Development of Computed Tomography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Celebrating 20 Years of SPECT/CT the Introduction of Hawkeye, the World’S First Hybrid Imaging System
CLINICAL VALUE HAWKEYE SPECT/CT Celebrating 20 Years of SPECT/CT The introduction of Hawkeye, the world’s first hybrid imaging system Nearly 20 years ago, a pivotal event shaped the future of The unclear medicine nuclear medicine. Once called the “unclear medicine,” nuclear Invented by Hal O. Anger in the mid-1950s, nuclear medicine medicine was forever changed with the introduction of cameras detect gamma radiation to depict metabolic Hawkeye, the world’s first clinical hybrid imaging system. processes within a living body. While gamma cameras helped GE Healthcare (at that time known as GE Medical Systems) revolutionize the field of functional medical imaging, there was introduced Hawkeye, a dual-modality SPECT and CT system, at one key limitation: the lack of anatomical markers in the image. the 1999 Society of Nuclear Medicine (SNM) Annual Meeting, heralding in a new era of “more clear medicine.” “We always understood that we needed anatomical and structural data to provide the best details and a precise answer to the clinical question,” says Ora Israel, MD, Director Emeritus of Nuclear Medicine/PET (retired) at Rambam Healthcare Campus, Haifa, Israel. She recalls using fiducial markers placed on the patient’s body to identify the location of key anatomical areas, such as the chest or abdomen. In some cases, Professor Israel and her colleagues would try to repeat the nuclear medicine study on a CT with the patient in the same position. It was a difficult and time-consuming process that she says never really worked well. “There was a clear purpose to improve the specificity of nuclear medicine by defining the anatomical relationship between isotope imaging and anatomy,” says Martin Sandler, MD, Professor of Radiology and Radiological Sciences and formerly Chairman of the Department of Radiology and Radiological Sciences at Vanderbilt University School of Medicine. -
Computed Tomography (CT) National Institutes of Health
NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING Computed Tomography (CT) National Institutes of Health What is a computed tomography (CT) scan? The term “computed tomography”, or CT, refers to a computerized x-ray imaging procedure in which a narrow beam of x-rays is aimed at a patient and quickly rotated around the body, producing signals that are processed by the machine’s computer to generate cross- sectional images—or “slices”—of the body. These slices are called tomographic images and contain more detailed information than conventional x-rays. Once a number of successive slices are collected by the machine’s computer, they can be digitally “stacked” together Source: Terese Winslow to form a three-dimensional image of the patient that allows for easier identification and location of basic structures as well as possible tumors or abnormalities. How does CT work? Unlike a conventional x-ray—which uses a fixed x-ray tube—a CT scanner uses a motorized x-ray source that rotates around the circular opening of a donut-shaped structure called a gantry. During a CT scan, the patient lies on a bed that slowly moves through the gantry while the x-ray tube rotates around the patient, shooting narrow beams of x-rays through the body. Instead of film, CT scanners use special digital x-ray detectors, which are located directly opposite the x-ray source. As the x-rays leave the patient, they are picked up by the detectors and transmitted to a computer. Each time the x-ray source completes one full rotation, the CT computer uses sophisticated mathematical techniques to construct a 2D image slice of the patient. -
Acr–Nasci–Sir–Spr Practice Parameter for the Performance and Interpretation of Body Computed Tomography Angiography (Cta)
The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2021 (Resolution 47)* ACR–NASCI–SIR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF BODY COMPUTED TOMOGRAPHY ANGIOGRAPHY (CTA) PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1. -
Optical Coherence Tomography (OCT) Anterior Segment of the Eye
Corporate Medical Policy Optical Coherence Tomography (OCT) Anterior Segment of the Eye File Name: optical_coherence_tomography_(OCT)_anterior_segment_of_the_eye Origination: 2/2010 Last CAP Review: 6/2021 Next CAP Review: 6/2022 Last Review: 6/2021 Description of Procedure or Service Optical Coherence Tomography Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. OCT creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging a t a resolution of 6 to 25 μm. The Stratus OCT, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante OCT and AC Cornea OCT use a 1.3-μm wavelength light source designed specifically for imaging the a nterior eye segment. Light of this wa velength penetrates the sclera, a llowing high-resolution cross- sectional imaging of the anterior chamber (AC) angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh resolution OCT can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers. Applications of OCT OCT of the anterior eye segment is being eva luated as a noninvasive dia gnostic and screening tool with a number of potential a pplications. -
