Assessment of Multifunctional Biofertilizers on Tomato Plants Cultivated Under a Fertigation System ABSTRACT Malaysian Nuclear A

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Multifunctional Biofertilizers on Tomato Plants Cultivated Under a Fertigation System ABSTRACT Malaysian Nuclear A Assessment of multifunctional biofertilizers on tomato plants cultivated under a fertigation system Phua, C.K.H., Abdul Wahid, A.N. and Abdul Rahim, K. Malaysian Nuclear Agency (Nuclear Malaysia) Ministry of Science, Technology and Innovation, Malaysia (MOSTI) E-mail: [email protected] ABSTRACT Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bioorganic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG & PA and MF- BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N2-fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional biofertilizers on tomato plants grown under a fertigation system. Multifunctional biofertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional biofertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. ABSTRAK Agensi Nuklear Malaysia (Nuklear Malaysia) telah membangunkan satu siri baja bioorganic pelbagai fungsi, iaitu MULTIFUNCTIONAL BIOFERT PG & PA and MF-BIOPELLET, dalam usaha mengurangkan pergantungan terhadap baja kimia dalam penghasilan tanaman. Produk ini mengandungi mikroorganisma setempat yang menpunyai ciri yang dikehendaki seperti penggalak pertumbuhan, pengurai fosfat, antagonis terhadap penyakit layu bakteria dan menggalak aktiviti pengikat N2. Produk ini difomulasi dalam bentuk cecair dan diperkenalkan ke dalam sistem fertigasi untuk mengurangkan penggunaan baja kimia. Satu kajian rumah kaca telah dilakukan keatas pokok tomato dengan mengguna sistem fertigasi. Produk biobaja pelbagai fungsi diberi secara tunggal dan gabungan dengan pelbagai kadar NPK dalam sistem fertigasi. Berat basah dan kering pokok tomato diukur. Aplikasi biobaja pelbagai fungsi dengan gabungan 20 g NPK memberi hasil berat basah dan kering yang bererti berbanding dengan rawatan lain. INTRODUCTION Fertigation has been described as the application of plant nutrients in irrigation water to accomplish fertilization. It is becoming widely accepted in the industry due to the fact that a properly designed system will perform accurately; it is economical, easy to install, saves time, labour and most importantly, will save money (Selim et al., 2010). Biofertigation is the use of bioinoculants or biofertilizer microorganisms in a fertigation system. Biofertigation can precisely deliver the bioinculants in the root zone (Gomathy et al., 2008). Efficiency studies of biofertigation in terms of nutrient uptake have been conducted on cotton (Gomathy et al., 2008) and broccoli (Selim et al, 2009). They reported that biofertigation increased growth of these plants. Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bioorganic fertilizers namely, MULTIFUNCTIONAL BIOFERT PG & PA and MF-BIOPELLET, in reducing dependency on chemical fertilizer for crop production (Phua et al., 2009a; 2009b). These products use 100% natural products, with no added chemicals. They are, thus, ‘Green Products’ - environmental friendly, optimising the bioresources, pathogen-free, and are suitable for vegetables. These products contain indigenous microorganisms that have desired characteristics, including plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhance N-fixing activity. The objective of this study was to adapt multifunctional biofertilizer for use in a biofertigation system. MATERIALS AND METHODS Biofertigation experiment of tomato was carried out at greenhouse using an existing fertigation system. Two-week-old tomato seedlings were transplanted into pots that contained 1 kg of soil mixture consisting of soil, peat and sand in the ratio of 2:1:1. All seedlings received biofertilizers. Biofertilizers were prepared by culturing three selected isolates used in MULTIFUNCTIONAL BIOFERT PG & PA and MF-BIOPELLET on nnutrient broth for 48 h ((Phua et al., 2009a; 2009b). A volume of 500 mL of the cultures (approximately 1012 cfu/ml) was diluted in 