Soil Organisms HO HerbivorePrimary Consumer NH Kinds, Roles and Inter- NO Carnivore (Secondary, Relationships Mineral Higher Level Consumer)

Total Page:16

File Type:pdf, Size:1020Kb

Soil Organisms H�O Herbivore�Primary Consumer� NH� Kinds, Roles and Inter- � NO� Carnivore (Secondary, Relationships Mineral Higher Level Consumer) 2018/11/28 Light energy CO Plant + O Soil organisms HO Herbivoreprimary consumer NH Kinds, roles and inter- NO Carnivore (secondary, relationships mineral higher level consumer) Kiyoshi Tsutsuki Saprophytes (decomposer) http://timetraveler.html.xdomain.jp Soil animals, soil microbes Importance of saprophytic organisms Organisms in surface soil Biomass of soil organisms (some t / Plant roots ha) is almost equivalent to the yield of crops harvested annually Mammals from the land, or to the weight of Soil animals domestic animals bred on the land. Soil microbes Biomass of soil organisms /1 ha reaches several tons: 5/ ha, 0.5kg / m2 Role of soil to the crowd What soil owes to the crowd of soil organisms: of soil organisms: Moisture, Oxygen, Temperature, Decomposition of organic matter, Mineral nutrition, Supply of emission of carbon dioxide, liberation organic matter of mineral nutrients Creation of soil structure Supply of fertile plant growth environment 1 2018/11/28 Macrofauna Animals sized >2mm or 10mm Soil animals Earthworms, Enchytraeina, ants, Millipede, Centipede, etc. (soil fauna) Population of earthworms : 3000-250,000 /10a, 3-250 /m2 Function of earthworms Charles Darwin Amount of soil passing through “The Formation of the body of earthworm : Vegetable Mould through the Action of 4t / 10a annually Worms, with the Observation of their In 30-50 years, all the soil in the Habits” (1881) plowed layer passes through the Japanese translations: body of earthworms. S. Yata (1949), H. Watanabe 200 t / 4 t = 50 years (1994) Functions of soil animals: Clods of the feces of earthworms Eating and crushing plant remains and Baybay, Leyte, Philippines animal feces • Decomposability of plant remains increases after eaten and crushed by soil animals. • Animal feces are first eaten and decomposed by the larva of insects (eg. Dung beetles and flies). 2 2018/11/28 Organic matter decomposition by Mesofauna soil animals Size: 0.2-2 mm 10 mm Collembola (spring tails), mites, nematodes Temperate region: Arthropods and earthworms Population: Collembola and mites: 50,000-80,000 /m2 in Tropics and subtropics: Termites forest floors. Sub-boreal needle forest: Nematoda: (saprophytic, predatory, parasitic) Enchytraeina 1.30 million /m2 in the forest, 50,000-80,000 /m2 in cultivated lands. Microfauna Size: < 0.2mm Protozoa: Amoeba, Ciliates, Flagellate Collembola () Collembola () Oribatid () 3 2018/11/28 Isopoda, sow bug () Prostigmata () Lithobius () Larva of millipede Larva of Diptera (flies) Enchytraeina () 4 2018/11/28 Pratylenchus penetrance () Pratylenchus penetrance () Nematodes isolated from OUAVM fields. Lumbricus rubellus Amynthus agrestis Length: 8-20 cm Collected from compost Length: 6-10 cm Collected from compost Living depth: 10-50 cm Living depth: 10-25 cm Population of soil animals / m2 Kitazawa, 1976 Needle Mulberry Upland kinds forest field field Soil microbes Macrofauna 73 16 19 Enchytraeina Bacteria, Actinomycetes, (103 150 6.5 3.7 Collembola Fungi, Algae (103 76 5.0 9.3 Mites (103 53 8.1 5.8 Nematodes (105 13 7.0 1.4 5 2018/11/28 Classification of organism by the Classification of organism by method to obtain carbon. the method to obtain energy. From organic matter.... From the light ....... organotrophs, heterotrophs Photosynthetic organisms From the chemical compounds, such as From carbon dioxide ..... methane, hydrogen sulfide, hydrogen gas, etc. ... lithotrophs, autotrophs Chemosynthetic organisms Classification of organisms according to Classification of organisms according to the types of metabolism the types of metabolism Types of metabolism Members of the group autotrophic, Autotrophic, Higher plants, algae, Photosynthetic Chromatiales bacteria, Chlorobiales bacteria photosynthetic Heterotrophic, Animals, fungi, actinomycetes, heterotrophic, Chemosynthetic most of bacteria chemosynthetic