Understanding Myths and Immunisation a Slice of NZ Narrative

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Myths and Immunisation a Slice of NZ Narrative Understanding myths and immunisation A slice of NZ narrative Helen Petousis‐Harris Immunisation Advisory Centre Dept General Practice and Primary Health Care Sept 2015 Thinking about immunisation myths • What is a myth and for what purpose? • What feeds a myth? • Why do we believe? • Why should we care? • What should we do? New Zealand Herald. 3/9/2015 (yesterday) What is a myth and what purpose does it serve? What is a myth? Myth is ideology in narrative form. • Myths may arise as either • truthful depictions or over‐elaborated accounts of events • as allegory for or personification of natural phenomena, or explanation of ritual. • deliberate deception for personal gain* • They are transmitted to • convey religious or idealised experience • to establish behavioral models, and to teach. • generate business/wealth* • attract attention* *these arise by or are transmitted for pragmatic reasons but rely on the ideology of others Lincoln B. Theorizing Myth. Narrative, Ideology and Scholarship. University of Chicago Press. 1999. Myths provide an explanation Myths provide an explanation Endearing myth ‐ sugar turns kids into little monsters Busted by science since 1994 The need for myth • Helps people make sense of the world • Knowledge is power –basis for improving one’s influence 1978 ‐ current DiFonzo N, Bordia P. Rumor psychology: Social and organizational approaches. American Psychological Association; 2007. It’s innate ‐ leaping to conclusions is easy Post hoc ergo propter hoc ‐ after this, therefore because of this –Noni McDonald’s ‘coincidence dragon’ Aren't myth and truth equally subjective? • Myths are either untestable or fallacious • The sun is pulled across the sky by a glorious God in a golden chariot • testable, found to be false • McDonald’s meat patties have worm meat in them • testable, found to be false • The universe was created by a giant flying spaghetti monster • untestable • Testimonials, anecdote, personal experience, lack of openness to evidence • Truth is determined by empirical evidence, testable • Vaccines cause autism • testable, false • HPV vaccine causes paralysis • Testable, false How do you feed a myth? The ideal environment for myth • Rumour/myth thrives where there is • an absence of trust • a vacuum • The longer uncertainty and distrust persist the easier myths spread and the more difficult to counteract • Wrong action or no action at all = rumour fertiliser To the people Ad populum – if everybody else does…it must be right. Also called bandwagon False attribution ad verecundiam ‐ Appealing to an irrelevant, unqualified, unidentified, biased or fabricated source in support of an argument. Evolution of a vaccine myth • Initiated exclusively? from anti‐immunisation protagonists, self motivated. • 21st Century IT propagates magnificently misuse of ‘data’ by individual with something to gain Amplification by mass media including social networks Jo Public –motivated reasoning Why do we believe?Complacency and confidence What drives these beliefs and these actions? Heuristics and cognitive biases Heuristics and cognitive bias • Evolutionary efficiency –intuition, common sense • Usually accurate • But not always –can lead to cognitive biases “I know there’s no evidence that shows the death penalty has a deterrent effect, but I just feel in my gut it must be true.” President Bush while governor of Texas. “I’m a gut player. I rely on my instincts.” President Bush to Bob Woodward on his decision to launch the Iraq war. • Confirmation bias • Search and interpret information that confirms beliefs, discredit information that does not support their views the administration "went to war without requesting ‐‐ and evidently without being influenced by ‐‐ any strategic‐level intelligence assessments on any aspect of Iraq." NI officer Paul R Piller Why do we care? GUiNZ longitudinal cohort study interviewed 6822 mums and 4404 partners • “Negative messages from well‐meaning friends and families, the media and even medical professionals have caused some parents to delay or forgo immunising their child against several potentially fatal diseases.” • “The study showed pregnant women and their partners were twice as likely to delay immunisations after receiving "discouraging" information.” Growing up in NZ. Warnings about immunisation prove more influential that positive messages. New Zealand Herald. 3/9/2015 (yesterday) Why should we engage in myths? Will it get another child immunised? Elaine Boyd ~1997 • NZ has improved immunisation coverage dramatically • One of the likely contributing factors is the focus on the health professional –primary care • Knowledge and confidence • This has been via • Training and education • Active communications • Providing support and information to health professionals to counter myths can make a difference • HOW to have the conversation is another issue! Turner N. Factors associated with immunisation coverage for the childhood immunisation programme in New Zealand: 1999 – 2012. MD Thesis. University of Auckland Library. 