Table S1. Microbiological Tools in Agriculture, Available on the Markets in 2021 with Published Field Test Reports

Total Page:16

File Type:pdf, Size:1020Kb

Table S1. Microbiological Tools in Agriculture, Available on the Markets in 2021 with Published Field Test Reports Table S1. Microbiological tools in agriculture, available on the markets in 2021 with published field test reports. Name Species Organism type Application Target Reference Ladurner, E., Benuzzi, M., Fiorentini, F., & Lucchi, A. (2012). Efficacy of Amylo-X®, a new fungicide/bactericide based on Controls gray mold (Botrytis cinerea), Bacillus amyloliquefaciens strain Amylo-X Bacillus amyloliquefaciens PGPR biocontrol Fire blight (Erwinia amylovora) in D747 for the control of microbial grapes, apple,pPear, strawberry plant pathogens. Giornate Fitopatologiche 2012, Milano Marittima (RA), 13-16 marzo 2012, 229-236. Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., ... Control of damping-off, seed and root, Trichoderma viride, & Lorito, M. (2014). Trichoderma- ANOKA mix biocontrol nematode wilt in vegetable, tuber, Pseudomonas fluorescens based products and their widespread cotton, chilli crops use in agriculture. The Open Mycology Journal, 8(1). Shishkoff, N., & McGrath, M. T. (2002). AQ10 biofungicide combined Controls powdery mildews in grapes, AQ10 with chemical fungicides or AddQ Ampelomyces quisqalis M-10 soil fungi biocontrol apples, aubergine, tomatoes, strawberry, Biofungicide spray adjuvant for control of cucurbit cucumber powdery mildew in detached leaf culture. Plant Disease, 86(8), 915-918. Alafeea, R. A. A., Alamery, A. A., & Kalaf, I. T. (2019). Effect of bio Improves nitrogen availability in maize fertilizers on increasing the efficiency Azotovit Azotobacter chroococcum PGPR biofertilizer and broccoli of using chemical fertilizers on the yield component of maize (Zea mays L.). Plant Archives, 19(2), 303-306. Katai, J., Sandor, Z., & Tallai, M. (2008). The effect of an artificial and a Azospirillum brasilense, bacterium fertilizer on some soil Azotobacter vinelandii, Bacillus Improves nutrient acquisition on BactoFil A10 mix biofertilizer characteristics and on the biomass of megaterium, B. polymyxa, ryegrass the rye-grass (Lolium perenne L.). Pseudomonas fluorescens Cereal Research Communications, 36, 1171-1174. Azospirillum brasilense, Provides higher yield of secondary Aćimović, M. G., Dolijanović, Z. K., BactoFil B10 mix biofertilizer Azotobacter vinelandii, Bacillus metabolites in anise, coriander Oljača, S. A., Kovačević, D. D., & megaterium, B. circulans, B. Oljača, M. V. (2015). Effect of subtilis, Pseudomonas organic and mineral fertilizers on fluorescens essential oil content in Caraway, Anise and Coriander fruits. Acta Sci. Pol., Hortorum Cultus, 14(1), 95-103. Woo, S. L., Ruocco, M., Vinale, F., Biofungicide against soil, foliar and Nigro, M., Marra, R., Lombardi, N., ... Trichoderma harzianum, T. vascular pathogens use greenhouses, & Lorito, M. (2014). Trichoderma- Binab T epiphytic fungi biocontrol polysporum nurseries, horticultural, fruits, trees and based products and their widespread ornamental crops use in agriculture. The Open Mycology Journal, 8(1). Minuto, A., Migheli, Q., & Garibaldi, A. (1995). Evaluation of antagonistic Against root pathogens tomato, strains of Fusarium spp. in the Biofox C Fusarium oxysporum soil fungi biocontrol cucumber, pepper, monocot and dicot biological and integrated control of species Fusarium wilt of cyclamen. Crop Protection, 14(3), 221-226. Youssef, M. A., & Eissa, M. A. (2017). Comparison between organic Improves phosphorus acquisition in Bio-P Bacillus megaterium PGPR biofertilizer and inorganic nutrition for tomato. tomato Journal of Plant Nutrition, 40(13), 1900-1907. Youssef, M. A., & Eissa, M. A. (2017). Comparison between organic Improves potassium acquisition in