Observational Constraints on Models of Beta Hydri

Total Page:16

File Type:pdf, Size:1020Kb

Observational Constraints on Models of Beta Hydri Observational Constraints on Models of β Hydri João Fernandes Observatório Astronómico da Universidade de Coimbra, Coimbra, Portugal Mário J.P.F.G. Monteiro Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, and Centro de Astrofísica da Universidade do Porto, Porto, Portugal 2002 September 25 Abstract. A review of the models for the star β Hydri is done by adjusting the evolutionary sequences to the most recent bolometric, spectroscopic and astrometric data. The dependence of the solution on some of the relevant modelling parameters is analysed and the degeneracy of the solution using the HR Diagram analysis is discussed. We briefly describe how the seismic study of the star can help to clarify some of the degeneracy of the model solutions. Keywords: β Hydri; Stellar Evolution; Oscillations 1. Observations of β Hydri β Hydri (HD 2151, HR 98, HIP 2021) is a G2 IV star, in the neighbourhood of the Sun, belonging to the old disc of the Galaxy. This evolved star is fre- quently seen as the distant future of the Sun (Dravins et al. 1993). Recently, Bedding et al. (2001) and Carrier et al. (2001) confirmed the presence of solar-type oscillations in β Hydri. In Table I we present the available data on β Hydri. Table I. Observational data for β Hydri. Observable Value Source L=L 3:51±0:11 Blackwell et al. (1998);DiBenedetto (1998) Teff (K) 5774±60 DiBenedetto (1998) Z=X 0:019±0:003 Favata et al. (1997);Castro et al. (1999) ∆ν (µHz) 56:2±2:0 Bedding et al. (2001) 2. Models and HR Diagram Analysis The stellar evolution calculations were computed with the CESAM code ver- sion 3. (Morel 1997). Details on the physics of these models can be found in Lebreton et al. (1999). We construct our reference model, hereafter S0, by tuning the parameters in order to reproduce the observations on the HRD. © 2002 Kluwer Academic Publishers. Printed in the Netherlands. 514 Fernandes & Monteiro Figure 1. Mass-Luminosity degeneracy - evolutionary tracks for the test models S0 (full line), S1 (dashed line) and S2 (dotted line) - see Table II. The observed values (given in Table I) are indicated by the box. Table II. Models of β Hydri calculated for different sets of parameters. All models have α=1:4, αov=0:25 and Z=0:014. The frequency separations are given in µHz. The evolutionary tracks for these models are shown in Fig. 1. Mod M=M Y t (Gyr) R=R L=L Teff (K) ∆ν¯ ∆ν¯r S0 1.10 0.27 6.820 1.899 3.540 5751 55.47 55.47 S1 1.05 0.30 6.414 1.878 3.529 5778 55.17 54.27 S2 1.15 0.23 7.125 1.883 3.477 5749 57.45 56.74 Our reference model has the following characteristics: Mass, M=1:1 M , Helium, Y=0:27, Metals, Z=0:014, MLT parameter, α=1:4 and overshoot- ing, αov=0:25. This model reproduces the observed quantities (L, Teff) to as good as 1% for an age of 6.82 Gyr. In Table II we describe other models of β Hydri having the observed luminosity and effective temperature (within the error bars), but using different combinations of the modelling parameters. The knowledge of the HRD position - L and Teff - is not sufficient to define all stellar parameters. In fact, any point in the HRD depends on stellar mass, helium, metallicity, age and some free parameters on the input physics of stellar models. For a single star, other than the Sun and some binary systems (Fernandes et al. 1998), there are far more unknowns than observables. In Observational Constraints on Models of β Hydri 515 the case of β Hydri we find a correlation between helium abundance and mass. Equation (1) quantifies this, reproducing the observed luminosity of β Hydri to within 1% , for the range of mass between 1.0M and 1.15M . The corresponding values of Z=X also fall within the error bars of the observed values. M Y(±0:01) = 1:00 − 0:67 : (1) M With this relation we can estimate the mass of β Hydri, finding that MHRD 0:04 = 1:10 ± ; (2) M 0:07 where the error in Z=X is also included. 