MRC Review of Positron Emission Tomography (PET) Within the Medical Imaging Research Landscape
MRC Review of Positron Emission Tomography (PET) within The Medical Imaging Research Landscape August 2017 Content 1 Introduction 3 2 The medical imaging research landscape in the UK 4 2.1 Magnetic resonance imaging (MRI) 4 2.2 PET, including PET-MRI 6 2.3 Magnetoencephalography 7 3 Scientific uses and demand for PET imaging 8 3.1 Clinical practice 8 3.2 Research use of PET 8 3.3 Demand for PET 10 4 Bottlenecks 11 4.1 Cost 11 4.2 Radiochemistry requirements 12 4.3 Capacity 13 4.4 Analysis and modelling 13 5 Future Opportunities 14 5.1 Mitigating the high costs 14 5.2 Capacity building 14 5.3 Better Networking 15 6 Discussion and conclusions 16 Appendix 1 Experts consulted in the review 17 Appendix 2 Interests of other funders 18 Appendix 3 Usage and cost of PET in research 21 Appendix 4 Summary of facilities and capabilities across UK PET centres of excellence 23 2 1. Introduction This report aims to provide a review of Positron Emission Tomography (PET) within the medical imaging research landscape and a high level strategic review of the UK’s capabilities and needs in this area. The review was conducted by face-to-face and telephone interviews with 35 stakeholders from UK centres of excellence, international experts, industry and other funders (list at appendix 1). Data were also collected on facilities, resources and numbers of scans conducted across the centres of excellence using a questionnaire. The review has focused predominantly on PET imaging, but given MRC’s significant recent investment in other imaging modalities (7T Magnetic Resonance Imaging (MRI), hyperpolarised MRI) through the Clinical Research Infrastructure (CRI) Initiative, these are also considered more briefly. -
Breast Tomosynthesis: the New Age of Mammography Tomosíntesis: La Nueva Era De La Mamografía
BREAST TOMOSYNTHESIS: THE NEW AGE OF MAMMOGRAPHY TOMOSÍNTESIS: LA NUEVA ERA DE LA MAMOGRAFÍA Gloria Palazuelos1 Stephanie Trujillo2 Javier Romero3 SUMMARY Objective: To evaluate the available data of Breast Tomosynthesis as a complementary tool of direct digital mammography. Methods: A systematic literature search of original and review articles through PubMed was performed. We reviewed the most important aspects of Tomosynthesis in breast imaging: Results: 36 Original articles, 13 Review articles and the FDA and American College of Radiology standards were included. Breast Tomosynthesis has showed a positive impact in breast cancer screening, improving the rate of cancer detection EY WORDS K (MeSH) due to visualization of small lesions unseen in 2D (such as distortion of the architecture) Mammography Tomography and it has greater precision regarding tumor size. In addition, it improves the specificity of Diagnosis mammographic evaluation, decreasing the recall rate. Limitations: Interpretation time, cost and Breast neoplasms low sensitivity to calcifications.Conclusions : Breast Tomosynthesis is a new complementary tool of digital mammography which has showed a positive impact in breast cancer diagnosis in comparison to the conventional 2D mammography. Decreased recall rates could have PALABRAS CLAVE (DeCS) significant impact in costs, early detection and a decrease in anxiety. Mamografía Tomografía Diagnóstico RESUMEN Neoplasias de la mama Objetivo: Evaluar el estado del arte de la tomosíntesis como herramienta complementaria de la mamografía digital directa. Metodología: Se realizó una búsqueda sistemática de la literatura de artículos originales y de revisión a través de PubMed. Se revisaron los aspectos más importantes en cuanto a utilidad y limitaciones de la tomosíntesis en las imágenes de mama. -
Problem Statement 1
DATA BASE LEGISLATION IN THE DIGITAL AGE: BALANCING THE PUBLIC GOOD AND THE OWNERS' RIGHTS By Lynn M. Kennedy A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Communication, Information and Library Studies Written under the direction of Montague Kern, Ph. D. and approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey May 2013 Abstract of the Dissertation DATA BASE LEGISLATION IN THE DIGITAL AGE: BALANCING THE PUBLIC GOOD AND THE OWNERS' RIGHTS By Lynn M. Kennedy Dissertation Director: Montague Kern, Ph. D. This dissertation is a study of the impact of federal legislative proposals considered between 1997 and 2004 that offer protection to databases. It investigates the effect that the proposals had on the balance between the economic interests of owners and the right of the public to