Bio-K Frateuria aurantia PGPR biofertilizer and inorganic nutrition for tomato. tomato Journal of Plant Nutrition, 40(13), 1900-1907. Youssef, M. A., & Eissa, M. A. (2017). Comparison between organic Bio-N Azotobacter sp. PGPR biofertilizer Improves nitrogen acquisition in tomato and inorganic nutrition for tomato. Journal of Plant Nutrition, 40(13), 1900-1907. Saha, S., Rai, A. B., & Pandey, S. (2011). Efficacy of seed dressing Against damping-off of chilli caused by agents against damping-off disease of Biomonas Pseudomonas fluorescens PGPR biocontrol Pythium aphanidermatum chilli (Capsicum frutescens). Indian Journal of Agricultural Sciences, 81(1), 92. Bettiol W, Morandi MAB, Pinto ZV, Bio-save Pseudomonas syringae ESC-10, Against postharvest diseases in apples, PGPR biocontrol de Paula Jr TJ, Corrêa EB, Moura AB, 10LP ESC-11 pears, lemons, oranges, or grapefruit Lucon CMM, Costa JCB, Bezerra JL (2012) Produtos comerciais à base de agentes de biocontrole de doenças de plantas, Jaguariúna, SP: Embrapa Meio Ambiente Fravel, D. R. (2005). Bio-Ject Pseudomonas aureofaciens Controls dollar spot, anthracnose, Commercialization and PGPR biocontrol Spot-Less strain Tx-1 pythium, pink snow mold in turfgrass implementation of biocontrol. Annu. Rev. Phytopathol., 43, 337-359. Hien, N. T., Toan, P. V., Choudhury, A. T., Rose, M. T., Roughley, R. J., & Pseudomonas fluorescens, Kennedy, I. R. (2014). Field Nitrogen fixation, phosphorous Candida tropicalis, Bacillus application strategies for the inoculant Biogro mix biofertilizer solubilization, organic matter amyloliquefaciens, Bacillus biofertilizer BioGro supplementing mineralization subtilis fertilizer nitrogen application in rice production. Journal of Plant Nutrition, 37(11), 1837-1858. Kloepper, J. W., Gutierrez-Estrada, A., & McInroy, J. A. (2007). Increases root and shoot mass, stem Photoperiod regulates elicitation of Bacillus subtilis GB03, Bacillus caliper, and the root to shoot ratio of BioYield PGPR biofertilizer growth promotion but not induced amyloliquefaciens IN937a tomato, pepper, cucumber, tobacco, and resistance by plant growth-promoting melons rhizobacteria. Canadian Journal of Microbiology, 53(2), 159-167. Weiss A, Mögel G (2006). Kunz S Development of “Boni-Protect”- a yeast preparation for use in the control Blossom- Aureobasidium pullulans DSM Developed and registered to control of post-harvest diseases of apples. In: Protect, Boni- 14940 (CF 10), DSM 14941 (CF epiphytic fungi biocontrol postharvest diseases of apple as the Boos M (ed) 12th International Protect 40) product conference on cultivation technique and phytopathologtical problems in organic fruit-growing. Weinsberg, Germany, pp 113–117 Sharifazizi, M., Harighi, B., & Sadeghi, A. (2017). Evaluation of biological control of Erwinia Blight Ban Pseudomonas fluorescens A506 PGPR biocontrol Against blight in fruits, tomato, potato amylovora, causal agent of fire blight A506 disease of pear by antagonistic bacteria. Biological Control, 104, 28- 34. Controls soil fungal pathogens, plant- Harman, G. E., Obregón, M. A., Botrycid Burkholderia vietnamiensis PGPR biocontrol pathogenic bacteria, and nematodes Samuels, G. J., & Lorito, M. (2010). Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Disease, 94(8), 928-939. Fernández, A., Villaverde, M., Casanova, J., Malo, J., Nicolas, J. A., & Blanca, I. (2004). Nuevo aislado de Botrybel Bacillus velezensis PGPR biocontrol Controls gray mold (Botrytis cinerea) Bacillus y su utilización para el control de hongos fitopatógenos. Agroecologia. net, 6, 50-57. Mishra, J., & Arora, N. K. (2016). Bioformulations for plant growth Phosphorous solubilization and promotion and combating CataPult Glomus intraradices, Bacillus mix biofertilizer mineralization, drought resistance in phytopathogens: a sustainable SuperFine spp. cereals, tree and vine crops approach. In