3. Seismic Analysis The seismic information that can more easily be identified in the power spec- trum of the oscillations is the large frequency separation ∆ν. This value is expected to scale with (M=R3)1=2. Here we calculate the separation (Monteiro et al. 2002) as being its value at a fixed frequency after removing the periodic component present due to the Helium ionization zone (Monteiro and Thomp- son 1998). Considering that from the observations we can only estimate the radius, the best way to compare the models with the observed seismic data is by considering a “reduced” separation; 3=2 3=4 3 R L Teff;0 ∆ν¯r ≡ ∆ν¯ = ∆ν¯ (3) R0 L0 Teff where the subscript “0” indicates the values for a reference model (in here, this is model S0). For a pure homologous scaling of the separation, ∆ν¯r would be a function of stellar mass alone. It is not however a pure homologous scal- ing as the scaling factor will depend on the physics of the models, namely, the chemical composition and convection, among others (known or unknown). The present bolometric and spectroscopic observations give the determi- nation of the radius with an uncertainty of about 4% while, at present, the large frequency separation is not known to better than 4.0%. Consequently, the uncertainty on the value of the mass is still large, with the preliminary result giving that M∆ν¯ = 1:09 ± 0:22 : (4) M where we have used that for β Hydri, ∆ν¯r=55:2 µHz. If the large frequency separation is determined with a precision below 1% –which is expected to be achieved by the space missions in Asteroseismology– the result is dominated by the error in the Luminosity, which results on an 516 Fernandes & Monteiro uncertainty for the mass of about 14%. This is an independent estimate of the value determined with the HRD analysis, as discussed above, and therefore extremely valuable to raise some of the degeneracy we have found. 4. Conclusions In this work we have recalculated the best models for adjusting β Hydri in the HR Diagram. The modelling parameters which have been evaluated are the Helium abundance (Y ) and the stellar mass (M). The HRD analysis does not allow us to determine these parameters due to the strong degeneracy in (Y;M). Given the recent seismic observations of this star, and the planned missions in Asteroseismology, we have discussed the possibility of using seismic observations to remove the (Y;M) degeneracy (see also Fernandes & Monteiro 2003). It has been found that the large frequency separation ∆ν¯r can provide, at least partially, the necessary extra dimension to the HRD. Acknowledgements This work was supported in part by Fundação para a Ciência e a Tecnologia - Portugal, through projects PESO/P/PRO15128/1999 and ESO/FNU/43658/2001. References Bedding, T.R., Butler, R.P., Kjeldsen, H., et al.: 2001, ApJ 549, L105. Blackwell, D.E., Lynas-Gray, A.E.: 1998, A&A 129, 505. Carrier, F., Bouchy, F., Kienzle, F., et al., 2001, A&A 378, 142. Castro, S., Porto de Mello, G.F., da Silva, L.: 1999, MNRAS 305, 693. DiBenedetto, 1998, A&A 339, 858. Dravins, D., Lindegren, L., Nordlund, A., et al.: 1993, ApJ 403, 385. Favata, F., Micela, G., Sciortino, S.: 1997, A&A 323, 809. Fernandes, J., Monteiro, M.J.P.F.G.: 2003, A&A (in press). Fernandes, J., Lebreton, Y., Baglin, A., Morel, P.: 1998, A&A 338, 455. Lebreton, Y., Perrin, M.-N., Cayrel, R., Baglin, A., Fernandes, J.: 1999, A&A 350, 587. Monteiro, M.J.P.F.G., Thompson, M.J.: 1998, in: F.-L. Deubner, J. Christensen-Dalsgaard and D.W. Kurtz (eds.), New Eyes to See Inside the Sun and Stars, Kluwer, 317. Monteiro, M.J.P.F.G., Christensen-Dalsgaard, J.,Thompson, M.J.: 2002, in: F. Favata, I.W. Roxburgh and D. Galadì-Enríquez (eds.), Stellar Structure and Habitable Planet Finding, ESA SP-485, ESA Publications Division, 291. Morel, P., 1997, A&A 124, 597..