2015. In 2003 HPs wanted support to deal with myths “Family physicians re‐emphasised patients’ fear of vaccinations due to this misinformation. They also identified a lack of resources, both to inform themselves and also in formats to help educate patients and counter the misinformation.” “…parents’ lack of information, or misinformation regarding immunisation, especially that received from their attending midwives.” Petousis‐Harris H, Goodyear‐Smith F, Turner N, Soe B. Family physician perspectives on barriers to childhood immunisation. Vaccine;22(17‐18):2340‐44, 2004 Don’t ignore it!!! • Misinformation thrives in a vacuum, don’t leave one. • This approach has been used in the past • “ignore it and it will go away” • “you will just draw attention to it” • “people will see it is nonsense” • And how did that work out? • Smallpox in 18th and 19th century • MMR in UK 1990s • MeNZB in NZ 2000s • HPV in Japan today • Evidence shows strong leadership and professional advice has greatest influence* *Turner N. The challenge of improving immunization coverage: The New Zealand example. Expert Review of Vaccines. 2012;11(1):9‐11. What should we do? Correcting myths can backfire and positive messages not always helpful “The study, of 6822 women and 4404 of their partners, also found "encouraging" information had no effect on when they chose to immunise, and more than half, 56 per cent, did not receive any information at all before birth.” Growing up in NZ. Warnings about immunisation prove more influential that positive messages. New Zealand Herald. 3/9/2015 (yesterday) Betsch, C. "Innovations in communication: the Internet and the psychology of vaccination decisions." Euro Surveill 16.17 (2011): pii‐19849. Opel D et al. The influence of provider communication behaviors on parental vaccine acceptance and visit experience Five worst communications mistakes Show respect, express empathy Be the first to provide Paternalistic Front up immediately, use social media attitudes Not Be accurate as reliable Information countering info comes to hand – released late myths in real share messages time Mixed PR Public power messages disaster! struggles Margaret Reynolds. Crisis and Emergency Communications: Best practices. CDC Healthcare workers a source of bad info “While most discouraging information came from friends, books, magazines, newspapers, family and the internet, Dr Grant said it was worrying that healthcare workers were identified as sources of 16 per cent of discouraging information.” Growing up in NZ. Warnings about immunisation prove more influential that positive messages. New Zealand Herald. 3/9/2015 (yesterday) This week on FB About 8 scientists/experts replied. Strongly and respectfully. Post removed next day. Do equip health professionals • Ensure position of government health ministry and health professionals are aligned on key messages • Ensure front line professionals have the information they need • Get the messages out • Ministry website position statements • Professional colleges etc. position statements • Key spokespeople accessible and friendly to media – relationships • Blogs • Professional newsletters • Facebook, twitter…. Margaret Reynolds. Crisis and Emergency Communications: Best practices. CDC HP’s need support • When presented with list of various educational needs…those identified by the nurses as most important were information on current issues reported in the media, for example anthrax and bio‐ terrorism, or the relationship between MMR and autism …. • From the qualitative analysis of their responses to other immunisation related information they would like, the major (most frequently raised) theme to emerge was the need for resources to counter misinformation on immunisation …. Petousis‐Harris H, Goodyear‐Smith F, Soe B, Turner N. Family practice nurses perspectives on barriers to childhood immunisation. Vaccine;23:2725‐2730, 2005 Case study Complex Regional Pain Syndrome following HPV vaccination CRPS • Initial nerve trauma, usually limb, usually major • Symptoms, change over time • Continuous burning/throbbing • Sensitive to touch or cold • Swelling • Changes in skin temp, colour, texture • Changes in hair, nail growth • Joint stiffness, damage • Muscle spasms, atrophy • Decreased movement • Can be challenging to treat • Early treatment important, range of therapies Wiki • Relapses with cold or emotional stressor CRPS and HPV • Reports of CRPS following HPV vaccine appeared in Japanese media • Repeated press reports, print and TV from 2010 • WHO
Recommended publications
  • Review Article How the Knowledge of Interactions Between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria Meningitidis Vaccines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 189153, 26 pages http://dx.doi.org/10.1155/2015/189153 Review Article How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines R. Gasparini,1 D. Panatto,1 N. L. Bragazzi,1 P. L. Lai,1 A. Bechini,2 M. Levi,2 P. Durando,1 and D. Amicizia1 1 Department of Health Sciences, University ofGenoa,ViaPastore1,16132Genoa,Italy 2Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy Correspondence should be addressed to R. Gasparini; [email protected] Received 21 January 2015; Accepted 9 June 2015 Academic Editor: Nejat K. Egilmez Copyright © 2015 R. Gasparini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed.