Bioformulations: For sustainable agriculture (pp. 3-33). Springer, New Delhi. Mehnaz, D., Wang, Q., Gross, H., Li, Against leaf stripe, net blotch, Fusarium Y., Jahanshah, G., & Paterson, J. Cedomon, Pseudomonas chlororapsis PGPR biocontrol spp., spot blotch, leaf spot in barley and (2016). The contribution of genome Cedress oats mining strategies to the understanding of active principles of PGPR strains. Kumar, K. V. K., Raju, S. K., Reddy, M. S., Kloepper, J. W., Lawrence, K. S., Groth, D. E., ... & Binghai, D. Ecomonas, Controls sheath blight (Rhizoctonia (2009). Evaluation of commercially Pseudomonas fluorescens PGPR biocontrol Florezen P solani) on rice available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol, 3(2), 485-488. Yadav, M. S., Godika, S., Yadava, D. K., Ahmad, N., Mehta, N., Bhatnagar, K., ... & Chattopadhyay, C. (2019). Controls Sclerotinia sclerotiorum on Prioritizing components of package of Ecosom-Th Trichoderma harzianum epiphytic fungi biocontrol mustard (Brassica juncea) integrated pest management in Indian mustard (Brassica juncea) in India for better economic benefit. Crop Protection, 120, 21-29. Catalkaya, M., & DEVRAN, Z. Flocter WP5 Bacillus firmus PGPR biocontrol Controls root-knot nematodes (2019). Integrated management of Mi- 1 virulent Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in greenhouse tomatoes. Türkiye Entomoloji Dergisi, 43(2), 157-169. Gul, A., Kidoglu, F., Tüzel, Y., & Tüzel, I. H. (2008). Effects of nutrition and" Bacillus Bacillus amyloliquefaciens ssp. FZB24 PGPR biofertilizer Ornamentals, vegetables, field crops amyloliquefaciens" on tomato (" plantarum Solanum lycopersicum L.") growing in perlite. Spanish Journal of Agricultural Research, (3), 422-429. Hafeez, F. Y., Abaid-Ullah, M., & Hassan, M. N. (2013). Plant growth- promoting rhizobacteria as zinc Azotobacter, Pseudomonas mobilizers: a promising approach for Gmax PGPR mix biofertilizer Field crops fluorescens
Recommended publications
  • Effects of Biofertilizers Combined with Different Soil Amendments on Potted Rice Plants
    RESEARCH 157 EFFECTS OF BIOFERTILIZERS COMBINED WITH DIFFERENT SOIL AMENDMENTS ON POTTED RICE PLANTS Arshad Javaid1* ABSTRACT This pot study investigated the effect of the combined application of two commercial biofertilizers viz. Biopower and EM (Effective Microorganisms) on rice (Oryza sativa L.) growth and yield in soils amended with farmyard manure, green manure, and NPK fertilizers. Biopower is a product of the Nuclear Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan, which contains species of associative and endophytic diazotrophs. EM (effective microorganisms), a product developed by Japanese scientists, consists of co-existing beneficial microorganisms, mainly species of photosynthetic and lactic acid bacteria, as well as yeast. Applying Biopower adversely affected plant growth and yield in NPK fertilizer amendment. Conversely, this biofertilizer markedly enhanced plant growth and yield in green manure amended soil while its effect was not significant in farmyard manure amendment. In green manure amendment, applying EM enhanced grain yield by 46%. Co-inoculation of Biopower and EM evidently improved root and shoot growth in farmyard manure amended soil. This study concludes that the two biofertilizers clearly enhanced shoot biomass and grain yield in green manure amended soils. Key words: Associated N2-fixers, Biopower, effective microorganisms, rice, soil amendments. INTRODUCTION several bacteria may be isolated from sterilized surface roots of flooded rice plants, suggesting endophytic Rice (Oryza sativa L.) is probably the most important colonization (Raimam et al., 2007). The most likely cereal in the world and serves as food for about 50% of candidates for biological N fixation in rice are species the world’s population (Ladha et al., 1997).
