Unrecorded Bacterial Species Belonging to the Phylum Actinobacteria Originated from Republic of Korea

Total Page:16

File Type:pdf, Size:1020Kb

Unrecorded Bacterial Species Belonging to the Phylum Actinobacteria Originated from Republic of Korea Journal of Species Research 6(1):25-41, 2017 Unrecorded bacterial species belonging to the phylum Actinobacteria originated from Republic of Korea Mi-Sun Kim1, Ji-Hee Lee1, Seung-Bum Kim2, Jang-Cheon Cho3, Soon Dong Lee4, Ki-seong Joh5, Chang-Jun Cha6, Wan-Taek Im7, Jin-Woo Bae8, Kwangyeop Jahng9, Hana Yi10 and Chi-Nam Seong1,* 1Department of Biology, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology, Chungnam National University, Daejeon 34134, Republic of Korea 3Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea 4Department of Science Education, Jeju National University, Jeju 63243, Republic of Korea 5Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea 6Department of Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea 7Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea 8Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea 9Department of Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea 10Department of Public Health Science & Guro Hospital, Korea University, Seoul 02841, Republic of Korea *Correspondent: [email protected] As a subset study for the collection of Korean indigenous prokaryotic species, 62 bacterial strains belonging to the phylum Actinobacteria were isolated from various sources. Each strain showed higher 16S rRNA gene sequence similarity (>98.75%) and formed a robust phylogenetic clade with closest species of the phylum Actinobacteria which were defined with valid names, already. There is no official description on these 62 actinobacterial species in Korea. Consequently, unrecorded 62 species of 25 genera in the 14 families belonging to the order Actinomycetales of the phylum Actinobacteria were found in Korea. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions. Keywords: 16S rRNA gene sequence, Actinobacteria, Actinomycetales, unrecorded species Ⓒ 2017 National Institute of Biological Resources DOI:10.12651/JSR.2017.6.1.025 + INTRODUCTION with high G C content in their DNA (Ventura et al., 2007). Members of the phylum Actinobacteria are abun- During 2013 and 2014, the authors isolated a great dantly distributed in terrestrial or aquatic environments number of unrecorded actinobacterial species from di- and are involving in the decomposition of the organic verse environments in Korea. Natural environments matter, and then in promoting crop production (Servin et which were used for the isolation sources were soils al., 2008). Most of the species which have medical or eco- such as ginseng cultivating soil, biotite and natural cave, nomic significance belong to the order Actinomycetales fresh water, seawater including tidal flat sediment, plant (Miao and Davies, 2010). Many actinobacterial species, root and gut of birds and cattle. In addition, artificial en- especially members of the genus Streptomyces are rec- vironments such as fermented food and activated sludge ognized as the producers of many bioactive metabolites were used for the actinobacterial isolation sources. The that are useful to humans in medicine, such as antibac- present report focuses on the description of unrecord- terials, antifungals, antivirals, antithrombotics, immuno- ed Korean indigenous species belonging to the phylum modifiers, anti-tumor drugs and enzyme inhibitors; and Actinobacteria. in agriculture, including insecticides, herbicides, fungi- The phylum Actinobacteria is one of the greatest cides and growth promoting substances for plants and groups in the domain Bacteria (Ludwig et al., 2012). animals (Bressan, 2003). These bacteria are Gram-stain-positive microorganisms Until 2015, more than 250 Korean indigenous spe- 26 JOURNAL OF SPECIES RESEARCH Vol. 6, No. 1 cies belonging to the phylum Actinobacteria have been RESULTS AND DISCUSSION isolated, described and validated according to the List of Prokaryotic name with Standing in Nomenclature All 62 strains belonged to order Actinomycetales and (LPSN; http://www.bacterio.net/). As a part of results affiliated to 4 suborders and 15 families; 2 strains for obtained from the research program supported by NIBR, Cellulomonadaceae, 1 strain for Dermabacteraceae, 1 the present report focuses on the description of bacterial strain for Dermacoccaceae, 3 strains for Intrasporangiaceae, species belonging to the phylum Actinobacteria, which 13 strains for Microbacteriaceae, 7 strains for have not been previously isolated in Korea. Here we re- Micrococcaceae, 2 strains for Promicromonosporaceae and port 62 unrecorded actinobacterial species in Korea. 