Autotrophic, Ammonium oxidizing bacteria (Nitrosomonas), autotrophic, Chemosynthetic Nitrite oxidizing bacteria (Nitrobacter), chemosynthetic Iron bacteria, heterotrophic, Hydrogen bacteria, photosynthetic Sulfur oxidizing bacteria (Thiobacteria) Heterotrophic, Purple bacteria Photosynthetic (Rhodobacteria, Blastochloris) Function of soil microbes Mineralization of organic matter • Mineralization of organic matter Organic • Secretion of soil enzymes CO2 • Decomposition and purification of matter harmful organic matter Microbes NH4 • Symbiotic relationship with plants 2- • Antagonism (competition) with disease HPO3 causing germs 2- SO4 6 2018/11/28 Decomposition and purification Secretion of soil enzymes of harmful organic matter • Cellulase • Trichloloethylene Remaining % • α-Glucosidase • PCB • β-Glucosidase • Dioxin • Protease • Pesticides • Phosphatase days • Lipase Direct decomposition and co-metabolism Symbiotic relationship with plants (1) Non-symbiotic nitrogen fixer bacteria • Nitrogen fixation Proteobacteria group Symbiotic nitrogen fixation Cyanobacteria group Rhizobium, Cyanobacteria, Azolla Gram positive bacteria group Associative nitrogen fixation Bacterial nitrogen fixation Green sulfur bacteria group in the root zone of rice General Archaea group Pseudomonas, Alcaligenes Root nodule bacteria (Rhizobium, Nitrogen fixation Bradyrhizobium, Azorhizobium) Grouped into Proteobacteria α → Symbiosis with legume plants and Ulmaceae plant, Parasponia phosphate Legume plants are grown in 25010ha of Nitrogenase land in the world, and 140 kg haof + nitrogen are fixed. NH4 → Glutamine→ Glutamic acid→ → Total agricultural land area in the world is Protein, Nucleic acid 140610ha, in Japan 5.110ha Ammonia assimilation enzymes 7 2018/11/28 Nitrogen fixation and the fertility of paddy field • Cyanobacteria in the paddy water. • Azolla • Sesbania as green manure grown on the ridges of rice field Cross section of root nodule. • Associative nitrogen fixing bacteria Soy bean root Bacteroid tissue in the rhizosphere of rice nodule Root nodules Cyanobacteria (blue green algae) Have symbiotic relationships with Lichens and mosses, Azolla (Fern plant) Cycad family (Gymnosperm) Sesbania Gunnera (Angiosperm) Actinomycetes (Frankia) Belongs to Gram positive bacteria. Forms root nodules with alder and Alnus firma as well as many other angiosperm trees in the temperate and tropic region. Azolla 8 2018/11/28 Symbiotic relationship with plants (2) Mycorrhizal fungi Symbiosis with 70 % of terrestrial plants. Fungi residing in the surface layer or inside of roots. Help the absorption of phosphate and water. Arbuscular mycorrhizal fungi Alder trees in the wetland Ectomycorrhiza Transfer of nitrogen from N fixing plants to other plants Mycorrhizal fungi in Timothy roots Legume plants Gramineous plants N2 CO2 Mycorrhiza carbohydrates N compounds 0.1 mm P Rhizobium Antagonism with disease causing germs Abundant and heterogenous microbial flora prevents the spread of disease causing germs. Bacillus subtilis controls the crop diseases. Microbial biomass in soil Pseudomonas bacteria prevent the seedling diseases of tomato. Non pathogenic Fusarium prevents various wilting and soft-rotting diseases of vegetables. 9 2018/11/28 Microbial biomass Total C and N, and biomass C contents in some Japanese soils. Total C Total N Biomass C occupies 0.35.0 of total soil carbon. Kind of soils Texture (Mg/ha) (Mg/ha) (kg/ha) Immature sand In mineral soils 2 3 , in volcanic ash soils S 9.4 0.86 32 0.31.0 in average. dune soil Light colored L 33.4 3.36 114 Numbers of microbes: 107109 / g soil ando soil ( 10 millions 1 billion /g ) Humic ando soil SiL 110 8.33 234 Brown forest soil CL 20.6 1.69 276 ( Fungi occupy ca. 70 % in upland field, Dark red soil LiC 83.8 7.49 1,155 grassland, forest, and orchard field, while bacteria occupy 80 – 98 % of total microbes in Sakamoto and Hodono: SSPN, 46, 483-490 (2000) (Introduction to soil science, 2005) p.169 paddy soils.) Methods of soil biomass 1. Direct counting determination Jones-Mollison method 1) Direct counting method Count and measure the microbes in soil suspension with hemo-cytometer. 