    [Show full text]
  • A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible Through Initial and Repeated Biochar Application
    agronomy Article A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application Ján Horák 1,* , Tatijana Kotuš 1, Lucia Toková 1, Elena Aydın 1 , Dušan Igaz 1 and Vladimír Šimanský 2 1 Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (T.K.); [email protected] (L.T.); [email protected] (E.A.); [email protected] (D.I.) 2 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that 2 biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards Citation: Horák, J.; Kotuš, T.; Toková, moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water L.; Aydın, E.; Igaz, D.; Šimanský, V.
    [Show full text]
  • Bio-Fertilizers- Power of Beneficial Microorganisms in Soils
    DOI: 10.26717/BJSTR.2018.04.001076 Nur Okur. Biomed J Sci & Tech Res ISSN: 2574-1241 Mini review Open Access A Review: Bio-Fertilizers- Power of Beneficial Microorganisms in Soils Nur Okur* Department of Soil Science and Plant Nutrition, Ege University, Turkey Received: May 01, 2018; Published: May 16, 2018 *Corresponding author: Nur Okur, Departmentof Soil Science and Plant Nutrition, Ege University, Turkey Abstract uptake of nutrients by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes Bio-fertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help crop plants’ important components of integrated nutrient management, as they are cost effective and renewable source of plant nutrients to supplement thein the chemical soil which fertilizers augment for sustainablethe extent of agriculture. availability of nutrients in a form easily assimilated by plants. The use of bio-fertilizers is one of the Keywords: Bio-fertilizer; Sustainable agriculture; Liquid bio-fertilizer Abbreviations: PGPB: Plant Growth Promoting Bio-Fertilizer; KSB: Potassium Solubilizing Bio-Fertilizer; KMB: Potassium Mobilizing Bio- Fertilizer; SOB: Sulfur Oxidizing Bio-Fertilizer; NFB: Nitrogen Fixing Bio-Fertilizers Introduction Some strategies increasing the quality of the soil are needed to ensure sustainability in soil fertility. Increasing the population of a) more cost-effective than chemical fertilizers, availability of nitrogen
    [Show full text]
  • Assessment of Multifunctional Biofertilizers on Tomato Plants Cultivated Under a Fertigation System ABSTRACT Malaysian Nuclear A
    Assessment of multifunctional biofertilizers on tomato plants cultivated under a fertigation system Phua, C.K.H., Abdul Wahid, A.N. and Abdul Rahim, K. Malaysian Nuclear Agency (Nuclear Malaysia) Ministry of Science, Technology and Innovation, Malaysia (MOSTI) E-mail: [email protected] ABSTRACT Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bioorganic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG & PA and MF- BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N2-fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional biofertilizers on tomato plants grown under a fertigation system. Multifunctional biofertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional biofertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. ABSTRAK Agensi Nuklear Malaysia (Nuklear Malaysia) telah membangunkan satu siri baja bioorganic pelbagai fungsi, iaitu MULTIFUNCTIONAL BIOFERT PG & PA and MF-BIOPELLET, dalam usaha mengurangkan pergantungan terhadap baja kimia dalam penghasilan tanaman. Produk ini mengandungi mikroorganisma setempat yang menpunyai ciri yang dikehendaki seperti penggalak pertumbuhan, pengurai fosfat, antagonis terhadap penyakit layu bakteria dan menggalak aktiviti pengikat N2. Produk ini difomulasi dalam bentuk cecair dan diperkenalkan ke dalam sistem fertigasi untuk mengurangkan penggunaan baja kimia.