    [Show full text]
  • Assessment of Varicella Vaccine for Inclusion in the National Immunisation Schedule, Outcome Management Services: Specialists in Cost Benefit Analysis, Wellington
    Varicella Vaccine Assessment Report 2012 Varicella Vaccination in New Zealand: NHC Assessment 2012 In 2014 the National Health Committee (NHC) received a request for a copy of the NHC’s assessment report on varicella (chicken pox) vaccination. This report was part of early assessment work the NHC undertook in both varicella and rotavirus vaccination in 2011/12, before responsibility for the management and purchasing of vaccines (including considering any changes to the National Immunisation Schedule) transferred from the Ministry of Health to New Zealand’s Pharmaceutical management Agency (PHARMAC). The NHC provided PHARMAC copies of the vaccine assessment reports and recommendations papers in 2013 and formal NHC recommendations on this work were never provided to the Minister of Health. Following the principal of open disclosure the Committee has decided to release the package of NHC vaccination assessments and recommendations on their website (www.nhc.health.govt.nz). National Health Committee Page 1 of 61 Varicella Vaccine Assessment Report 2012 Table of Contents List of Tables ................................................................................................................. 4 Executive Summary ...................................................................................................... 5 Policy Question ............................................................................................................. 6 Who initiated or commissioned the report? ..............................................................
    [Show full text]
  • Immunisation Issues
    Immunisation issues Linda Hill August 2010 Index • Disease control and vaccine effectiveness • The NZ schedule • Vaccines on the horizon • Common Practice Nurse issues • Improving coverage • Vaccine safety surveillance • Recurrent common myths • Recent issues • Communication challenges DISEASE CONTROL AND VACCINE EFFECTIVENESS “Only clean water and antibiotics have had an impact on childhood death and disease that is equal to that of vaccines” World Health Organization 4 Global burden of VPD Hepatitis B Measles 28% 29% Tetanus Polio 10% Hib 0% Pertussis 18% 14% Diphtheria 0% Yellow Fever 1% In 2002, WHO estimated that 1.4 million of deaths among children under 5 years were due to diseases that could have been prevented by routine vaccination. This represents 14% of global total mortality in children under 5 years of age . 5 Smallpox Bangladeshi girl infected with smallpox (1973). POLIO mass immunisation campaigns in 1961 and 1962 and 1961 in campaigns immunisation mass OPV the since Zealand New in poliomyelitis acquired indigenously of cases No Deaths 10 20 30 40 50 60 0 1946 1948 1950 1952 1954 Roll out of vaccine commencing 1956 commencing vaccine of out Roll 1956 1946 Zealand inNew deaths Polio 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 - 1988 2009 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 Wilson Home for crippled children in Takapuna, Auckland, 1943. Alexander Turnbull Library, Photographer: John Pascoe Reference: 1/4-000643-F 10 Cases 10 20 30 40 50 60 0 1990 1st 3rd 1991 1st 3rd 1992 1st 3rd
    [Show full text]
  • The HPV (Human Papillomavirus) Immunisation Programme
    The HPV (Human Papillomavirus) Immunisation Programme National Implementation Strategic Overview June 2008 HPV Project Team Population Health Directorate Ministry of Health Table of Contents 1. Introduction.............................................................................................4 2. Background ............................................................................................6 Cervical Cancer .............................................................................................6 Human Papillomavirus ...................................................................................9 3. Policy Context to the HPV Immunisation Programme................................11 Cancer Control in New Zealand ...................................................................11 Immunisation ...............................................................................................12 4. HPV Immunisation Programme Purpose, Goals and Objectives.................13 Rationale .....................................................................................................13 Programme Purpose....................................................................................14 Underpinning Principles ...............................................................................14 Programme Goal..........................................................................................14 Programme Objectives.................................................................................14 Implementation Priorities..............................................................................15
    [Show full text]
  • Trends in Vaccine Availability and Novel Vaccine Delivery Technologies: 2008–2025