2) Culture method Fluorescent immuno-staining 3) Biochemical method method Staining the specific bacterium by its fluorescent antibody. 3. Biochemical method 2. Culture method Chloroform fumigation method (applicable to all Dilution Plate Method (DP ) microbes) →fumigation-culture and fumigation-extraction Most Probable Number Method methods (MPN) ATP method (applicable to all microbes) Substrate Induced Respiration Phospho-lipid (applicable to all microbes) Method (SIR) Muramic acid, diamino-pimelic acid (for bacteria) Ergosterol (for fungi) Microcalorimeter (applicable to all microbes) 10 2018/11/28 2 Fumigated with chloroform CO2 from Functions of soil microbial biomass biomass control 1) Decomposer of organic matter 2) Source and stock of soil nutrients Emission amount of CO of amount Emission days Effect of chloroform fumigation on the CO2 emission from soil. Growth of crops and nutrients from microbial Nutrients in microbial biomass biomass and absorbed amounts by crops Relative % of nutrients contained in the microbial biomass of upland field. (Anderson and Domsch, 1980) Biomass Absorbed C N P K Ca nutrients nutrients Bacteria 25 4.5 1.5 0.8 0.4 Germany, upland 100 kg N/ha 40 kg N/ha Fungi 75 10.5 10.1 9.0 1.0 England, upland 17 kg P/ha 6.8 kg P/ha Total 100 15.0 11.6 9.8 1.4 Amounts of biomass nutrients in the field (kg/ha) England, pasture 56.8 kg P/ha 22.7 kg P/ha 108 83 70 11 Philippines, 44 – 156 40 – 100 paddy field Showing the balance of nutrient uptake by crops kg N / ha kg N / ha and nutrients supplied from microbial biomass. Animals Human Crops, Forage Feces CO2 Plant residue Inorganic nutrients Soil animals Vital point of Soil Soil organic microbes circulation matter 11.
Recommended publications
  • Backyard Food
    Suggested Grades: 2nd - 5th BACKYARD FOOD WEB Wildlife Champions at Home Science Experiment 2-LS4-1: Make observations of plants and animals to compare the diversity of life in different habitats. What is a food web? All living things on earth are either producers, consumers or decomposers. Producers are organisms that create their own food through the process of photosynthesis. Photosynthesis is when a living thing uses sunlight, water and nutrients from the soil to create its food. Most plants are producers. Consumers get their energy by eating other living things. Consumers can be either herbivores (eat only plants – like deer), carnivores (eat only meat – like wolves) or omnivores (eat both plants and meat - like humans!) Decomposers are organisms that get their energy by eating dead plants or animals. After a living thing dies, decomposers will break down the body and turn it into nutritious soil for plants to use. Mushrooms, worms and bacteria are all examples of decomposers. A food web is a picture that shows how energy (food) passes through an ecosystem. The easiest way to build a food web is by starting with the producers. Every ecosystem has plants that make their own food through photosynthesis. These plants are eaten by herbivorous consumers. These herbivores are then hunted by carnivorous consumers. Eventually, these carnivores die of illness or old age and become food for decomposers. As decomposers break down the carnivore’s body, they create delicious nutrients in the soil which plants will use to live and grow! When drawing a food web, it is important to show the flow of energy (food) using arrows.
    [Show full text]
  • Effects of Human Disturbance on Terrestrial Apex Predators
    diversity Review Effects of Human Disturbance on Terrestrial Apex Predators Andrés Ordiz 1,2,* , Malin Aronsson 1,3, Jens Persson 1 , Ole-Gunnar Støen 4, Jon E. Swenson 2 and Jonas Kindberg 4,5 1 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden; [email protected] (M.A.); [email protected] (J.P.) 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway; [email protected] 3 Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden 4 Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway; [email protected] (O.-G.S.); [email protected] (J.K.) 5 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden * Correspondence: [email protected] Abstract: The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions.