500 L of water and given as biofertigation. Biofertilizer application through drip was done twice in a day. Four treatments were used in this experiment. Treatment 1 (T1) comprised biofertilizer only. Treatment 2 (T2), 3 (T3) and 4 (T4) were biofertilizer with added 20, 2 and 0.2 g of NPK, respectively. There were three replications for each treatment with five plants for each replication. The experimental design was a completely randomised design (CRD). Crops were harvested after two months. Fresh and dry weights were determined. Data were analysed by ANOVA with the means separated by Duncan’s test (P <_0.05). RESULTS AND DISCUSSION Combinations of microbial inoculate and chemical fertilizers given through drip irrigation have shown variable results. Biofertigation with 20 g NPK and biofertilizer (T2) significantly recorded the highest fresh weights of 101 g (Figure 1) as compared to other treatments. Figure 2 shows both biofertilizer treatment 2 (T2) and 3 (T3) with 20 and 2 g NPK, respectively, also significantly recorded the highest dry weights of the seedlings as compared to other treatments. Dry weight of treatment 2 was 13 g and treatment 3 was 12 g. There was no significant difference for treatments 2 and 3 (Figure 2). This indicated application of 2 g of NPK with biofertilizer was sufficient for plant growth. Combination of biofertilizer with NPK increased the growth of tomato seedlings, which may due to the frequency of biofertigation that was applied twice a day. Therefore, soil moisture may increase, leading to effective absorption of nutrients and increased phosphate solubilising activity and production of plant growth hormone by the inoculants. Efficiency studies of biofertigation in terms of nutrient uptake have been conducted on cotton (Gomathy et al., 2008) and broccoli (Selim et al, 2009). They also reported that biofertigation increased growth of these plants. Although the present experiment showed biofertigation could increase the growth of tomato seedlings, further investigations of biofertigation, including on shelf life of biofertilizer and their application on soilless mixture should be conducted. Figure 1: Fresh weights (g) of tomato seedlings. Figure 2: Dry weights (g) of tomato seedlings. CONCLUSIONS Combination of 2 g of NPK with biofertilizer using biofertigation system enhanced the growth of tomato seedlings in a greenhouse trial. Further investigation of biofertigation should be investigated. ACKNOWLEDGEMENT The authors wish to express their gratitude to Nuclear Malaysia and Ministry of Science, Technology and Innovation, Malaysia (MOSTI) for the technical and financial support (02-03- 01-SF0051). The able technical assistance of Abdul Razak Ruslan, Latiffah Norddin, Hazlina Abdullah and Maizatul Akmam Mhd Nasir, is greatly appreciated. REFERENCES Gomathy, M., Sathya Prakash, D., Thangaraju.,M., Sundaram., S.P. and Manicka Sundaram, P. (2008). Impact of biofertigation of azophosmet on cotton yield under drip irrigation. Research Journal of Agriculture and Biological Sciences 4(6):695- 699 Phua, C.K.H., Abdul Rahim, K. and Abdul Wahid, A.N. (2009a). Evaluation on multifunctional biofertilizer formulation on selected vegetable crops using the N-15 isotopic tracer technique. In: 31th Symposium of the Malaysian Society for Microbiology”, Penang. Phua, C.K.H., Abdul Wahid, A.N. and Abdul Rahim, K. (2009b). Development of indigenous microorganisms for multifunctional biofertilizer formulation and evaluation on their effectiveness on Chinese ccabbage using isotopic tracer technique. In: Simposium Biologi Malaysia 2009, Bangi, Selangor. Selim, E.M., Abd El-fattah., A.A., Abouel-Magd., M.M and Khalafallah., M.A. (2009). Efficiency of bio-fertigation on nutrients uptake by broccoli and soil microbial biomass under sandy soil conditions. Eurasian Journal of Agricultural & Environmental Sciences 6(3):280-286. Selim, E.M., El-Neklawy, A.S. and Mosa, A.A. (2010). Humid acid fertigation of drip irrigated cowpea under sandy soil conditions. Eurasian Journal of Agricultural & Environmental Sciences 8(5):538-54.3.