Recommended publications
  • 1999-2000 Annual Report
    Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 1999 to 30 June 2000 ANGLO-AUSTRALIAN OBSERVATORY PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4800 (international) + 61 2 9372 4800 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE BOARD PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4813 (international) + 61 2 9372 4813 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE/UK SCHMIDT TELESCOPE PriVate Bag, Coonabarabran, NSW 2357, Australia PH (02) 6842 6291 (international) + 61 2 6842 6291 AAT FAX (02) 6884 2298 (international) + 61 2 6884 298 UKST FAX (02) 6842 2288 (international) + 61 2 6842 2288 WWW http://www.aao.gov.au/ © Anglo-Australian Telescope Board 2000 ISSN 1443-8550 COVER: A digital image of the Antennae galaxies (NGC4038-39) made by combining three images from the Tek2 CCD on the AAT (Steve Lee and David Malin). A new wide field CCD Imager (WFI) will come into use in 2000 and will enable many more images like this to be made. COVER DESIGN: Encore International COMPUTER TYPESET AT THE: Anglo-Australian ObserVatory ii The Right Honourable Stephen Byers, MP, President of the Board of Trade and Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland The Honourable Dr David Kemp, MP, Minister for Education, Training and Youth Affairs GoVernment of the Commonwealth of Australia In accordance with Article 8 of the Agreement between the Australian GoVernment and the GoVernment of the United Kingdom to proVide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 1999 to 30 June 2000.
    [Show full text]
  • The Chemical Composition of Solar-Type Stars and Its Impact on the Presence of Planets
    The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Munchen¨ 2013 The chemical composition of solar-type stars and its impact on the presence of planets Patrick Baumann Dissertation der Fakultat¨ fur¨ Physik der Ludwig-Maximilians-Universitat¨ Munchen¨ durchgefuhrt¨ am Max-Planck-Institut fur¨ Astrophysik vorgelegt von Patrick Baumann aus Munchen¨ Munchen,¨ den 31. Januar 2013 Erstgutacher: Prof. Dr. Achim Weiss Zweitgutachter: Prof. Dr. Joachim Puls Tag der mündlichen Prüfung: 8. April 2013 Zusammenfassung Wir untersuchen eine mogliche¨ Verbindung zwischen den relativen Elementhaufig-¨ keiten in Sternatmospharen¨ und der Anwesenheit von Planeten um den jeweili- gen Stern. Um zuverlassige¨ Ergebnisse zu erhalten, untersuchen wir ausschließlich sonnenahnliche¨ Sterne und fuhren¨ unsere spektroskopischen Analysen zur Bestim- mung der grundlegenden Parameter und der chemischen Zusammensetzung streng differenziell und relativ zu den solaren Werten durch. Insgesamt untersuchen wir 200 Sterne unter Zuhilfenahme von Spektren mit herausragender Qualitat,¨ die an den modernsten Teleskopen gewonnen wurden, die uns zur Verfugung¨ stehen. Mithilfe der Daten fur¨ 117 sonnenahnliche¨ Sterne untersuchen wir eine mogliche¨ Verbindung zwischen der Oberflachenh¨ aufigkeit¨ von Lithium in einem Stern, seinem Alter und der Wahrscheinlichkeit, dass sich ein oder mehrere Sterne in einer Um- laufbahn um das Objekt befinden. Fur¨ jeden Stern erhalten wir sehr exakte grundle- gende Parameter unter Benutzung einer sorgfaltig¨ zusammengestellten Liste von Fe i- und Fe ii-absorptionslinien, modernen Modellatmospharen¨ und Routinen zum Erstellen von Modellspektren. Die Massen und das Alter der Objekte werden mithilfe von Isochronen bestimmt, was zu sehr soliden relativen Werten fuhrt.¨ Bei jungen Sternen, fur¨ die die Isochronenmethode recht unzuverlssig¨ ist, vergleichen wir verschiedene alternative Methoden.
    [Show full text]
  • Seeing the Light: the Art and Science of Astronomy
    Chapter 1 Seeing the Light: The Art and Science of Astronomy In This Chapter ▶ Understanding the observational nature of astronomy ▶ Focusing on astronomy’s language of light ▶ Weighing in on gravity ▶ Recognizing the movements of objects in space tep outside on a clear night and look at the sky. If you’re a city dweller Sor live in a cramped suburb, you see dozens, maybe hundreds, of twin- kling stars. Depending on the time of the month, you may also see a full Moon and up to five of the eight planets that revolve around the Sun. A shooting star or “meteor” may appear overhead. What you actually see is the flash of light from a tiny piece of comet dust streaking through the upper atmosphere. Another pinpoint of light moves slowly and steadily across the sky. Is it a space satellite, such as the Hubble Space Telescope, or just a high-altitude airliner? If you have a pair of binoculars, you may be able to see the difference. Most air- liners have running lights, and their shapes may be perceptible. If you liveCOPYRIGHTED in the country — on the seashore MATERIAL away from resorts and develop- ments, on the plains, or in the mountains far from any floodlit ski slope — you can see thousands of stars. The Milky Way appears as a beautiful pearly swath across the heavens. What you’re seeing is the cumulative glow from millions of faint stars, individually indistinguishable with the naked eye. At a great observation place, such as Cerro Tololo in the Chilean Andes, you can see even more stars.