unfettered access to information. This identified legislation included proposed amendments to copyright law and laws that were proposed to specifically protect databases via misappropriation or unfair trade practices. The legislative proposals originated in the U.S House of Representatives, Committee on the Judiciary and Commerce Committee. ii The study identifies approaches to protection proposed by different constituent groups. For this work, witnesses testifying at Congressional hearings are categorized and associations are made between these categories and positions on the bills, views of the issue, and potential solutions are presented. The testimonies are analyzed by extracting the witnesses‘ descriptions of the issue, the source of the issue and recommended policy solutions. -
January, 1971 Vol
SCIENCE &S!gCHNOLOGY , ESEiS irSll JliL ! 5 January, 1971 Vol. 20, No.1 CD Computer Chooses Carnations ~---------~~---------- PER I ODIC ALS SEC 1263 399045 ...................... 01 0 4 1 80 W SAN CARLO S ST *0 1271 S AN J OSE CA 95113 Now. A monolithic memory lets you forget stop-and-go keypunching. IBM announces a keypunch that isn't stop-and The U9's monolithic memory will store up to six different go. It's another reason we're the company behind card formats so your operators can change them easily the computer. without interrupting their work flow. We have a keypunch that's designed to help your people Exclusive options: An "accumulate" feature will total become more productive. selected card fields. Another feature provides a count of It's called the IBM 129 Card Data Recorder. keystrokes and cards. It comes in models that both punch and verify cards. It has all these new advantages. Yet it has the same And it lets your operators key data into a monolithic familiar keyboard. So your operators won't have to be memory that serves as a buffer before the cards are punched. retrained to use it. What does this new technology mean to you? We believe our job is to help you get the most out of your It means that your operators can key data continuollsly. computer. Even while another card is being punched and stacked. And that is another reason we're the company behind It means that thev can make corrections before a card is the computer. -
Diagnostic Radiography Is the Production of High Quality Images for the Purpose of Diagnosis of Injury Or Disease
A Career in Medical Imaging What is Diagnostic Radiography / Medical Imaging? Diagnostic Radiography is the production of high quality images for the purpose of diagnosis of injury or disease. It is a pivotal aspect of medicine and a patient's diagnosis and ultimate treatment is often dependent on the images produced. Diagnostic Radiography uses both ionising and non-ionising radiation in the imaging process. The equipment used is at the high end of technology and computerisation within medicine. What does a Diagnostic Radiographer / Medical Imaging Technologist do? A Diagnostic Radiographer/Medical Imaging Technologist is a key member of the health care team. They are responsible for producing high quality medical images that assist medical specialists and practitioners to describe, diagnose, monitor and treat a patient’s injury or illness. Much of the medical equipment used to gain the images is highly technical and involves state of the art computerisation. A Diagnostic Radiographer/Medical Imaging Technologist needs to have the scientific and technological background to understand and use the equipment within a modern Radiology department as well as compassion and strong interpersonal skills. They need to be able to demonstrate care and understanding and have a genuine interest in a patient's welfare. The Diagnostic Radiographer/Medical Imaging Technologist will also need to be able to explain to the patient the need for the preparation and post examination care as well as the procedure to be undertaken. The Diagnostic Radiographer/Medical Imaging Technologist is able to work in a highly advanced technical profession that requires excellent people skills. It is an exciting and rewarding profession to embark on and great opportunities await the graduate. -
Foreign Private Issuers Lists, 1996