    [Show full text]
  • Effect of Chemical, Organic and Bio Fertilizers on Photosynthetic Pigments, Carbohydrates and Minerals of Wheat (Triticum Aestivum
    Int. J. Adv. Res. Biol. Sci. (2016). 3(2): 296-310 Research Article SOI: http://s-o-i.org/1.15/ijarbs-2016-3-2-40 Effect of Chemical, Organic and Bio Fertilizers on photosynthetic pigments, carbohydrates and minerals of Wheat (Triticum aestivum. L) Irrigated with Sea Water Amany S. Al-Erwy*, Abdulmoneam Al-Toukhy and Sameera O. Bafeel Dept. Biological Sciences, Faculty of Sciences King Abdul Aziz Univ, KSA *Corresponding author: [email protected] Abstract The present study was conducted to investigate the effect of chemical, organic and bio-fertilizers on photosynthetic pigments, soluble sugars, non-soluble sugars, total carbohydrates and mineral elements in wheat (Triticum aestivum L.) plants grown under different concentrations of sea water (0%, 20% and 40%). Chemical fertilizer was used at concentrations of 0, 250 and 500 kg/ha; Rhizobium and Azotobacter were used as Biofertilizers; and Humic acid in concentrations of (0, 5 and 10 kg/ha) was used as organic fertilizer. The obtained results showed that photosynthetic pigments, carbohydrates and nutrient elements were markedly reduced at the high levels of sea water particularly 40% ratio. While, fertilizer treatments had an observed promotion effects on those constituents, particularly Bio and organic fertilizers that were more effective than chemical fertilizers even at high concentrations of sea water. This may be because of the potential effect of organic and bio- fertilizers on providing the nutrient elements needed by plants besides some other beneficial compounds that help plants to withstand high salt stress conditions. Keywords: Sea water, fertilizers, wheat, pigments, carbohydrates, minerals. Introduction Wheat (Triticum aestivum, L.) is one of the most Saudi Arabia as well as other arid and semi-arid important crops in most countries of the world regions all over the world (Almaghrabi, 2012).
    [Show full text]
  • Bacteria in Agrobiology: Stress Management
    Bacteria in Agrobiology: Stress Management Bearbeitet von Dinesh K. Maheshwari 1. Auflage 2012. Buch. XII, 333 S. Hardcover ISBN 978 3 642 23464 4 Format (B x L): 15,5 x 23,5 cm Gewicht: 684 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Entwicklungsbiologie > Bakteriologie (nichtmedizinisch) Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 The Management of Soil Quality and Plant Productivity in Stressed Environment with Rhizobacteria Dilfuza Egamberdieva 2.1 Introduction The urgency of feeding the world’s growing population while combating soil pollution, salinization, and desertification has given plant and soil productivity research vital importance. Under such circumstances, it requires suitable biotech- nology not only to improve crop productivity but also to improve soil health through interactions of plant roots and soil microorganisms (Lugtenberg et al. 2002). Interest in bacterial fertilizers has increased, as it would substantially reduce the use of chemical fertilizers and pesticides which often contribute to the pollution of soil–water ecosystems. Presently, about 20 biocontrol products based on Pseu- domonas, Bacillus, Streptomyces, and Agrobacterium strains have been commercialized, but there still is a need to improve the efficacy of these biocontrol products (Copping 2004; Chebotar et al. 2000; Lugtenberg and Kamilova 2004). Soil salinity disturbs the plant–microbe interaction, which is a critical ecological factor to help further plant growth in degraded ecosystems (Paul and Nair 2008).
    [Show full text]
  • Bio-Organic Fertilizers Stimulate Indigenous Soil Pseudomonas Populations to Enhance Plant Disease Suppression
    Tao et al. Microbiome (2020) 8:137 https://doi.org/10.1186/s40168-020-00892-z RESEARCH Open Access Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression Chengyuan Tao1,2†, Rong Li1,2†, Wu Xiong3, Zongzhuan Shen1,2, Shanshan Liu1,2, Beibei Wang4, Yunze Ruan4, Stefan Geisen5,6, Qirong Shen1,2,7* and George A. Kowalchuk3 Abstract Background: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. Results: To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons.
