10.11 Books MH

Total Page:16

File Type:pdf, Size:1020Kb

10.11 Books MH AUTUMN BOOKS better, especially as the latter receives just a single paragraph. Fresh material, based on advances made over the past two decades, has been included, such as the concept of ‘dark energy’ and advances in string theory. I am also pleased to see that the discussion of the anthropic principle is retained. This is a hot topic of discussion at the moment in connection with multiverse theo- ries. However, I found it a little surprising that the idea is still treated rather cautiously here. I have no doubt that A Briefer History of Timewill soon be on the shelves of every high-street bookstore around the world. This is surely to be welcomed: any book that can reach a wide audience and get across the excitement of science has to be a good thing. And with Hawking enjoying an iconic status not seen in a scientist since Einstein, his role as an ambassador for science should not be underestimated. ■ and hopefully, one imagines, more digestible the special theory of relativity are not at the Jim Al-Khalili is professor of the public ones. On the whole I like this, but it does seem cutting edge of current thinking doesn’t mean engagement of science in the Department of a bit of a cheat if readers get through the same they are any less counter-intuitive. The two-slit Physics, University of Surrey, Guildford, Surrey amount of material before giving up, only now experiment and the notion of the relativity GU2 7XH, UK. He is the author of Black Holes, boasting of having seen off three chapters of simultaneity could have been explained Wormholes and Time Machines. instead of one. The new book is certainly easier going. The old third chapter (“The expanding Universe”) of 11 in the original is now the seventh chapter of 12, highlighting the additional weighting Science in society given to introductory material. The three middle chapters (“Black holes”, “Black holes was transformed into a strongly felt quest to Victory and Vexation in Science: Einstein, ain’t so black” and “The origin and fate of the comprehend the physical world. This drive, Bohr, Heisenberg and Others Universe”), which together made up a total of Holton says, constituted a flight from “personal, by Gerald Holton 70 pages in the original, are now lumped into Harvard University Press: 2005. 244 pp. everyday life, with all its dreary disappoint- one chapter just 18 pages long. Elsewhere, $35, £22.95 ments, and escape into the world of objective every attempt has been made to clarify those perception and thought”. Indeed Einstein passages deemed to be hard going. Finally, out Daniel J. Kevles once remarked that the tenacious pursuit of a goes the chapter on the arrows of time, the In Victory and Vexation in Science, Gerald difficult scientific problem demanded “a state diagrams of light cones and event horizons, Holton, a physicist and historian of science at of feeling similar to that of a religious person and discussions of chaotic boundary condi- Harvard University, provides a series of illu- or a lover”. tions, and in comes a new crowd-pleasing minating historical and biographical essays on Einstein ultimately embraced a transcen- chapter on time machines. science and scientists in the twentieth century. dent spiritualism, free of anthropomorphic I find myself unconvinced by this valiant This thought-provoking book mixes reminis- and what he considered primitive elements. effort, however. Clearly, the incredible success cence with scholarly reflection, drawing on His views irritated the theologian Paul Tillich of A Brief History of Timewas due to a combi- Holton’s deep knowledge of scientists and their and angered clerics such as a Roman Catholic nation of timing, marketing and the persona of intellectual, religious and social engagements. cardinal in Boston, who found intimations of the author. It can never be repeated. But what The 14 essays range over a variety of topics atheism in Einstein’s theories of space-time. is often overlooked is that its major, paradoxi- and are organized into two sections: ‘Scientists’ Queried on the point, Einstein declared that he cal attraction was its charming incompre- and ‘Science in context’. The first part covers, believed in “Spinoza’s God, Who concerns hensibility to the non-physicist — the idea in addition to the icons in the book’s subtitle, Himself in the lawful harmony of the world, that anyone could take a peak inside one of the physicists Enrico Fermi, Percy Bridgman not in a God Who concerns Himself with the the greatest minds in science. This is lost in the and Isidor Isaac Rabi, and the psychologist fate and the doings of mankind”. new book. For millions of people around the B. F. Skinner. The subjects in the second section Unlike Einstein, Rabi was raised as an world, A Brief History of Timewould have include innovation in science and art, policy