Recommended publications
  • Effects of Biofertilizers Combined with Different Soil Amendments on Potted Rice Plants
    RESEARCH 157 EFFECTS OF BIOFERTILIZERS COMBINED WITH DIFFERENT SOIL AMENDMENTS ON POTTED RICE PLANTS Arshad Javaid1* ABSTRACT This pot study investigated the effect of the combined application of two commercial biofertilizers viz. Biopower and EM (Effective Microorganisms) on rice (Oryza sativa L.) growth and yield in soils amended with farmyard manure, green manure, and NPK fertilizers. Biopower is a product of the Nuclear Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan, which contains species of associative and endophytic diazotrophs. EM (effective microorganisms), a product developed by Japanese scientists, consists of co-existing beneficial microorganisms, mainly species of photosynthetic and lactic acid bacteria, as well as yeast. Applying Biopower adversely affected plant growth and yield in NPK fertilizer amendment. Conversely, this biofertilizer markedly enhanced plant growth and yield in green manure amended soil while its effect was not significant in farmyard manure amendment. In green manure amendment, applying EM enhanced grain yield by 46%. Co-inoculation of Biopower and EM evidently improved root and shoot growth in farmyard manure amended soil. This study concludes that the two biofertilizers clearly enhanced shoot biomass and grain yield in green manure amended soils. Key words: Associated N2-fixers, Biopower, effective microorganisms, rice, soil amendments. INTRODUCTION several bacteria may be isolated from sterilized surface roots of flooded rice plants, suggesting endophytic Rice (Oryza sativa L.) is probably the most important colonization (Raimam et al., 2007). The most likely cereal in the world and serves as food for about 50% of candidates for biological N fixation in rice are species the world’s population (Ladha et al., 1997).
    [Show full text]
  • Commercial Fertilizer and Soil Amendments
    Commercial Fertilizer And Soil Amendments Tedrick transmigrated dourly? Free Townsend supercharges acquisitively and impolitely, she mensed her gripsack escalate lithographically. Ahmed suppresses her pedlaries slantly, she warm-ups it eagerly. For designing a commercial-scale exchange of equipment or production line. They need fertilizer and soil amendment differences between the fertilizing materials, dredged materials make an adequate supply of natural organic and send in. Use chemical components in soils to obtain samples shall entitle a timely fashion. Organic contaminants from which result from fertilizer and root level. On clayey soils soil amendments improve certain soil aggregation increase porosity. Is thick a gift? Are derived from plants and animals. Plant growth or to children any physical microbial or chemical change are the soil. 21201 This work consists of application of fertilizer soil amendments. There may be to the product heavy metals calculator found, and commercial fertilizer soil amendments is sometimes used. Many soils and fertilizers and regulations requires special handling. Prior to seeding and shall consist of early soil conditioner commercial. The plant roots and fertilizer and commercial soil amendments by reduced powdery mildew on croptype, they function of potato cropping systems for low level. The commercial compost may fail to store and nitric acid method of material will break down the economics of. Commercial fertilizer or soil conditioner rules and regulations violation notice hearing. The first generally used by larger commercial farms gives the nutrients. The soil and fatty acids, avoid poisoning your banana peels in. Contain animal plant nutrients, when applied in combination to crops, it is timely of print but she can find upcoming on Amazon or spoil your block library.