    [Show full text]
  • Multifunctional Liquid Biofertilizer As An
    MULTIFUNCTIONAL LIQUID BIOFERTILIZER AS AN INNOVATIVE AGRONOMIC INPUT FOR MODERN AGRICULTURE BIOBAJA CECAIR MULTIFUNGSISEBAGAI INPUTAGRONOMIINOVATIF UNTUK PERTANIAN MODEN Phua Chop Kwai Hoe and Khairuddin Abdul Rahim Agensi Nuklear Malaysia (Nuklear Malaysia) Kementerian Sains, Teknologi dan Inovasi (MOSTT), Bangi, 43000 KAJANG, Selangor E-mail: [email protected] Abstract Liquid biofertilizer is increasingly available in the market as one of the alternatives to chemical and organic fertilizers as well as solid substrate-based biofertilizers. One of the benefits from biofertilizer is the contribution from population of microorganisms available. These microorganisms may enhance the plant growth and create healthy rhizosphere. The advantage of a liquid biofertilizer is that no solid carrier is needed. These products are also developed for potential application in modem agriculture such as soilless farming systems, viz. fertigation and hydroponics. Traditionally, liquid biofertilizer is produced from fermentation of effective microorganisms which was recommended to be used within three months. Therefore, the development of low-cost and long shelf-life liquid biofertilizers was conducted at Malaysian Nuclear Agency (Nuclear Malaysia). Three biofertilizer inoculums (phosphate solubilising bacteria and plant growth promoting bacteria) were developed into four formulations of liquid biofertilizers. The liquid biofertilizers were kept at low temperatures (9 + 2 °C) and room temperatures (28 ± 2°C) for shelf-life study. Nutrient broth liquid biofertilizer kept at low temperatures showed significantly high survival rates after storage for six months as compared to other formulations and treatments. Keywords: Liquid biofertilizer, phosphate solubilising bacteria, plant growth promoting bacteria, shelf life; soilless system Abstrak Permintaan biobaja cecair di pasaran semakin meningkat, di mana ia adalah altematif kepada baja kimia, baja organik dan biobaja substrat pepejal.
    [Show full text]
  • The Effect of Different Doses of N Fertilization on the Parameters of Soil Organic Matter and Soil Sorption Complex
    Journal of Ecological Engineering Volume 18, Issue 3, May 2017, pages 104–111 DOI: 10.12911/22998993/69366 Research Article THE EFFECT OF DIFFERENT DOSES OF N FERTILIZATION ON THE PARAMETERS OF SOIL ORGANIC MATTER AND SOIL SORPTION COMPLEX Vladimír Šimanský1, Peter Kováčik2, Jerzy Jonczak3 1 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia, e-mail: [email protected] 2 Department of Agrochemistry and Plant Nutrition, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia 3 Department of Soil Environment Sciences, Warsaw University of Life Sciences – SGGW, Poland Received: 2017.06.03 ABSTRACT Accepted: 2017.04.05 Mineral N fertilizer application may have an effect on soil organic matter and other Published: 2017.05.02 soil parameters. Therefore, we studied the effects of different doses of N fertilization on soil organic matter and chemical properties of Haplic Luvisol in the locality of Dolná Malanta (Slovakia) during 2014–2016. Soil samples were collected from the plots exposed to the following treatments: 1. N0 – no N fertilization as control dur- ing 2014–2016, 2. N40 – N fertilizer at the rate of 40 kg N ha–1 in 2014 and 2016, 3. N80 – N fertilizer at the rate of 80 kg N ha–1 in 2014 and 2016, 4. N160 – N fertilizer at the rate of 160 kg N ha–1 in 2015, and 5. N240 – N fertilizer at the rate of 240 kg N ha–1 in 2015.