orthodox Jew, but while he separated from been the only science book they have ever read for basic science, postmodernism and science, orthodoxy, Holton notes that deep down he or attempted to read. But with the briefer ver- and women in science. The subjects are dis- remained “God-struck throughout his life”. sion, I feel the baby has been thrown out with parate, but several arresting topics appear and Like Einstein, Rabi saw science as a means of the bathwater. It is just another run-of-the- reappear in the volume. transcendence beyond the visceral concerns of mill popular science book on modern physics. Among them is the religious impulse that the human species. He once recalled that The topics that it claims to treat more carefully Holton finds behind the science of Einstein physics filled him with awe and put him in have been covered better elsewhere. In any and Rabi. As a youth, Einstein was deeply reli- touch with a sense of original causes. “When- case, many of the topics left in and flagged gious in some profound non-sectarian sense, ever one of my students came to me with a as more introductory are just as baffling, even though he was raised in an irreligious scientific project, I asked only one question, abstract and abstruse to non-scientists as those household. After the age of 12, when he began ‘Will it bring you nearer to God?’.” left out. Just because quantum mechanics and encountering science, his religious inclination The role that intuition plays in science is 161 © 2005Nature PublishingGroup AUTUMN BOOKS NATURE|Vol 438|10 November 2005 also discussed. Holton raises the issue in a capti- Holton rightly insists that the Heisenberg in Part of the problem for science has been vating essay on the origins of the Fermi group’s Michael Frayn’s play Copenhagen, who said attempting to distil a working definition of research with slow neutrons in Rome during he knew how to build a bomb but refrained, genius that removes its more subjective and the 1930s. The decisive experimental step was is a fictional character and ought to be viewed untestable historical and cultural associations, taken by Fermi himself, when he interposed as such. while still retaining our idea of it. This is far paraffin between the fast-neutron source Holton is dismissive of the postmodern cri- from easy. One tenet is that a genius must be and the target. Fermi turned to the paraffin tique of science, saying it holds that the aim recognized as such by the relevant experts in with neither forethought nor announcement. of achieving objective truth is unrealizable the field — but by that reckoning, if Einstein He was guided, Holton writes, by brilliant “because there is no difference between the hadn’t published his theories, he would have intuition, a speculative move “below the level laws scientists find in nature and the arbitrary been barred from the title. Despite the many of consciousness”. In the course of mathemat- rules that govern baseball games”. He finds difficulties with investigating genius (hence ical invention, Henri Poincaré knew similar part of its roots in nineteenth-century Euro- the mixed results), science has tried to break it moments of deep intuition that arrived unbid- pean romanticism, which was at times scien- down it into components such as intelligence, den, “a manifest sign”, he thought, “of long, tifically productive. But he also sees shades structure and function of the brain, madness, unconscious prior work”. of it in Hitler’s declaration that “there is no level of disinhibition, even genetic inheritance. Holton writes with relish of a conversation truth, in either the moral or the scientific Because of the somewhat elusive definition on the origins of the uncertainty principle sense”. For Holton, truth emphatically exists of creativity, Nancy Andreasen opts for a between Heisenberg and Einstein in the mid- in both senses. It is clear from these graceful case-study approach in her book The Creating 1920s that Heisenberg recounted to him in essays that he stands with Rabi, admiring his Brain. Andreasen is an MD with a PhD in 1956. But Holton finds Heisenberg’s politics insistence that science is an essential part Renaissance English literature, which formed appalling, and rebukes him for his willingness of culture, an ennobling activity, a guide to the basis for her first book, John Donne(Prince- to collaborate with the Nazi regime and for objective thinking and a “unifying force for ton University Press, 1967). From Mozart to issuing “astonishing exaggerations” about all of humanity”. ■ August Kekulé, and Henri Poincaré to Samuel Einstein’s role in the atomic-bomb project Daniel J. Kevles is in the Department of History, Taylor Coleridge, she unravels the insights, while claiming that he had declined on moral Yale University, New Haven, accounts and descriptions of their moments of grounds to build an atomic bomb for Hitler.