    [Show full text]
  • Arxiv:0709.4613V2 [Astro-Ph] 16 Apr 2008 .Quirrenbach A
    Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) M. S. Cunha · C. Aerts · J. Christensen-Dalsgaard · A. Baglin · L. Bigot · T. M. Brown · C. Catala · O. L. Creevey · A. Domiciano de Souza · P. Eggenberger · P. J. V. Garcia · F. Grundahl · P. Kervella · D. W. Kurtz · P. Mathias · A. Miglio · M. J. P. F. G. Monteiro · G. Perrin · F. P. Pijpers · D. Pourbaix · A. Quirrenbach · K. Rousselet-Perraut · T. C. Teixeira · F. Th´evenin · M. J. Thompson Asteroseismology and interferometry Received: date M. S. Cunha and T. C. Teixeira Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto, Portugal. E-mail: [email protected] C. Aerts Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium; Afdeling Sterrenkunde, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands. J. Christensen-Dalsgaard and F. Grundahl Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark. A. Baglin and C. Catala and P. Kervella and G. Perrin LESIA, UMR CNRS 8109, Observatoire de Paris, France. L. Bigot and F. Th´evenin Observatoire de la Cˆote d’Azur, UMR 6202, BP 4229, F-06304, Nice Cedex 4, France. T. M. Brown Las Cumbres Observatory Inc., Goleta, CA 93117, USA. arXiv:0709.4613v2 [astro-ph] 16 Apr 2008 O. L. Creevey High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301, USA; Instituto de Astrofsica de Canarias, Tenerife, E-38200, Spain. A. Domiciano de Souza Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Ger- many. P. Eggenberger Observatoire de Gen`eve, 51 chemin des Maillettes, 1290 Sauverny, Switzerland; In- stitut d’Astrophysique et de G´eophysique de l’Universit´e de Li`ege All´ee du 6 Aoˆut, 17 B-4000 Li`ege, Belgium.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • STELLAR CONVECTION (Sun) STELLAR CONVECTION Star)Star) -- Matthias Steffen (Potsdam) & Bernd Freytag (Uppsala)
    INTRINSIC LINESHIFTSIN IN SPECTRAASTRONOMICAL ASTRONOMICAL SPECTRA Dainis Dravins Lund Observatory, Sweden ... and the Solar-Solar-IntergalacticIntergalactic Connection ESO Santiago, January 2008 ““Wave leng th Shift” can be much more than just ““Radial Velocity” Measuring true radial motion without using spectroscopy Astrometric radial velocities I Dravins, Lindegren & Madsen, A&A 348, 1040 Astrometric radial velocities II Dravins, Lindegren & Madsen, A&A 348, 1040 Astrometric radial velocities from perspective acceleration Dravins, Lindegren & Madsen, A&A 348, 1040 Astrometric radial velocities III Dravins, Lindegren & Madsen, A&A 348, 1040 Pleiades from Hipparcos Propp,er motions over 120,000 years STARPATHS (200, 000 y) Madsen, Dravins & Lindegren, A&A 381, 446 Hyades lineshifts Madsen, Dravins & Lindegren, A&A 381, 446 LhfLineshift & stellar rotation Madsen, Dravins & Lindegren, A&A 381, 446 & Dravins, IAU Symp. 215, 27 What causes wavelhlength shhfifts? Gravitational redshifts D. Dravins IAU Symp. 210 Gravitational redshifts in NGC3680 open cluster ? GIANTS vs. DWARFS B.Nordström, J.Andersen, M.I.Andersen Critical tests of stellar evolution in open clusters. II. Membership, duplicity, and Radial velocities in NGC3680 stellar and dynamical evolution in NGC3680 Open curve: All member stars A&A 322, 460 (1997) Solid: Single giants Gravitational redshifts in M67 open cluster ? GIANTS vs. DWARFS FEROS observations from C.H.F.Melo, L.Pasquini, J.R.De Medeiros Accurate Vsin i measurements in M 67: Radial velocities for stars in M67 The
    [Show full text]
  • Asteroseismic Modelling of the Solar-Like Star $\Beta $ Hydri