    [Show full text]
  • Use of Plant-Associated Bacillus Strains As Biofertilizers and Biocontrol Agents in Agriculture
    Chapter 3 Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture Rainer Borriss 3.1 Introduction In spite of limited arable land coupled with rising demand of a steadily increasing human population, food supply is a global challenge making production of high- quality food, free from unacceptable levels of chemicals, a pressing need (Table 3.1). Paradoxically, this increased demand has led to the development of agricultural practices that are undesired and increase disease pressure on plants. An extreme example, impressively illustrating our situation, was recently reported (Guo et al. 2010). Overuse of N-fertilizer contributes substantially to regional soil acidification in China. Since 1980, crop production has increased with rapidly increasing N-fertilizer consumption. Decreasing N use efficiency, mainly due to increasing soil acidification, results from this practice. More and more N-fertilizer is being lost to the environment, causing further negative environmental impacts. It has been estimated that approximately one third of the food crop is destroyed every year due to attack by insects, pathogenic fungi, bacteria, and nematodes. Current worldwide potato crop losses, due to late blight caused by pathogenic fungus Phytophthora infestans, are at $6.7 billion, for instance (Haverkort et al. 2008). At present, the major strategies against damages caused by plant pathogens are chemical pesticides or resistant plant cultivars. However, there are major limitations in using both strategies. Firstly, agrochemicals do not prevent all diseases, and toxic residues can accumulate in the soil and food chain. Therefore, the use of many agrochemicals was banned or restricted, because of environmental and health risks.
    [Show full text]
  • Chemical and Biological Enhancement Effects of Biochar on Wheat Growth and Yield Under Arid Field Conditions
    sustainability Article Chemical and Biological Enhancement Effects of Biochar on Wheat Growth and Yield under Arid Field Conditions Zarmeena Khan 1, Muhammad Habib ur Rahman 1,2,* , Ghulam Haider 1,3, Rabia Amir 3, Rao Muhammad Ikram 1, Shakeel Ahmad 4, Hannah Kate Schofield 5 , Bilal Riaz 1, Rashid Iqbal 6 , Shah Fahad 7,* , Rahul Datta 8,* , Alaa Baazeem 9 , Ayman EL Sabagh 10 and Subhan Danish 11,* 1 Department of Agronomy, MNS-University of Agriculture, Multan 60000, Pakistan; [email protected] (Z.K.); [email protected] (G.H.); [email protected] (R.M.I.); [email protected] (B.R.) 2 Crop Science, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany 3 Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; [email protected] 4 Department of Soil Science, MNS-University of Agriculture, Multan 60000, Pakistan; [email protected] 5 Biogeochemistry Research Centre, School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth PL4 8AA, UK; kate.schofi[email protected] 6 Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan; [email protected] 7 Citation: Khan, Z.; Rahman, M.H.u.; Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan 8 Haider, G.; Amir, R.; Ikram, R.M.; Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic Ahmad, S.; Schofield, H.K.; Riaz, B.; 9 Department of Biology, College of Science, Taif University, P.O.
    [Show full text]
  • Revisiting the Standard Soil Test: the Potential of Macro- and Microbiological Measures to Improve Agricultural Health and Productivity
    University of South Carolina Scholar Commons Theses and Dissertations Fall 2019 Revisiting the Standard Soil Test: The Potential of Macro- and Microbiological Measures to Improve Agricultural Health and Productivity Gabriel Jacob Kenne Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Environmental Health Commons Recommended Citation Kenne, G. J.(2019). Revisiting the Standard Soil Test: The Potential of Macro- and Microbiological Measures to Improve Agricultural Health and Productivity. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5547 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. REVISITING THE STANDARD SOIL TEST: THE POTENTIAL OF MACRO- AND MICROBIOLOGICAL MEASURES TO IMPROVE AGRICULTURAL HEALTH AND PRODUCTIVITY by Gabriel Jacob Kenne Bachelor of Science University of Nebraska at Omaha, 2008 Master of Public Health Kansas State University, 2013 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Environmental Health Sciences The Norman J. Arnold School of Public Health University of South Carolina 2019 Accepted by: R. Sean Norman, Major Professor Anindya Chanda, Committee Member Robin “Buz” Kloot, Committee Member Geoff Zehnder, Committee Member Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright Gabriel Jacob Kenne, 2019 All Rights Reserved ii ABSTRACT The agricultural ecosystem has become the largest non-ice-covered terrestrial ecosystem on the planet and has significant direct and indirect impacts on the global health of both the environment and humanity.
    [Show full text]