    Landscape Analysis Trends in vaccine availability and novel vaccine delivery technologies: 2008–2025 July 2008 Bâtiment Avant Centre Phone: 33.450.28.00.49 13 Chemin du Levant Fax: 33.450.28.04.07 01210 Ferney Voltaire www.path.org France www.who.int Landscape Analysis Trends in vaccine availability and novel vaccine delivery technologies: 2008–2025 July 1, 2008 Version: January 22, 2009 ii Table of contents Acronyms and abbreviations.......................................................................................................................................... iv Executive summary......................................................................................................................................................... 1 TRENDS IN VACCINE AVAILABILITY: 2008–2025 ............................................................................................. 2 Choice of vaccine types to be surveyed........................................................................................................................... 2 Vaccine availability and use: 2008–2025........................................................................................................................ 2 Vaccine availability............................................................................................................................................... 2 Delivery strategies................................................................................................................................................. 4 Extensions
    [Show full text]
  • Vaccinology in the Genome Era
    Vaccinology in the genome era C. Daniela Rinaudo, … , Rino Rappuoli, Kate L. Seib J Clin Invest. 2009;119(9):2515-2525. https://doi.org/10.1172/JCI38330. Review Series Vaccination has played a significant role in controlling and eliminating life-threatening infectious diseases throughout the world, and yet currently licensed vaccines represent only the tip of the iceberg in terms of controlling human pathogens. However, as we discuss in this Review, the arrival of the genome era has revolutionized vaccine development and catalyzed a shift from conventional culture-based approaches to genome-based vaccinology. The availability of complete bacterial genomes has led to the development and application of high-throughput analyses that enable rapid targeted identification of novel vaccine antigens. Furthermore, structural vaccinology is emerging as a powerful tool for the rational design or modification of vaccine antigens to improve their immunogenicity and safety. Find the latest version: https://jci.me/38330/pdf Review series Vaccinology in the genome era C. Daniela Rinaudo, John L. Telford, Rino Rappuoli, and Kate L. Seib Novartis Vaccines, Siena, Italy. Vaccination has played a significant role in controlling and eliminating life-threatening infectious diseases through- out the world, and yet currently licensed vaccines represent only the tip of the iceberg in terms of controlling human pathogens. However, as we discuss in this Review, the arrival of the genome era has revolutionized vaccine develop- ment and catalyzed a shift from conventional culture-based approaches to genome-based vaccinology. The availabili- ty of complete bacterial genomes has led to the development and application of high-throughput analyses that enable rapid targeted identification of novel vaccine antigens.
    [Show full text]
  • Adult Vaccination
    +HOW TO TREAT Adult vaccination Adult vaccination receives less attention than the childhood vaccination schedule, and its importance may be overlooked at times. The purpose of this article is to summarise the vaccines recommended for use in adults. It is structured to answer the question “What vaccines should I consider for this patient in front of me?” Understanding iron metabolism helps doctors and patients There is no comprehensive adult vaccination schedule dult vaccination is the poor • the introduction of new antigens cination schedule. The only vaccina- cousin of childhood vaccina- • the introduction of pneumococcal Written by tion visits being recommended are tion. Over the last 30 years, conjugateThe liver vaccine, human papillomavi- Stewart Reid, the visits at age 45 and 65 years for considerable efforts have A rusis (HPV) the main vaccine and rotavirus vaccine. general tetanus-diphtheria (Td) vaccine and gone into refining the childhood vaccina- Also, considerable improvements in practitioner, the annual influenza vaccine from tion schedule, resulting in: coverage“orchestrator” have been made with the help Ropata age 65 years (also for those with spe- • a reduction in the number of visits of theof National iron Immunisation Register, Medical cific medical indications). No effort is in the 1990s a legacyregulation. of the meningococcal group B Centre, made to measure adult immunisation • the greater use of combination vaccination programme (MeNZB). Lower Hutt coverage except for an approximation vaccines since 2000 There is no comprehensive adult vac- Continued on page 2 HOW TO TREAT+Adult vaccination Continued from page 1 of the uptake of the annual influen- CASE VIGNETTE 1 Panel 1 za vaccine.