    [Show full text]
  • Bio-Fertilizers- Power of Beneficial Microorganisms in Soils
    DOI: 10.26717/BJSTR.2018.04.001076 Nur Okur. Biomed J Sci & Tech Res ISSN: 2574-1241 Mini review Open Access A Review: Bio-Fertilizers- Power of Beneficial Microorganisms in Soils Nur Okur* Department of Soil Science and Plant Nutrition, Ege University, Turkey Received: May 01, 2018; Published: May 16, 2018 *Corresponding author: Nur Okur, Departmentof Soil Science and Plant Nutrition, Ege University, Turkey Abstract uptake of nutrients by their interactions in the rhizosphere when applied through seed or soil. They accelerate certain microbial processes Bio-fertilizers are defined as preparations containing living cells or latent cells of efficient strains of microorganisms that help crop plants’ important components of integrated nutrient management, as they are cost effective and renewable source of plant nutrients to supplement thein the chemical soil which fertilizers augment for sustainablethe extent of agriculture. availability of nutrients in a form easily assimilated by plants. The use of bio-fertilizers is one of the Keywords: Bio-fertilizer; Sustainable agriculture; Liquid bio-fertilizer Abbreviations: PGPB: Plant Growth Promoting Bio-Fertilizer; KSB: Potassium Solubilizing Bio-Fertilizer; KMB: Potassium Mobilizing Bio- Fertilizer; SOB: Sulfur Oxidizing Bio-Fertilizer; NFB: Nitrogen Fixing Bio-Fertilizers Introduction Some strategies increasing the quality of the soil are needed to ensure sustainability in soil fertility. Increasing the population of a) more cost-effective than chemical fertilizers, availability of nitrogen
    [Show full text]
  • Effect of Chemical, Organic and Bio Fertilizers on Photosynthetic Pigments, Carbohydrates and Minerals of Wheat (Triticum Aestivum
    Int. J. Adv. Res. Biol. Sci. (2016). 3(2): 296-310 Research Article SOI: http://s-o-i.org/1.15/ijarbs-2016-3-2-40 Effect of Chemical, Organic and Bio Fertilizers on photosynthetic pigments, carbohydrates and minerals of Wheat (Triticum aestivum. L) Irrigated with Sea Water Amany S. Al-Erwy*, Abdulmoneam Al-Toukhy and Sameera O. Bafeel Dept. Biological Sciences, Faculty of Sciences King Abdul Aziz Univ, KSA *Corresponding author: [email protected] Abstract The present study was conducted to investigate the effect of chemical, organic and bio-fertilizers on photosynthetic pigments, soluble sugars, non-soluble sugars, total carbohydrates and mineral elements in wheat (Triticum aestivum L.) plants grown under different concentrations of sea water (0%, 20% and 40%). Chemical fertilizer was used at concentrations of 0, 250 and 500 kg/ha; Rhizobium and Azotobacter were used as Biofertilizers; and Humic acid in concentrations of (0, 5 and 10 kg/ha) was used as organic fertilizer. The obtained results showed that photosynthetic pigments, carbohydrates and nutrient elements were markedly reduced at the high levels of sea water particularly 40% ratio. While, fertilizer treatments had an observed promotion effects on those constituents, particularly Bio and organic fertilizers that were more effective than chemical fertilizers even at high concentrations of sea water. This may be because of the potential effect of organic and bio- fertilizers on providing the nutrient elements needed by plants besides some other beneficial compounds that help plants to withstand high salt stress conditions. Keywords: Sea water, fertilizers, wheat, pigments, carbohydrates, minerals. Introduction Wheat (Triticum aestivum, L.) is one of the most Saudi Arabia as well as other arid and semi-arid important crops in most countries of the world regions all over the world (Almaghrabi, 2012).