    Astrophysics and Space Science DOI 10.1007/s•••••-•••-••••-• Asteroseismic modelling of the solar-like star β Hydri G. Do˘gan • I. M. Brand˜ao • T. R. Bedding • J. Christensen-Dalsgaard • M. S. Cunha • H. Kjeldsen c Springer-Verlag •••• Abstract We present the results of modelling the sub- Keywords beta Hydri; solar-like oscillations giant star β Hydri using the seismic observational con- straints. We have computed several grids of stel- lar evolutionary tracks using Aarhus STellar Evolution 1 Introduction Code (ASTEC, Christensen-Dalsgaard, 2008a), with and without helium diffusion and settling. For those β Hydri is a G2-type subgiant star exhibiting solar like models on each track that are located at the observa- oscillations. It is often referred to as the future of the tionally determined position of β Hydri in the HR di- Sun due to having parameters (Table 1) close to those agram, we have calculated the oscillation frequencies of the Sun, in addition to being at a later evolution- using Aarhus adiabatic pulsation package (ADIPLS, ary stage than the Sun. Being rather evolved, β Hydri Christensen-Dalsgaard, 2008b). Applying the near- exhibits mixed modes in its observed spectrum. This surface corrections to the calculated frequencies using makes the star particularly interesting for asteroseismic the empirical law presented by Kjeldsen et al. (2008), studies as mixed modes carry more information about we have compared the corrected model frequencies with the core than do the regular p-mode frequencies. the observed frequencies of the star. We show that af- ter correcting the frequencies for the near-surface ef- fects, we have a fairly good fit for both l=0 and l=2 Table 1 Parameters of β Hydri as given in literature.
    [Show full text]
  • Brightest Stars : Discovering the Universe Through the Sky's Most Brilliant Stars / Fred Schaaf
    ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. flast.qxd 3/5/08 6:28 AM Page vi ffirs.qxd 3/5/08 6:26 AM Page i THE BRIGHTEST STARS DISCOVERING THE UNIVERSE THROUGH THE SKY’S MOST BRILLIANT STARS Fred Schaaf John Wiley & Sons, Inc. ffirs.qxd 3/5/08 6:26 AM Page ii This book is dedicated to my wife, Mamie, who has been the Sirius of my life. This book is printed on acid-free paper. Copyright © 2008 by Fred Schaaf. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Illustration credits appear on page 272. Design and composition by Navta Associates, Inc. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copy- right.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Bibliography from ADS File: Dravins.Bib June 27, 2021 1
    Bibliography from ADS file: dravins.bib Dravins, D. & Lagadec, T., “Stellar intensity interferometry over kilometer base- August 16, 2021 lines: laboratory simulation of observations with the Cherenkov Telescope Array”, 2014SPIE.9146E..0ZD ADS Dravins, D., “Intensity Interferometry with Cherenkov Telescope Arrays: Lindegren, L. & Dravins, D., “Astrometric radial velocities for nearby stars”, Prospects for submilliarcsecond optical imaging”, 2014ipco.conf...19D 2021A&A...652A..45L ADS ADS Lindegren, L. & Dravins, D., “Astrometric radial velocities for nearby stars”, Maiolino, R., Haehnelt, M., Murphy, M. T., et al., “A Community Science Case 2021arXiv210509014L ADS for E-ELT HIRES”, 2013arXiv1310.3163M ADS Dravins, D., Ludwig, H.-G., & Freytag, B., “Spatially resolved spectroscopy CTA Consortium, T., :, Abril, O., et al., “CTA contributions to the 33rd Inter- across stellar surfaces. V. Observational prospects: toward Earth-like exo- national Cosmic Ray Conference (ICRC2013)”, 2013arXiv1307.2232C planet detection”, 2021A&A...649A..17D ADS ADS Dravins, D., Ludwig, H.-G., & Freytag, B., “Spatially resolved spectroscopy Dravins, D., LeBohec, S., Jensen, H., Nuñez, P. D., & CTA Consortium, across stellar surfaces. IV. F, G, and K-stars: Synthetic 3D spectra at hyper- “Optical intensity interferometry with the Cherenkov Telescope Array”, high resolution”, 2021A&A...649A..16D ADS 2013APh....43..331D ADS Dravins, D. & Ludwig, H., “Spatially Resolved Stellar Disk Spec- Acharya, B. S., Actis, M., Aghajani, T., et al., “Introducing the CTA concept”,