Recommended publications
  • Fotonica Ed Elettronica Quantistica
    Fotonica ed elettronica quantistica http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Fotonica ed elettronica quantistica Quantum optics - Quantization of electromagnetic field - Statistics of light, photon counting and noise; - HBT and correlation; g1 e g2 coherence; antibunching; single photons - Squeezing - Quantum cryptography - Quantum computer, entanglement and teleportation Light-matter Interaction - Two-level atom - Laser physics - Spectroscopy - Electronics and photonics at the nanometer scale - Cold atoms - Photodetectors - Solar cells http://www.dsf.unica.it/~fotonica/teaching/fotonica.html Energy Temperature LHC at CERN, Higgs, SUSY, ??? TeV 15 q q particle accelerators 10 K q GeV proton rest mass - quarks 1012K MeV electron rest mass / gamma rays 109K keV Nuclear Fusion, x rays, Sun center 106K Atoms ionize - visible light eV Sun surface fundamental components components fundamental room temperature 103K meV Liquid He, superconductors, space 1K dilution refrigerators, quantum Hall µeV laser-cooled atoms 10-3K neV Bose-Einstein condensates 10-6K peV low T record 480 picokelvin 10-9K -12 complexity, organization organization complexity, 10 K Nobel Prizes in Physics 2010 - Andre Geims, Konstantin Novoselov 2009 - Charles K. Kao, Willard S. Boyle, George E. Smith 2007 - Albert Fert, Peter Gruenberg 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch 2001 - Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 1997 - Steven Chu, Claude Cohen-Tannoudji, William D. Phillips 1989 - Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul 1981 - Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn 1966 - Alfred Kastler 1964 - Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov 1944 - Isidor Isaac Rabi 1930 - Venkata Raman 1921 - Albert Einstein 1907 - Albert A.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • Enrico Fermi
    Fermi, Enrico Inventors and Inventions Enrico Fermi Italian American physicist Fermi helped develop Fermi-Dirac statistics, which liceo (secondary school) and, on the advice of Amidei, elucidate the group behavior of elementary particles. joined the Scuola Normale Superiore at Pisa. This elite He also developed the theory of beta decay and college, attached to the University of Pisa, admitted only discovered neutron-induced artificial radioactivity. forty of Italy’s top students, who were given free board Finally, he succeeded in producing the first sustained and lodging. Fermi performed exceedingly well in the nuclear chain reaction, which led to the discovery highly competitive entrance exam. He completed his of nuclear energy and the development of the university education after only four years of research and atomic bomb. studies, receiving his Ph.D. in physics from the Univer- sity of Pisa and his undergraduate diploma from the Born: September 29, 1901; Rome, Italy Scuola Normale Superiore in July, 1922. He became Died: November 28, 1954; Chicago, Illinois an expert theoretical physicist and a talented exper- Primary field: Physics imentalist. This rare combination provided a solid foun- Primary inventions: Controlled nuclear chain dation for all his subsequent inventions. reaction; Fermi-Dirac statistics; theory of beta decay Life’s Work After postdoctoral work at the University of Göttingen, Early Life in Germany (1922-1923), and the University of Leiden, Enrico Fermi (ehn-REE-koh FUR-mee) was the third in the Netherlands (fall, 1924), Fermi took an interim po- child of Alberto Fermi and Ida de Gattis. Enrico was very sition at the University of Florence in December, 1924.
