosed within a dense bony skull. The production of CT images is a sequence of two distinct phases. The first is scanning an x-ray beam around a patient body and measuring the total attenuation along different pathways through the slice of tissue that is to be imaged. This produces a data set consisting of large number (1000s) of measurements. The second phase is a mathematical process of calculating, generally referred to as “reconstructing” a digital image from the acquired data set. Allan Cormack, a physicist, first developed a mathematical process for calculating the distribution of x-ray attenuation values throughout a simulated body section.
    [Show full text]
  • Early Days of CT: Innovations (Both Good and Bad)
    Early Days of CT: Innovations (Both Good and Bad) Robert G. Gould Department of Radiology University of California San Francisco The Names: An Incomplete List • Johann Karl August Radon 1887‐1956 • William Henry Oldendorf 1925‐1992 • Allan McLeod Cormack 1919‐2004 • Godfrey Newbold Hounsfield 1919‐2004 • Robert Ledley 1924‐ Sir Godfrey Hounsfield • Elected to Royal Society 1975 • Nobel prize 1979 shared with Allan Cormack 1919‐2004 EMI Head Scanner First clinical image (Atkinson‐ Morley Hospital London EMI Head Scanner Dose information 1972 sales brochure EMI Head Scanner Geometry: Translate rotate, pencil beam Scan time: 4.5‐20 min Rotation Angle: 1° Number of views: 180 Samples per view: 160 Total samples: 28,800 Matrix: 80 x 80 FOV: 23.5 cm Pixel size: 3 x 3 mm Slice thickness: 13 mm or 8 mm X‐ray tube: Fixed anode Technique Factors: 100 (40), 120 (32), 140 (27) [ KVp (mA)] X‐Ray Controls Detectors: NaI‐PMT Cost: ~$350,000 Question: What machine was the first multislice CT? Answer: EMI head scanner! It had 2 detectors along the Z‐axis. EMI Head Scanner • ‘Print out scale’ + 500 First truly digital device in radiology 1972 sales brochure EMI Head Scanner 1972 sales brochure EMI: Rise and Fall 1971: Prototype head scanner installed at Atkinson Morley Hospital 1972: First clinical results presented by James Ambrose, MD on 70 patients 1973: Clinical production, two units installed in the US at Mayo Clinic and at MGH 1974: ACTA whole body scanner installed 1975: 3rd generation machines installed 1975: 10 companies now make CT scanners including
    [Show full text]
  • The Origins of Bioinformatics.Pdf
    PERSPECTIVES d’éthique en désaccord avec la directive européenne. Le Medicine in the 21st Century, December 4–5, 1998, 2nd nomic environment that includes various Monde 15 June (2000). edn 47–53 (AACC, Washington DC, 1998). social values, research practices and business 7. Kolata, G. Special Report: Who owns your genes? New 26. Caulfield, T. & Gold, E. R. Genetic testing, ethical York Times 15 May (2000). concerns, and the role of patent law. Clin. Genet. 57, pressures. We are mindful that, in some situa- 8. Ramirez, A. School given patent to clone humans. 370–375 (2000). tions, modifying patent law may reduce one National Post 16 May (2000). 27. Bruzzone, L. The research exemption: a proposal. Am. 9. Sagar, A., Daemmrich, A. & Ashiya, M. The tragedy of Intell. Prop. Law Assoc. QL 21, 52 (1993). problem (such as permitting more competi- commoners: biotechnology and its publics. Nature 28. Parker, D. Patent infringement exemptions for life science tion), while magnifying others (such as Biotechnol. 18, 2–4 (2000). research. Houston J. Intl Law 16, 615 (1994). 10. Angell, M. Is academic medicine for sale? N. Engl. J. 29. Gold, E. R. in Commercialization of Genetic Research: reducing incentives to conduct research and Med. 20, 1516–1518 (2000). Ethical, Legal and Policy Issues (eds Caulfield, T. & development). Nevertheless, although care 11. Pottagem, A. The inscription of life in law: gene, patents, Williams–Jones, B.) 63–78 (Plenum, New York, 1999). and bio-politics. The Modern Law Review 61, 740–765 30. Schissel, A., Merz, J. F. & Cho, M. K. Survey confirms must be taken, this debate needs to progress (1998).
    [Show full text]
  • The American Mathematical Society
    AMERICAN MATHEMATICAL SOCIETY V OLUME 8 , NUMBER 2 ISSUE NO. 5 3 APRIL 1961 THE AMERICAN MATHEMATICAL SOCIETY Edited by GORDON L. WALKER CONTENTS MEETINGS Calendar of Meetings . • • • • • . • • • • • • • • • • • • . • • . • . • • • . • • • • • • • 84 Program of the April Meeting in New York . • • • . • . • • • . • • • . • . • . • . 85 Abstracts for the Meeting- pages 139-155 Program of the April Meeting in Chicago • . • • • • • • • • . • • . • • . • . • • • • 94 Abstracts for the Meeting- pages 156-165 Program of the April Meeting in Stanford • • • • . • • • • . • • . • • • • • • . • • 98 Abstracts for the Meeting - pages 166-173 PRELIMINARY ANNOUNCEMENT OF MEETINGS • • • • • • • • . • • • • . • . • • • . 101 ACTIVITIES OF OTHER ASSOCIATIONS • • • • . • • • • • • • . • . • • . • • • . • • • • • . 102 NEWS AND COMMENT FROM THE CONFERENCE BOARD OF THE MATHEMATICAL SCIENCES • • • • • • • • • . • • • . • • • . • • . • • . • • 103 MATHEMATICS IN TRANSLATION • . • • • . • . • • . • • • • • • . • • • • . • • • • • . • 111 THE PROPOSED DOCTOR OF ARTS DEGREE - B.y E. E. Moise • • • • • • • • • • • • 112 RUSSIAN-ENGLISH DICTIONARY OF MATHEMATICAL TERMS........ • • • • 116 REPORT ON RECIPROCITY AGREEMENTS. • . • . • • • • • . • . • • • • • . • • • • • 119 NEWS ITEMS AND ANNOUNCEMENTS , , •• , , , •••••••••• , ••• 115,137,155,125 PERSONAL ITEMS • • . • • • . • • . • . • • • • • . • • • • • . • . • • • • . • . • . • . 127 ERRATA. • • • • • . • • • • • • • • • • . • . • . • . • • . • . • • • . • • . • . • • • • • • 132,130 LETTERS TO THE EDITOR ••••••...••...••••••.
    [Show full text]