1 strain for Sanguibacteraceae (suborder Micrococcineae), 1 strain for Pseudonocardiaceae (suborder Pseudonocardineae), 2 strains for Corynebacteriaceae, 1 strain for Dietziaceae, MATERIALS AND METHODS 5 strains for Mycobacteriaceae and 6 strains for Nocardiaceae (suborder Corynebacterineae), and 17 A total of 62 bacterial strains assigned to the phylum strains for Streptomycetaceae (suborder Streptomycineae) Actinobacteria were isolated from various environmen- (Table 1). tal samples collected from soils such as ginseng culti- Isolation sources of the strains were as follows: 12 vated soil, biotite and natural cave, fresh water, seawater strains from ginseng cultivated soil, 11 strains from nat- including tidal flat sediment, plant root and gut of birds ural cave, 9 strains from soil, 8 strains from fresh water, and cattle. In addition, artificial environments such as 6 strains from sea water, 6 strains from gut of birds, fermented food and activated sludge were used for the each 2 strains from rhizosphere, black biotite, activated isolation sources (Table 1). Each sample was processed sludge and tidal flat sediment and each one strain from separately and spread onto diverse culture media (Becton gut of Korean native cattle and Korean fermented food Dickinson) including R2A, international streptomyces (jeotgal). Regional origins of the isolates were as fol- project medium 2 (ISP2), brain heart infusion (BHIA), lows: 21 strains from Gyeonggi, 11 strains from Jeju, 6 1/10 marine (1/10 MA), marine (MA), tryptic soy (TSA) strains from Incheon, 5 strains from Chungbuk, 4 strains and nutrient (NA) agars. Agar plates were incubated at from Daejeon, each 3 strains from Busan, Jeonnam and 20-37°C for 1-16 days. All strains were purified as sin- Jeonbuk, each 2 strains from Gangwon and Chungnam gle colonies and stored as 10-20% glycerol suspension and each one strain from Gyeongbuk and Seoul. at -80°C as well as lyophilized ampoules. These strains were Gram-stain-positive and chemo- Colony morphology of the strains was observed on heterotrophic. Fig. 2 shows phylogenetic assignment of agar plates with a magnifying glass after cells grew up to the strains based on 16S rRNA gene sequences. stationary phase. Cellular morphology and cell size were Here we report 62 unrecorded bacterial species in Ko- examined by either transmission electron microscopy rea belonging to the phylum Actinobacteria. or scanning electron microscopy (Fig. 1). Biochemical characteristics were tested by using API 20NE galleries Description of Cellulomonas denverensis KHH20 (bioMérieux) according to the manufacturer’s instructions. Cells are Gram-staining-positive, non-flagellated and Bacterial DNA extraction, PCR amplification and 16S palisades shaped. Colonies are circular and yellow col- rRNA gene sequencing were performed using the stan- ored after 3 days on R2A at 25°C. Positive for esculin dard procedures described elsewhere. The 16S rRNA hydrolysis and β-galactosidase in API 20NE, but neg- gene sequences of the strains assigned to the phylum ative for arginine dihydrolase, gelatinase, glucose fer- Actinobacteria were compared with the sequences held mentation, indole production, nitrate reduction and ure- in GenBank by BLAST and also analyzed using the ase. Utilize N-acetyl-glucosamine, L-arabinose, D-glu- EzTaxon-e server (Kim et al., 2012). For phylogenetic cose, D-maltose, D-mannitol, D-mannose and potassium analyses, multiple alignments were performed using the gluconate, but not utilize adipic acid, capric acid, malic Clustal_W program (Thompson et al., 1994) and gaps acid, phenylacetic acid and trisodium citrate. Strain were edited in the BioEdit program (Hall, 1999). Evolu- KHH20 ( =NIBRBAC000497852) has been isolated tionary distances were calculated using the Jukes-Cantor