    [Show full text]
  • Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
    horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied.
    [Show full text]
  • Plants Are Producers! Draw the Different Producers Below
    Name: ______________________________ The Unique Producer Every food chain begins with a producer. Plants are producers. They make their own food, which creates energy for them to grow, reproduce and survive. Being able to make their own food makes them unique; they are the only living things on Earth that can make their own source of food energy. Of course, they require sun, water and air to thrive. Given these three essential ingredients, you will have a healthy plant to begin the food chain. All plants are producers! Draw the different producers below. Apple Tree Rose Bushes Watermelon Grasses Plant Blueberry Flower Fern Daisy Bush List the three essential needs that every producer must have in order to live. © 2009 by Heather Motley Name: ______________________________ Producers can make their own food and energy, but consumers are different. Living things that have to hunt, gather and eat their food are called consumers. Consumers have to eat to gain energy or they will die. There are four types of consumers: omnivores, carnivores, herbivores and decomposers. Herbivores are living things that only eat plants to get the food and energy they need. Animals like whales, elephants, cows, pigs, rabbits, and horses are herbivores. Carnivores are living things that only eat meat. Animals like owls, tigers, sharks and cougars are carnivores. You would not catch a plant in these animals’ mouths. Then, we have the omnivores. Omnivores will eat both plants and animals to get energy. Whichever food source is abundant or available is what they will eat. Animals like the brown bear, dogs, turtles, raccoons and even some people are omnivores.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • An Ecological Framework for Contextualizing Carnivore–Livestock Conflict
    Special Section Review An ecological framework for contextualizing carnivore–livestock conflict Christine E. Wilkinson ,1 ∗ Alex McInturff,1 Jennifer R. B. Miller,1,2 Veronica Yovovich,1 Kaitlyn M. Gaynor,1 Kendall Calhoun,1 Harshad Karandikar,1 Jeff Vance Martin,3 Phoebe Parker-Shames,1 Avery Shawler,1 Amy Van Scoyoc,1 and Justin S. Brashares1 1Department of Environmental Science, Policy, and Management, University of California, 139 Mulford Hall, Berkeley, CA, 94720, U.S.A. 2Defenders of Wildlife, 1130 17th St. NW, Washington DC, 20036, U.S.A. 3Department of Geography, University of California, 505 McCone Hall, Berkeley, CA, 94720, U.S.A. Abstract: Carnivore predation on livestock is a complex management and policy challenge, yet it is also intrinsi- cally an ecological interaction between predators and prey. Human–wildlife interactions occur in socioecological systems in which human and environmental processes are closely linked. However, underlying human–wildlife conflict and key to unpacking its complexity are concrete and identifiable ecological mechanisms that lead to predation events. To better understand how ecological theory accords with interactions between wild predators and domestic prey, we developed a framework to describe ecological drivers of predation on livestock. We based this framework on foundational ecological theory and current research on interactions between predators and domestic prey. We used this framework to examine ecological mechanisms (e.g., density-mediated effects, behaviorally mediated effects, and optimal foraging theory) through which specific management interventions operate, and we analyzed the ecological determinants of failure and success of management interventions in 3 case studies: snow leopards (Panthera uncia), wolves (Canis lupus), and cougars (Puma concolor).
    [Show full text]
  • Elemental Profiles in Cycas Micronesica Stems
    plants Article Elemental Profiles in Cycas micronesica Stems Thomas E. Marler College of Natural and Applied Sciences, University of Guam, UOG Station, Mangilao, Guam 96923, USA; [email protected]; Tel.: +1-671-735-2100 Received: 24 August 2018; Accepted: 30 October 2018; Published: 1 November 2018 Abstract: Essential nutrients and metals have been quantified in stems of many tree species to understand the role of stems as storage and source organs. Little is known about stored stem resources of cycad tree species. Cycas micronesica tissue was collected from apical and basal axial regions of stems; and pith, vascular, and cortex tissues were separated into three radial regions. Leaves were also sampled to provide a comparison to stems. Minerals and metals were quantified in all tissues. Minerals and metals varied greatly among the six stem sections. Phosphorus varied more among the three radial sections than the other macronutrients, and zinc and nickel varied more than the other micronutrients. Stem carbon was less than and stem calcium was greater than expected, based on what is currently known tree stem concentrations in the literature. Elemental concentrations were generally greater than those previously reported for coniferous gymnosperm trees. Moreover, the stem concentrations were high in relation to leaf concentrations, when compared to published angiosperm and conifer data. The results indicated that the addition of more cycad species to the literature will improve our understanding of gymnosperm versus angiosperm stem nutrient relations, and that the non-woody cycad stem contains copious essential plant nutrients that can be mobilized and deployed to sinks when needed.