    [Show full text]
  • The Effect of Municipal Solid Food Waste Compost Amendment and Fertigation Adjustment on Yield and Fruit Quality in Strawberry Plasticulture
    The effect of municipal solid food waste compost amendment and fertigation adjustment on yield and fruit quality in strawberry plasticulture Ben W. Thomas1 Final Report RRFB Nova Scotia 1School for Resource and Environmental Studies, Dalhousie University December 23, 2011 1 Abstract Municipal solid food waste (MSFW) compost is becoming increasingly available throughout Nova Scotia. However, little is understood about how to incorporate MSFW compost into food production systems. The objective of this experiment was to identify how MSFW compost amendment rate and fertigation adjustment affected yield and fruit quality parameters in a strawberry plasticulture. A strip plot randomized experimental design with three replications for each combination of treatment factors was used to measure the affect of MSFW compost amendment (0, 2.5, 5.0 and 10 Mg Fresh Weight [FW] ha-1; Dry Matter [DM]: 48.3%) and fertigation rate (25, 50, 75 and 100% of the recommended rate). There were no statistically significant interactions between MSFW compost and fertigation rate on strawberry yield parameters. MSFW compost application led to a significant linear response in late season marketable yield (lin P < 0.05). Marketable yield had a significant linear response to fertigation rate in the late season (lin P < 0.05). Sugar content and berry mass were not significantly affected by any treatment factors. Total antioxidant capacity was significantly affected by an interaction between MSFW compost amendment and the low fertigation rate (lin P < 0.01). It is recommended that MSFW compost amendment is applied at 10 Mg FW ha-1. Fertigation should be 25% of the recommended rate until September 1st or the fifth fruit harvest then increased to 100% of the recommended rate for the remainder of the season based on first season results.
    [Show full text]
  • Effects of Fertigation Regime on Blossom End Rot of Vegetable Fruits
    Effects of Fertigation Regime on Blossom End Rot of Vegetable Fruits Asher Bar-Tal, and Benny Aloni Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel. E-mail: [email protected]. Abstract The relationships between blossom end rot (BER) of vegetable fruits and fertigation regimes are reviewed. Many fruit disorders are affected by nutrient deficiencies or unbalanced nutrition: BER, gold specks, green back, blotchy ripening, color spots, malformation, hollowness, and fruit cracking. Numerous studies have shown that BER is a mineral disorder and that its occurrence could be reduced by improving the supply of specific nutrients. The sensitivity of vegetable fruits to BER varies greatly among cultivars, environmental conditions and fertigation regimes. Some interactions between environmental conditions and fertigation regime are presented. The relation between BER and Ca nutrition is described and discussed in detail. The possibility that Mn may also play a role in the development of BER is discussed. Keywords: blossom end rot, calcium, magnesium, manganese, oxidative stress, potassium. Introduction The aim of the present mini-review is to describe the relationships between blossom end rot (BER) of vegetable fruits and the fertigation regime. Blossom end rot is one of the main mineral disorders affecting tomato and pepper fruits; it reduces marketable yield, especially during hot and dry seasons, by up to 50% (Roorda van Eysinga and van der Meijs, 1981; Winsor and Adams, 1987). More than 50 papers that deal with this disorder have been published in the last 5 years in scientific journals cited by the ISI.
    [Show full text]
  • Fertility Management of Drip-Irrigated Vegetables
    University of California VEGETABLE Research & Information Center Fertility Management of Drip-Irrigated Vegetables T.K. Hartz Department of Vegetable Crops University of California, Davis, CA 95616 G.J. Hochmuth Horticultural Sciences Department University of Florida, Gainesville, FL 32611 Additional index words: trickle irrigation, nutrients, fertigation Summary Drip irrigation provides an efficient method of fertilizer delivery virtually free of cultural constraints that characterize other production systems. Achieving maximum fertigation efficiency requires knowledge of crop nutrient requirements, soil nutrient supply, fertilizer injection technology, irrigation scheduling, and crop and soil monitoring techniques. If properly managed, fertigation through drip irrigation lines can reduce overall fertilizer application rates and minimize adverse environmental impact of vegetable production. Drip irrigation allows precise timing and uniform distribution of fertilizer nutrients. Improved efficiency results from small, controlled fertilizer applications throughout the season, in contrast to large preplant or early-season sidedress applications. Fertilizer application through drip irrigation (fertigation) can reduce fertilizer usage and minimize groundwater pollution due to fertilizer leaching from rain or excessive irrigation. Significant technical skill and management are required to achieve optimum performance. The following discussion highlights the main elements of formulating and evaluating a fertigation plan. Soil nutrient supply
    [Show full text]
  • Bio-Organic Fertilizers Stimulate Indigenous Soil Pseudomonas Populations to Enhance Plant Disease Suppression
    Tao et al. Microbiome (2020) 8:137 https://doi.org/10.1186/s40168-020-00892-z RESEARCH Open Access Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression Chengyuan Tao1,2†, Rong Li1,2†, Wu Xiong3, Zongzhuan Shen1,2, Shanshan Liu1,2, Beibei Wang4, Yunze Ruan4, Stefan Geisen5,6, Qirong Shen1,2,7* and George A. Kowalchuk3 Abstract Background: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. Results: To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons.