from Gut of Japanese crested ibis (Nipponia nippon), model (Jukes and Cantor, 1969). The phylogenetic trees Gyeonggi Province, Korea. were constructed by using the neighbour-joining (Saitou and Nei, 1987), the maximum-likelihood (Felsenstein, Description of Cellulomonas soli RDH8 1981) and the maximum-parsimony (Fitch, 1971) meth- ods with the MEGA 6.0 Program (Tamura et al., 2013) Cells are Gram-staining-positive, non-flagellated and with bootstrap values based on 1,000 replications (Fel- rod-shaped. Colonies are glossy, watery, smooth and senstein, 1985). light yellow colored after 2 days on R2A at 3°C. Diffus- February 2017 Table 1. Taxonomic affiliation and isolation information of the isolates belonging to the phylumActinobacteria . Isolation Similarity Suborder Family Genus Strain ID NIBR NO. Most closely related species Incubation (%) Source Medium condition Micrococcineae Cellulomonadaceae Cellulomonas KHH20 NIBRBAC000497852 Cellulomonas denverensis W6929T 99.64 Gut
Recommended publications
  • Arthrobacter Paludis Sp. Nov., Isolated from a Marsh
    TAXONOMIC DESCRIPTION Zhang et al., Int J Syst Evol Microbiol 2018;68:47–51 DOI 10.1099/ijsem.0.002426 Arthrobacter paludis sp. nov., isolated from a marsh Qi Zhang,1 Mihee Oh,1 Jong-Hwa Kim,1 Rungravee Kanjanasuntree,1 Maytiya Konkit,1 Ampaitip Sukhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A novel Gram-stain-positive, strictly aerobic, non-endospore-forming bacterium, designated CAU 9143T, was isolated from a hydric soil sample collected from Seogmo Island in the Republic of Korea. Strain CAU 9143T grew optimally at 30 C, at pH 7.0 and in the presence of 1 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain CAU 9143T belonged to the genus Arthrobacter and was closely related to Arthrobacter ginkgonis SYP-A7299T (97.1 % T similarity). Strain CAU 9143 contained menaquinone MK-9 (H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two glycolipids and two unidentified phospholipids as the major polar lipids. The whole-cell sugars were glucose and galactose. The peptidoglycan type was A4a (L-Lys–D-Glu2) and the major cellular fatty T acid was anteiso-C15 : 0. The DNA G+C content was 64.4 mol% and the level of DNA–DNA relatedness between CAU 9143 and the most closely related strain, A. ginkgonis SYP-A7299T, was 22.3 %. Based on phenotypic, chemotaxonomic and genetic data, strain CAU 9143T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter paludis sp. nov. is proposed. The type strain is CAU 9143T (=KCTC 13958T,=CECT 8917T).
    [Show full text]
  • Rhodoglobus Vestalii Gen. Nov., Sp. Nov., a Novel Psychrophilic Organism Isolated from an Antarctic Dry Valley Lake
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 985–994 DOI 10.1099/ijs.0.02415-0 Rhodoglobus vestalii gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley lake Peter P. Sheridan,1 Jennifer Loveland-Curtze,2 Vanya I. Miteva2 and Jean E. Brenchley2 Correspondence 1Department of Biological Sciences, PO Box 8007, Idaho State University, Pocatello, Vanya I. Miteva ID 83209, USA [email protected] 2Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA A novel, psychrophilic, Gram-positive bacterium (designated strain LV3T) from a lake near the McMurdo Ice Shelf, Antarctica, has been isolated and characterized. This organism formed red-pigmented colonies, had an optimal growth temperature of 18 ˚C and grew on a variety of media between ”2 and 21 ˚C. Scanning electron micrographs of strain LV3T that showed small rods with unusual bulbous protuberances during all phases of growth were of particular interest. The G+C content of the genomic DNA was approximately 62 mol%. The cell walls contained ornithine as the diamino acid. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Cells grown at ”2 ˚C contained significant amounts of anteiso-C15 : 1. The major menaquinones found in strain LV3T were MK-11 and MK-12. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain LV3T was a member of the family Microbacteriaceae and related to, but distinct from, organisms belonging to the genera Agreia, Leifsonia and Subtercola.In addition, alignments of 16S rRNA sequences showed that the sequence of strain LV3T contained a 13 bp insertion that was found in only a few related sequences.