    [Show full text]
  • Interspecific Killing Among Mammalian Carnivores
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC vol. 153, no. 5 the american naturalist may 1999 Interspeci®c Killing among Mammalian Carnivores F. Palomares1,* and T. M. Caro2,² 1. Department of Applied Biology, EstacioÂn BioloÂgica de DonÄana, thought to act as keystone species in the top-down control CSIC, Avda. MarõÂa Luisa s/n, 41013 Sevilla, Spain; of terrestrial ecosystems (Terborgh and Winter 1980; Ter- 2. Department of Wildlife, Fish, and Conservation Biology and borgh 1992; McLaren and Peterson 1994). One factor af- Center for Population Biology, University of California, Davis, fecting carnivore populations is interspeci®c killing by California 95616 other carnivores (sometimes called intraguild predation; Submitted February 9, 1998; Accepted December 11, 1998 Polis et al. 1989), which has been hypothesized as having direct and indirect effects on population and community structure that may be more complex than the effects of either competition or predation alone (see, e.g., Latham 1952; Rosenzweig 1966; Mech 1970; Polis and Holt 1992; abstract: Interspeci®c killing among mammalian carnivores is Holt and Polis 1997). Currently, there is renewed interest common in nature and accounts for up to 68% of known mortalities in some species. Interactions may be symmetrical (both species kill in intraguild predation from a conservation standpoint each other) or asymmetrical (one species kills the other), and in since top predator removal is thought to release other some interactions adults of one species kill young but not adults of predator populations with consequences for lower trophic the other.
    [Show full text]
  • The Pattern and Cost of Carnivore Predation on Livestock in Maasai Homesteads of Amboseli Ecosystem, Kenya: Insights from a Carnivore Compensation Programme
    Vol. 6(7), pp. 502-521, July 2014 DOI: 10.5897/IJBC2014.0678 Article Number: 492C21546199 International Journal of Biodiversity ISSN 2141-243X Copyright © 2014 and Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper The pattern and cost of carnivore predation on livestock in maasai homesteads of Amboseli ecosystem, Kenya: Insights from a carnivore compensation programme Moses Makonjio Okello1*, Richard Bonham2 and Tom Hill2 1SFS Center for Wildlife Management Studies, Kenya, P.O. Box 27743- 00505 Nairobi, Kenya. 2Big Life Foundation, Kenya. P. O. Box 24133 - 00502, Nairobi, Kenya. Received 3 January, 2014; Accepted 16 June, 2014 Several papers have been written on the experiences, successes and challenges facing compensation schemes for wildlife, some of whom criticize the strategy while others support it. What is clear among the Maasai is that the burden of conserving wildlife, particularly predators that roam freely on their land and predate upon their livestock, is too great to bear: support in terms of financial compensation and mitigation strategies to reduce socio-economic loss from livestock deaths would help communities tolerate predators, and discourage some among them to kill carnivores in retaliation. Such programs in the Amboseli ecosystem are critical for the long term future of wildlife conservation. The Mbirikani Predator Compensation Fund (MPCF) is such a compensation scheme administered by the Big Life Foundation since 2003. Data from Big Life Foundation’s monitoring records of compensation paid between 2008 and 2012 were analyzed in order to establish insights into the pattern and cost of predation in the Amboseli ecosystem.