    [Show full text]
  • Articles Dans Des Revues À Comité De Lecture
    Articles dans des revues à comité de lecture 2012 [ACL005] Barstow Joanna K., Tsang C. C. C., Wilson C. F., Irwin P. G. J., Taylor F. W., McGouldrick Kevin, Drossart [ACL001] Abramowski A., Acero F., Aharonian F., Pierre, Piccioni G., Tellmann Silvia. Models of the global cloud Akhperjanian A. G., Anton G., Balzer A., Barnacka A., Barres de structure on Venus derived from Venus Express observations. Almeida U., Becherini Y., Becker J., Behera B., Benbow W., Icarus, 2012, vol. 217, pp. 542-560. Bernlöhr K., Bochow A., Boisson C., Bolmont J., Bordas P., Bouteilier T., Brucker J., Brun F., Brun P., Bulik T., Büsching I., [ACL006] Barucci Antonella, Belskaya Irina, Fornasier Sonia, Carrigan S., Casanova S., Cerruti M., Chadwick P. M., Fulchignoni Marcello, Clark B. E., Coradini A., Capaccioni F., Charbonnier A., Chaves R. C. G., Cheesebrough A., Chounet Dotto E., Birlan Mirel, Leyrat C., Sierks H., Thomas N., Vincent L.-M., Clapson A. C., Coignet G., Cologna G., Colom Pierre, J. B. Overview of Lutetia's surface composition. Planetary and Conrad J., Coudreau N., Dalton M., Daniel M.K., Davids I. D., Space Science, 2012, vol. 66, pp. 23-30. Degrange B., Deil C., Dickinson H. J., Djannati-Ataï A., Domainko W., Drury L. O.'C., Dubois F., Dubus G., Dutson K., [ACL007] Barucci Antonella, Merlin Frédéric, Perna Davide, Dyks J., Dyrda M., Edwards P., Egberts K., Eger P., Espigat P., Alvarez-Candal A., Müller T., Mommert M., Kiss C., Fornasier Fallon L., Farnier C., Fegan S., Feinstein F., Fernandes M. V., Sonia, Santos-Sanz Pablo, Dotto E. The extra red plutino (55638) Fiasson A., Fontaine G., Förster A., Füßling M., Gallant Y.
    [Show full text]
  • 1Before Use of the Euro in 1999, ESA Used First an Accounting Unit And
    Notes 1Before use of the Euro in 1999, ESA used first an Accounting Unit and later the European Currency Unit to simulate the basket of currencies of its member states. To simplify num- bers, and ignoring inflation over the intervening period, I label amounts simply in Euros 2Accepted practice in astronomy capitalises the word Galaxy when it refers to our own 3Billion is used throughout to signify one thousand million, or equivalently 1 000 000 000, or 109 in scientific notation 4The Impact of Science on Society by Bertrand Russell (Routledge, 1985) 5A similar analogy was used by Martin Rees in his Oort Lecture at Leiden University in 1999, but it may have been used by others before him 6BCE, or Before the Common Era, is synonymous with BC. CE, or Common Era, is synony- mous with AD, and is dropped where confusion is unlikely 7The Expanding Universe by Arthur Eddington (Penguin, 1932) 8To commemorate the four hundredth anniversary of Galileo’s first recorded observations of the night sky using a telescope, the United Nations scheduled 2009 to be the Interna- tional Year of Astronomy 9The names of the fifty or so brightest stars carry a mix of Greek (e.g. Procyon), Latin (e.g. Polaris), or Arabic (e.g. Deneb) etymology. Extending the naming to more stars, Johan Bayer’s 1603 Uranometria comprised forty nine constellation maps, and a new ordering of star names in which Greek letters, and thereafter Roman letters, along with the Latin possessive form of the constellation name, were assigned depending on magnitude and location.
    [Show full text]