    [Show full text]
  • Proposal of Mycetocola Gen. Nov. in the Family Microbacteriaceae and Three New Species, Mycetocola Saprophilus Sp
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 937–944 Printed in Great Britain Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus 1 National Institute of Takanori Tsukamoto,1† Mariko Takeuchi,2 Osamu Shida,3 Hitoshi Murata4 Sericultural and 1 Entomological Sciences, and Akira Shirata Ohwashi 1-2, Tsukuba 305-8634, Japan Author for correspondence: Takanori Tsukamoto. Tel: 81 45 211 7153. Fax: 81 45 211 0611. 2 j j Institute for Fermentation, e-mail: taktak!air.linkclub.or.jp Osaka, 17-85, Juso- honmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan The taxonomic positions of 10 tolaasin-detoxifying bacteria, which were isolated from the cultivated mushroom Pleurotus ostreatus, were investigated. 3 R&D Department, Higeta Shoyu Co. Ltd, Choshi, These strains are Gram-positive, obligately aerobic, non-sporulating and Chiba 288-8680, Japan irregular rod-shaped bacteria. They have the following characteristics: the 4 Forestry and Forest major menaquinone is MK-10, the DNA GMC content ranges from 64 to Products Research 65 mol%, the diamino acid in the cell wall is lysine and the muramic acid in Institute, PO Box 16, the peptidoglycan is an acetyl type. The major fatty acids are anteiso-C Tsukuba-Norin, 305-8687, 15:0 Japan and anteiso-C17:0. On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA–DNA reassociation values and 16S rRNA gene sequence comparison data, the new genus Mycetocola gen.
    [Show full text]
  • Name: Mycetocola Lacteus Authors: Tsukamoto Et Al. 2001 Status: New
    Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Mycetocola lacteus Authors: Tsukamoto et al. 2001 Status: New Species Literature: Int. J. Syst. Evol. Microbiol. 51:942 Risk group: 1 (German classification) Type strain: CM-10, DSM 15177, IFO 16278, NRRL B-24121 Author(s) Tsukamoto, T., Takeuchi, M., Shida, O., Murata, H., Shirata, A. Title Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus . Journal Int. J. Syst. Evol. Microbiol. Volume 51 Page(s) 937-944 Year 2001 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Mycetocola FH 6451 Species: lacteus Numbers in other collections: DSM 15177 Morphology: G R ISP 2 good beige A SP none none G R ISP 3 good beige A SP none none G R ISP 4 sparse A SP G R ISP 5 sparse A SP G R ISP 6 sparse A SP ISP 7 G R sparse A SP Melanoid pigment: - - - - NaCl resistance: % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- 28 °C Carbon utilization: Glu Ara Suc Xyl Ino Man Fru Rha Raf Cel - - - + - (+) (+) - - - Enzymes: 2 - 3 + 4 + 5 - 6 + 7 + 8 + 9 - 10 - 11 (+) 12 (+) 13 + 14 + 15 - 16 + 17 + 18 + 19 - 20 - Nit Pyz Pyr Pal βGur βGal αGlu βNag Esc Ure Gel - + + - - + + - + (+) - Comments: Beige on media 5429 and 5475 Copyright: PD Dr.