u.s. Securities and Exchange Commission FOREIGN COMPANIES REGISTERED AND REPORTING WITH THE u.S. SECURITIES AND EXCHANGE COMMISSION DECEMBER 31 , 1996 Office of International Corporate Finance Division of Corporation Finance REPORTING FOREIGN ISSUERS AS OF DECEMBER 31, 1996 SUMMARY"INFORMATION REPORTING COUNTRY COMPANIES CANADA 374 UNITED KINGDOM 81 ISRAEL 71 MEXICO 30 NETHERLANDS 29 AUSTRALIA 26 BERMUDA 22 CHILE 22 JAPAN 21 FRANCE 18 ITALY 13 ARGENTINA 12 BRITISH VIRGIN ISLANDS 11 IRELAND 11 SWEDEN 10 INDONESIA 9 GERMANY 8 LUXEMBOURG 8 SPAIN 8 NETHERLANDS ANTILLES 7 NORWAY 7 BAHAMAS 6 SOUTH AFRICA 6 CHINA 5 FINLAND 5 HONG KONG 5 LIBERIA 5 BRAZIL 4 CAYMAN ISLANDS 4 COLOMBIA 4 DENMARK 4 KOREA 4 NEW ZEALAND 4 VENEZUELA 4 PERU 3 PORTUGAL 3 SINGAPORE 3 BELGIUM 2 PANAMA 2 PHILIPPINES 2 BELIZE 1 BOTSWANA 1 GHANA 1 PAPUA NEW Gl.!lNEA 1 RUSSIA 1 SWITZERLAND 1 TAIWAN 1 ZAMBIA 1 TOTAL 881 p MARKET SUMMARY BY COUNTRY NASDAQ NASDAQ COUNTRY NYSE AMEX NMS Small Cap OTC COMBINED ARGENTINA 10 0 1 0 1 12 26 AUSTRALIA 9 0 7 3 7 BAHAMAS 1 0 2 0 3 6 BELGIUM 0 0 2 0 0 2 BELIZE 0 0 1 0 0 1 BERMUDA 9 3 7 1 2 22 BOTSWANA 0 0 0 0 1 1 4 BRAZIL 2 0 1 0 1 BRIT. V.1. 0 0 8 1 2 11 CANADA 61 39 94 57 123 374 CAYMAN ISLANDS 0 2 2 0 0 4 CHILE 19 0 1 0 2 22 CHINA 5 0 0 0 0 5 COLOMBIA 2 0 0 0 2 4 DENMARK 3 0 1 0 0 4 FINLAND 3 '0 0 1 1 5 FRANCE 9 0 6 0 3 18 GERMANY 5 0 1 0 2 8 GHANA 1 0 0 0 0 1 HONG KONG 1 0 0 0 4 5 0 4 9 I INDONESIA 4 0 1 IRELAND 5 0 3 1 2 11 ISRAEL 4 5 45 11 6 71 ITALY 11 0 2 0 0 13 JAPAN 11 0 7 1 2 21 KOREA 3 0 0 0 1 4 LIBERIA 2 2 0 0 1 5 LUXEMBOURG 3 0 5 0 0 8 MEXICO 25 2 0 0 3 30 NETH. -
Contrast-Enhanced Ultrasound Approach to the Diagnosis of Focal Liver Lesions: the Importance of Washout
Contrast-enhanced ultrasound approach to the diagnosis of focal liver lesions: the importance of washout Hyun Kyung Yang1, Peter N. Burns2, Hyun-Jung Jang1, Yuko Kono3, Korosh Khalili1, Stephanie R. Wilson4, Tae Kyoung Kim1 REVIEW ARTICLE 1Joint Department of Medical Imaging, University of Toronto, Toronto; 2Department of https://doi.org/10.14366/usg.19006 pISSN: 2288-5919 • eISSN: 2288-5943 Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada; Ultrasonography 2019;38:289-301 3Departments of Medicine and Radiology, University of California, San Diego, CA, USA; 4Diagnostic Imaging, Department of Radiology, University of Calgary, Calgary, Canada Received: January 15, 2019 Contrast-enhanced ultrasound (CEUS) is a powerful technique for differentiating focal liver Revised: March 13, 2019 lesions (FLLs) without the risks of potential nephrotoxicity or ionizing radiation. In the diagnostic Accepted: March 17, 2019 algorithm for FLLs on CEUS, washout is an important feature, as its presence is highly suggestive Correspondence to: Tae Kyoung Kim, MD, PhD, FRCPC, of malignancy and its characteristics are useful in distinguishing hepatocellular from non- Department of Medical Imaging, hepatocellular malignancies. Interpreting washout on CEUS requires an understanding that Toronto General Hospital, 585 University Avenue, Toronto, ON M5G microbubble contrast agents are strictly intravascular, unlike computed tomography or magnetic 2N2, Canada resonance imaging contrast agents. This review explains the definition and types of washout on Tel. +1-416-340-3372 CEUS in accordance with the 2017 version of the CEUS Liver Imaging Reporting and Data System Fax. +1-416-593-0502 E-mail: [email protected] and presents their applications to differential diagnosis with illustrative examples. -
Medical Imaging, Magnetic Resonance Imaging, Advanced Technical Certificate
Medical Imaging, Magnetic Resonance Imaging, Advanced Technical Certificate 1 MEDICAL IMAGING, MAGNETIC RESONANCE IMAGING, ADVANCED TECHNICAL CERTIFICATE Minimum Program Admission Criteria Applicants must be American Registry of Radiologic Technologies (ARRT) registered in one of the following: radiography, nuclear medicine, or radiation therapy or registry eligible and hold a Texas Medical Board Medical Radiologic Technologist license. The applicant must complete and submit an application to the Program Coordinator or Medical Imaging department. Upon provisional acceptance, the applicant must also submit required health records, proof of health insurance, CPR certification (American Heart Association-Health Care Provider), criminal background check, and drug and alcohol screen as stated for all Medical Imaging students. Acceptance into the MRI program is determined after review of the application and completion of requirements. Prospective participants should call the Medical Imaging department at 281-476-1871 for additional information. Students selected for any of the Medical Imaging programs are required to submit a physical exam after they have received provisional acceptance to the program The department will provide instructions. This physical exam must be consistent with the requirements of the teaching hospitals and agencies the student is assigned during clinical assignments and the performance standards required to function as a student imaging technologist. The exam will also include documentation of any communicable diseases along with immunity to Rubella, Measles, Mumps, Varicella, and Hepatitis B. Completion of an updated Tetanus, an annual TB screening, and the current seasonal flu vaccine are required. In addition to meeting all other requirements, students entering a Medical Imaging program will be required to submit a criminal background check and drug and alcohol screening completed by designated companies, show proof of health insurance, and CPR (American Heart Associate- Health Care Provider) certification.