    [Show full text]
  • EUGENE PAUL WIGNER November 17, 1902–January 1, 1995
    NATIONAL ACADEMY OF SCIENCES E U G ENE PAUL WI G NER 1902—1995 A Biographical Memoir by FR E D E R I C K S E I T Z , E RICH V OG T , A N D AL V I N M. W E I NBER G Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Atoms for Peace Awards, Inc. EUGENE PAUL WIGNER November 17, 1902–January 1, 1995 BY FREDERICK SEITZ, ERICH VOGT, AND ALVIN M. WEINBERG UGENE WIGNER WAS A towering leader of modern physics Efor more than half of the twentieth century. While his greatest renown was associated with the introduction of sym- metry theory to quantum physics and chemistry, for which he was awarded the Nobel Prize in physics for 1963, his scientific work encompassed an astonishing breadth of sci- ence, perhaps unparalleled during his time. In preparing this memoir, we have the impression we are attempting to record the monumental achievements of half a dozen scientists. There is the Wigner who demonstrated that symmetry principles are of great importance in quan- tum mechanics; who pioneered the application of quantum mechanics in the fields of chemical kinetics and the theory of solids; who was the first nuclear engineer; who formu- lated many of the most basic ideas in nuclear physics and nuclear chemistry; who was the prophet of quantum chaos; who served as a mathematician and philosopher of science; and the Wigner who was the supervisor and mentor of more than forty Ph.D.
    [Show full text]
  • 52 Annual Greenville County
    nd 52 Annual Greenville County and South Carolina Regional 1A Science and Engineering Fair 2006 Sponsored by Rotary Club of Greenville Roper Mountain Science Center and The South Carolina Academy of Science th th st Judging- March 14 , Public Exhibition – March 15 , Award Ceremony - March 21 Palmetto EXPO Center – Greenville, South Carolina For Immediate Release March 7, 2006 Regional Science & Engineering Fair announces new Charles H. Townes Student Research Award GREENVILLE, SC – The Greenville County and South Carolina Regional Science and Engineering Fair announces a new award recognizing a local high school student for excellence in science research. The Charles H. Townes Student Research Award is the top award in the 52nd Annual Greenville County and South Carolina Regional Science & Engineering Fair to be held at the Palmetto Expo Center. The award honors the career of Greenville’s Charles H. Townes, who received the 1964 Nobel prize in Physics for his research leading to the invention of the laser. To encourage our local future scientists Dr. Townes wrote: “Being a scientist can be a wonderful career. Science involves exploration, figuring things out, understanding our universe and ourselves, and new discoveries. We live in an amazing universe, understanding it is fascinating and inspiring, and also leads to new possibilities for humans. Applied science or engineering uses our scientific understanding to provide new tools, solutions to problems, and remarkable improvements in human life. To do good science, it's helpful to learn all one can, be familiar with a variety of fields, and enjoy exploring. The more we know, the better we can fit ideas together to make new ones.
    [Show full text]
  • Applications in Solid-State Nuclear Magnetic Resonance and Physics
    On Fer and Floquet-Magnus Expansions: Applications in Solid-State Nuclear Magnetic Resonance and Physics Eugene Stephane Mananga The City University of New York New York University International Conference on Physics June 27-29, 2016 New Orleans, LA, USA OUTLINE A. Background of NMR: Solid-State NMR • Principal References B. Commonly Used Methods in Solid-State NMR • Floquet Theory • Average Hamiltonian Theory C. Alternative Expansion Approaches Used Methods in SS-NMR • Fer Expansion • Floquet-Magnus Expansion D. Applications of Fer and Floquet-Magnus expansion in SS-SNMR E. Applications of Fer and Floquet-Magnus expansion in Physics A. Background of NMR: Solid-State NMR • NMR is an extraordinary versatile technique which started in Physics In 1945 and has spread with great success to Chemistry, Biochemistry, Biology, and Medicine, finding applications also in Geophysics, Archeology, Pharmacy, etc... • Hardly any discipline has remained untouched by NMR. • It is practiced in scientific labs everywhere, and no doubt before long will be found on the moon. • NMR has proved useful in elucidating problems in all forms of matter. In this talk we consider applications of NMR to solid state: Solid-State NMR BRIEF HISTORY OF NMR • 1920's Physicists Have Great Success With Quantum Theory • 1921 Stern and Gerlach Carry out Atomic and Molecular Beam Experiments • 1925/27 Schrödinger/ Heisenberg/ Dirac Formulate The New Quantum Mechanics • 1936 Gorter Attempts Experiments Using The Resonance Property of Nuclear Spin • 1937 Rabi Predicts and Observes
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Enrico Fermi: Genius
    ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate­ rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments.