    [Show full text]
  • Name: Mycetocola Saprophilus Authors: Tsukamoto Et Al. 2001
    Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Mycetocola saprophilus Authors: Tsukamoto et al. 2001 Status: New Species Literature: Int. J. Syst. Evol. Microbiol. 51:942 Risk group: 1 (German classification) Type strain: CM-01, DSM 15178, IFO 16274, NRRL B-24119 Author(s) Tsukamoto, T., Takeuchi, M., Shida, O., Murata, H., Shirata, A. Title Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus . Journal Int. J. Syst. Evol. Microbiol. Volume 51 Page(s) 937-944 Year 2001 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Mycetocola FH 6452 Species: saprophilus Numbers in other collections: DSM 15178 Morphology: G R ISP 2 good beige A SP none none G R ISP 3 good beige A SP none none G R ISP 4 sparse A SP G R ISP 5 sparse A SP G R ISP 6 sparse A SP ISP 7 G R sparse A SP Melanoid pigment: - - - - NaCl resistance: % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- 28 °C Carbon utilization: Glu Ara Suc Xyl Ino Man Fru Rha Raf Cel - - (+) + - (+) (+) - - - Enzymes: 2 - 3 + 4 + 5 - 6 + 7 (+) 8 (+) 9 - 10 - 11 - 12 - 13 + 14 + 15 - 16 + 17 + 18 (+) 19 - 20 - Nit Pyz Pyr Pal βGur βGal αGlu βNag Esc Ure Gel - + + - - + + - - (+) - Comments: Sand yellow on medium 5429 and beige on 5475 Copyright: PD Dr.
    [Show full text]
  • Diversity of Culturable Bacteria Including Pantoea in Wild Mosquito Aedes Albopictus Claire Valiente Moro, Florence-Hélène Tran, F
    Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavingui To cite this version: Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavin- gui. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, BioMed Central, 2013, 13 (1), pp.70. 10.1186/1471-2180-13-70. hal-02522192 HAL Id: hal-02522192 https://hal-univ-lyon1.archives-ouvertes.fr/hal-02522192 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Valiente Moro et al. BMC Microbiology 2013, 13:70 http://www.biomedcentral.com/1471-2180/13/70 RESEARCH ARTICLE Open Access Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro1,2*, Florence Hélène Tran1,2, Fara Nantenaina Raharimalala3,5, Pierre Ravelonandro4 and Patrick Mavingui1,2 Abstract Background: The microbiota has been shown to play an important role in the biology of insects. In recent decades, significant efforts have been made to better understand the diversity of symbiotic bacteria associated with mosquitoes and assess their influence on pathogen transmission.
    [Show full text]
  • Corynebacterium Sp.|NML98-0116
    1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album
    [Show full text]
  • Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
    geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2019, Article ID 3476567, 11 pages https://doi.org/10.1155/2019/3476567 Research Article Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China Feina Li,1 Shaowei Liu,1 Qinpei Lu,1 Hongyun Zheng,1,2 Ilya A. Osterman,3,4 Dmitry A. Lukyanov,3 Petr V. Sergiev,3,4 Olga A. Dontsova,3,4,5 Shuangshuang Liu,6 Jingjing Ye,1,2 Dalin Huang ,2 and Chenghang Sun 1 1 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China 2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China 3Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia 4Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia 5Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Te Russian Academy of Sciences, Moscow 117997, Russia 6China Pharmaceutical University, Nanjing 210009, China Correspondence should be addressed to Dalin Huang; [email protected] and Chenghang Sun; [email protected] Received 29 March 2019; Accepted 21 May 2019; Published 9 June 2019 Guest Editor: Jayanta Kumar Patra Copyright © 2019 Feina Li et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mangrove is a rich and underexploited ecosystem with great microbial diversity for discovery of novel and chemically diverse antimicrobial compounds. Te goal of the study was to explore the pharmaceutical actinobacterial resources from mangrove soil and gain insight into the diversity and novelty of cultivable actinobacteria.
    [Show full text]