    [Show full text]
  • Fertigation Facts
    December 2019 AG/Fertigation/2019-01pr Fertigation Facts Kyle Egbert, Matt Yost, Bryce Sorensen, Grant Cardon, Niel Allen, and Ryan Larsen Introduction fertilizers have a high solubility, which makes them Fertigation is the application of fertilizer through an relatively easy and effective to apply with an irrigation system (Fig 1). It can be implemented in irrigation system. Because of its high solubility, N surface, sprinkler, and drip systems. In the 2013 is also extremely susceptible to leaching. agriculture census, nearly 135,000 acres of irrigated cropland in Utah utilized fertigation (USDA-NASS, There are several different forms of N that can be 2014). Utah growers most commonly fertigate corn used for fertigation. One of the most commonly (33-41% of the total irrigated corn acres) and used in Utah is UAN (32-0-0). The nitrogen in orchards (37% of total irrigated acres), but it is also UAN is in three forms - 50% urea, 25% ammonium, used to a lesser degree on small grains, alfalfa, and and 25% nitrate (Fernandez, 2016). Anhydrous other hay (9-23% of the total irrigated of these Ammonia (NH3, 82% N) is commonly used in crops). surface irrigation systems because it can be bubbled into the irrigation water (Fig 2). Anhydrous In most cases, fertilizer used for fertigation is Ammonia is less expensive than soluble liquid available in liquid solutions or in a soluble form. nitrogen per unit of N, and is a common option for Liquid fertilizer such as Urea Ammonium Nitrate surface irrigators. Be aware that anhydrous (UAN), Ammonium Thiosulfate (ATS), ammonia typically increases the pH of the water Ammonium Polyphosphate (APP), and Anhydrous around the application site, and that N losses from Ammonia (NH3) are most commonly used due to volatilization can be as high as about 30-50% of the their convenience, and are currently the primary forms sold by fertilizer companies for fertigation in Utah.
    [Show full text]
  • FOLIAR APPLICATION of IRON CHELATED FERTILIZER and SURFACTANTS for MANAGEMENT of IRON DEFICIENCY CHLOROSIS in SOYBEANS a Thesis
    FOLIAR APPLICATION OF IRON CHELATED FERTILIZER AND SURFACTANTS FOR MANAGEMENT OF IRON DEFICIENCY CHLOROSIS IN SOYBEANS A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Heidi Renae Rasmussen In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Soil Science December 2015 Fargo, North Dakota North Dakota State University Graduate School Title FOLIAR APPLICATION OF IRON CHELATED FERTILIZER AND SURFACTANTS FOR MANAGEMENT OF IRON DEFICIENCY CHLOROSIS IN SOYBEANS By Heidi Renae Rasmussen The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Amitava Chatterjee Co-Chair Dr. R. Jay Goos Co-Chair Dr. Tom Peters Approved: 3-7-2016 Dr. Frank Casey Date Department Chair ABSTRACT Iron deficiency chlorosis (IDC) is a production challenge for farmers growing soybeans [Glycine max (L.) Merr.], especially in the Red River Valley. It is critical to correct this deficiency as soon as symptoms arise before growth, and ultimately yield, is negatively impacted. Field experiments of foliar applied iron fertilizers (o-o-EDDHA, o-o-EDDHSA, HEDTA, and an amino acid) and suitable adjuvants (HSOC [high surfactant oil concentrate], non-ionic surfactant, acidifier, and organosilicone surfactant), to control IDC were conducted during the 2013 and 2014 growing seasons, respectively. There was high variability among the results for both the SPAD meter readings and soil iron concentration. The yield values were greater in the treated plots than with control plots, but not significantly so.