    [Show full text]
  • Historical Background Prepared by Dr, Robin Chaplin Professor of Power Plant Engineering (Retired) University of New Brunswick
    1 Historical Background prepared by Dr, Robin Chaplin Professor of Power Plant Engineering (retired) University of New Brunswick Summary: A review of the historical background for the development of nuclear energy is given to set the scene for the discussion of CANDU reactors. Table of Contents 1 Growth of Science and Technology......................................................................................... 2 2 Renowned Scientists............................................................................................................... 4 3 Significant Achievements........................................................................................................ 6 3.1 Niels Bohr........................................................................................................................ 6 3.2 James Chadwick .............................................................................................................. 6 3.3 Enrico Fermi .................................................................................................................... 6 4 Nuclear Fission........................................................................................................................ 7 5 Nuclear Energy........................................................................................................................ 7 6 Acknowledgments................................................................................................................... 8 List of Figures Figure 1 Timeline of significant discoveries
    [Show full text]
  • Guide to the Enrico Fermi Collection 1918-1974
    University of Chicago Library Guide to the Enrico Fermi Collection 1918-1974 © 2009 University of Chicago Library Table of Contents Descriptive Summary 4 Information on Use 4 Access 4 Citation 4 Biographical Note 4 Scope Note 7 Related Resources 8 Subject Headings 8 INVENTORY 8 Series I: Personal 8 Subseries 1: Biographical 8 Subseries 2: Personal Papers 11 Subseries 3: Honors 11 Subseries 4: Memorials 19 Series II: Correspondence 22 Subseries 1: Personal 23 Sub-subseries 1: Social 23 Sub-subseries 2: Business and Financial 24 Subseries 2: Professional 25 Sub-subseries 1: Professional Correspondence A-Z 25 Sub-subseries 2: Conferences, Paid Lectures, and Final Trip to Europe 39 Sub-subseries 3: Publications 41 Series III: Academic Papers 43 Subseries 1: Business and Financial 44 Subseries 2: Department and Colleagues 44 Subseries 3: Examinations and Courses 46 Subseries 4: Recommendations 47 Series IV: Professional Organizations 49 Series V: Federal Government 52 Series VI: Research 60 Subseries 1: Research Institutes, Councils, and Foundations 61 Subseries 2: Patents 64 Subseries 3: Artificial Memory 67 Subseries 4: Miscellaneous 82 Series VII: Notebooks and Course Notes 89 Subseries 1: Experimental and Theoretical Physics 90 Subseries 2: Courses 94 Subseries 3: Personal Notes on Physics 96 Subseries 4: Miscellaneous 98 Series VIII: Writings 99 Subseries 1: Published Articles, Lectures, and Addresses 100 Subseries 3: Books 114 Series IX: Audio-Visual Materials 118 Subseries 1: Visual Materials 119 Subseries 2: Audio 121 Descriptive Summary Identifier ICU.SPCL.FERMI Title Fermi, Enrico. Collection Date 1918-1974 Size 35 linear feet (65 boxes) Repository Special Collections Research Center University of Chicago Library 1100 East 57th Street Chicago, Illinois 60637 U.S.A.
    [Show full text]
  • The Federal Government: a Nobel Profession
    The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery.
    [Show full text]