    [Show full text]
  • June 2003.Pmd
    A Publication of the Cycad Society Dedicated to the Conservation of Cycads through Education and Scientific Research Volume 26 Number 2 - June 2003 In This Issue: Cycad Ecotouring in Vietnam 3 Cycad Focus: Ceratozamia hildae 10 Presidents Report 2 Seedbank Report 8 First Notice for Cycad 2005 14 Message from the Editor 2 One PersonsThe Cycad Addiction Newsletter Page 1 9 Book Review: Cycads of Africa 15 Presidents Report Tom Broome have been told that we are getting new members all I the time, so I would like to welcome all our new members who have joined since the last newsletter was published Craig Nazor, our new Membership Director has been working hard at his new position, so if you have not received your new membership packet yet, you should soon Board of Directors We are having our board meeting in late June this (Terms end December 31st of year shown) year in Miami, but chances are this issue will not be Tom Broome President (2005) published until we have already had the meeting I will The Cycad Jungle have an update on this in the next issue PO Box 325 Polk City, FL 33868 I only have a few news items to discuss First, we are still in need of votes for CycadJungl@aolcom the Articles of Amendment that was mentioned in the last issue This is very RL Frasier Vice President (2004), important for the continued success of the society and we need everyones help Back Issues Anyone who did not already vote for this please take the time to vote now You can 709 W 14th Street Austin, Texas 78701 do this by mail, or by e-mail There
    [Show full text]
  • Chemical Energy And
    Unit 6: Energy! From Food to Forces Chemical Energy and LESSON 1 LESSON FOOD CHAIN Unit 6: Energy! From Food to Forces Chemical Energy and LESSON 1 LESSON FOOD CHAIN Food chains and webs show the flow of chemical energy through an ecosystem. From the sun to tertiary consumers. students learn about the transfer of chemical energy and how producers and consumers depend on each other. They also learn scientists classifiy living things based on what they eat. Table of Contents 4 Launch! Sun. Chemical energy passing through the food chain starts with the sun. 6 Chemical Collisions A1: Chemical Energy. Hydrogen and helium are the chemical elements in the sun. 12 Productive Primary Producers A2: Producers. Producers use energy from the sun during photosynthesis. 18 Primary Producer Eaters A3: Primary Consumers. Primary consumers get energy by eating producers. 26 Consuming Critters A4: Secondary Consumers. Secondary consumers get energy by eating primary consumers. 34 Web of Life A5: Food Chains and Webs. Food chains and webs show the transfer of chemical energy in an ecosystem. 50 Tropical Trophic Tiers A6: Energy Pyramid. Scientists show energy transfers from the sun to producers to consumers with trophic levels. Launch! (Sun) SUN! where does chemical energy begin in a food chain? Chemical energy passing through the food chain starts with the sun. Unit 6: Chemical Energy and Food Chain Ready? Materials Nothing to prepare. Sticky notes Pencil Set? • Unit 4-Lesson 1-All Activities: Sun • Unit 6-Lesson 1-Activity 1: Chemical Collisions (Chemical Energy) • Unit 6-Lesson 1-Activity 2: Productive Primary Producers (Producers) • Unit 6-Lesson 1-Activity 3: Primary Producer Eaters (Primary Consumers) • Unit 6-Lesson 1-Activity 4: Consuming Critters (Secondary Consumers) • Unit 6-Lesson 1-Activity 5: Web of Life (Food Chains and Webs) • Unit 6-Lesson 1-Activity 6: Tropical Trophic Tiers (Energy Pyramid) Hawaii Standards Go! SC.K.3.1 Develop Know-Wonder-Learn chart with students.
    [Show full text]
  • Fossil and Living Cycads Say No More Megasporophylls
    hology orp a Miao et al., J Morphol Anat 2017, 1:2 nd M f A o n l a a t n o r m u y o J Journal of Morphology and Anatomy Research Article Article Open Access Fossil and Living Cycads Say "No More Megasporophylls" Yuyan Miao1,2, Zhong-Jian Liu3, Meina Wang3,4 and Xin Wang5* 1Beijing Museum of Natural History, Beijing, China 2State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China 3Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China 4College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China 5CAS Key Laboratory of Economic Stratigraphy and Paleogeography, Nanjing Institute of Geology and Palaeontology, Nanjing, China Abstract The origins of angiosperms and cycads are still mysterious. To understand the evolution of these groups as well as other gymnosperms it was impossible without mentioning a frequently used term “megasporophyll”. “Megasporophyll” is a concept that has been used widely in botany. This term is more or less related with the famous saying “Alles ist Blatt” by Goethe. This term became popular since Arber and Parkin hypothesized that the carpels in the Magnoliales were equivalent to and derived from former foliar parts bearing ovules along their margins (“megasporophyll”). Many botanists uncritically called the parts in all the reproductive organs of seed plants as “sporophylls”, no matter what they actually saw in the plants. However, the fact is that none of the reproductive parts (fossil or living), except those in the Cycadales, are foliar or leaf-like.
    [Show full text]