    [Show full text]
  • Multifunctional Liquid Biofertilizer As An
    MULTIFUNCTIONAL LIQUID BIOFERTILIZER AS AN INNOVATIVE AGRONOMIC INPUT FOR MODERN AGRICULTURE BIOBAJA CECAIR MULTIFUNGSISEBAGAI INPUTAGRONOMIINOVATIF UNTUK PERTANIAN MODEN Phua Chop Kwai Hoe and Khairuddin Abdul Rahim Agensi Nuklear Malaysia (Nuklear Malaysia) Kementerian Sains, Teknologi dan Inovasi (MOSTT), Bangi, 43000 KAJANG, Selangor E-mail: [email protected] Abstract Liquid biofertilizer is increasingly available in the market as one of the alternatives to chemical and organic fertilizers as well as solid substrate-based biofertilizers. One of the benefits from biofertilizer is the contribution from population of microorganisms available. These microorganisms may enhance the plant growth and create healthy rhizosphere. The advantage of a liquid biofertilizer is that no solid carrier is needed. These products are also developed for potential application in modem agriculture such as soilless farming systems, viz. fertigation and hydroponics. Traditionally, liquid biofertilizer is produced from fermentation of effective microorganisms which was recommended to be used within three months. Therefore, the development of low-cost and long shelf-life liquid biofertilizers was conducted at Malaysian Nuclear Agency (Nuclear Malaysia). Three biofertilizer inoculums (phosphate solubilising bacteria and plant growth promoting bacteria) were developed into four formulations of liquid biofertilizers. The liquid biofertilizers were kept at low temperatures (9 + 2 °C) and room temperatures (28 ± 2°C) for shelf-life study. Nutrient broth liquid biofertilizer kept at low temperatures showed significantly high survival rates after storage for six months as compared to other formulations and treatments. Keywords: Liquid biofertilizer, phosphate solubilising bacteria, plant growth promoting bacteria, shelf life; soilless system Abstrak Permintaan biobaja cecair di pasaran semakin meningkat, di mana ia adalah altematif kepada baja kimia, baja organik dan biobaja substrat pepejal.
    [Show full text]
  • Use of Plant-Associated Bacillus Strains As Biofertilizers and Biocontrol Agents in Agriculture
    Chapter 3 Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture Rainer Borriss 3.1 Introduction In spite of limited arable land coupled with rising demand of a steadily increasing human population, food supply is a global challenge making production of high- quality food, free from unacceptable levels of chemicals, a pressing need (Table 3.1). Paradoxically, this increased demand has led to the development of agricultural practices that are undesired and increase disease pressure on plants. An extreme example, impressively illustrating our situation, was recently reported (Guo et al. 2010). Overuse of N-fertilizer contributes substantially to regional soil acidification in China. Since 1980, crop production has increased with rapidly increasing N-fertilizer consumption. Decreasing N use efficiency, mainly due to increasing soil acidification, results from this practice. More and more N-fertilizer is being lost to the environment, causing further negative environmental impacts. It has been estimated that approximately one third of the food crop is destroyed every year due to attack by insects, pathogenic fungi, bacteria, and nematodes. Current worldwide potato crop losses, due to late blight caused by pathogenic fungus Phytophthora infestans, are at $6.7 billion, for instance (Haverkort et al. 2008). At present, the major strategies against damages caused by plant pathogens are chemical pesticides or resistant plant cultivars. However, there are major limitations in using both strategies. Firstly, agrochemicals do not prevent all diseases, and toxic residues can accumulate in the soil and food chain. Therefore, the use of many agrochemicals was banned or restricted, because of environmental and health risks.
    [Show full text]