    [Show full text]
  • The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria Gonorrhoeae Evgeny A
    Clinical Infectious Diseases applyparastyle “fig//caption/p[1]” parastyle “FigCapt” MAJOR ARTICLE The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria gonorrhoeae Evgeny A. Semchenko,1 Aimee Tan,1 Ray Borrow,2 and Kate L. Seib1, 1 2 Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia; and Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom Background. Neisseria gonorrhoeae and Neisseria meningitidis are closely-related bacteria that cause a significant global burden of disease. Control of gonorrhoea is becoming increasingly difficult, due to widespread antibiotic resistance. While vaccines are routinely used for N. meningitidis, no vaccine is available for N. gonorrhoeae. Recently, the outer membrane vesicle (OMV) menin- gococcal B vaccine, MeNZB, was reported to be associated with reduced rates of gonorrhoea following a mass vaccination campaign in New Zealand. To probe the basis for this protection, we assessed the cross-reactivity to N. gonorrhoeae of serum raised to the me- ningococcal vaccine Bexsero, which contains the MeNZB OMV component plus 3 recombinant antigens (Neisseria adhesin A, factor H binding protein [fHbp]-GNA2091, and Neisserial heparin binding antigen [NHBA]-GNA1030). Methods. A bioinformatic analysis was performed to assess the similarity of MeNZB OMV and Bexsero antigens to gonococcal proteins. Rabbits were immunized with the OMV component or the 3 recombinant antigens of Bexsero, and Western blots and enzyme-linked immunosorbent assays were used to assess the generation of antibodies recognizing N. gonorrhoeae. Serum from humans immunized with Bexsero was investigated to assess the nature of the anti-gonococcal response. Results. There is a high level of sequence identity between MeNZB OMV and Bexsero OMV antigens, and between the antigens and gonococcal proteins.
    [Show full text]
  • Menzb™ Vaccine Safety Monitoring Plan Is Organised to Provide the DMG with Prompt Reports of Cases of Aes, in Particular Those Involving Hospitalisation
    Meningococcal B Vaccine (MeNZB™) Safety Monitoring Plan Prepared by the Meningococcal Vaccine Strategy Data Management Group 1 June 2004 Table of Contents 1 INTRODUCTION…………………………………………………………………3 2 ROLLOUT ................................................................................................ 4 3 ISMB FORMAL DECISION POINTS ........................................................ 6 3.1 Steps from pilot to countrywide use ............................................ 10 3.1.1 5-19 year olds total cohort for hospital-based monitoring ........ 10 3.1.2 6 week –4 years total cohort for hospital-based monitoring ..... 11 3.1.2.1 16 month – 4 year olds CMDHB cohort .................................... 11 3.1.2.2 6-15 month olds CMDHB cohort ............................................... 12 3.1.2.3 6 week – 5 month olds CMDHB cohort ..................................... 12 3.2 Number of observed events ......................................................... 16 4 DATA SOURCES - DATA FLOWS ........................................................ 16 4.1 Hospital-based monitoring - rare events ..................................... 16 4.2 Hospital-based monitoring of ALL events ................................... 18 4.3 NZPhvC (CARM) – Passive reporting ........................................... 19 4.4 NZPhvC (CARM) Active reporting – IVMP ................................... 19 4.5 Background hospitalisation data ................................................. 20 4.6 Adverse events following routine childhood vaccines .............
    [Show full text]
  • Vaccines Against Meningococcal Diseases
    microorganisms Review Vaccines against Meningococcal Diseases Mariagrazia Pizza 1 , Rafik Bekkat-Berkani 2 and Rino Rappuoli 1,* 1 GSK, 53100 Siena, Italy; [email protected] 2 GSK, Rockville, MD 20850, USA; rafi[email protected] * Correspondence: [email protected]; Tel.: +39-0577-243414 Received: 31 August 2020; Accepted: 1 October 2020; Published: 3 October 2020 Abstract: Neisseria meningitidis is the main cause of meningitis and sepsis, potentially life-threatening conditions. Thanks to advancements in vaccine development, vaccines are now available for five out of six meningococcal disease-causing serogroups (A, B, C, W, and Y). Vaccination programs with monovalent meningococcal serogroup C (MenC) conjugate vaccines in Europe have successfully decreased MenC disease and carriage. The use of a monovalent MenA conjugate vaccine in the African meningitis belt has led to a near elimination of MenA disease. Due to the emergence of non-vaccine serogroups, recommendations have gradually shifted, in many countries, from monovalent conjugate vaccines to quadrivalent MenACWY conjugate vaccines to provide broader protection. Recent real-world effectiveness of broad-coverage, protein-based MenB vaccines has been reassuring. Vaccines are also used to control meningococcal outbreaks. Despite major improvements, meningococcal disease remains a global public health concern. Further research into changing epidemiology is needed. Ongoing efforts are being made to develop next-generation, pentavalent vaccines including a MenACWYX conjugate vaccine and a MenACWY conjugate vaccine combined with MenB, which are expected to contribute to the global control of meningitis. Keywords: Neisseria meningitidis; meningococcal infection; invasive meningococcal disease (IMD); meningococcal outbreaks; meningococcal vaccines; reverse vaccinology; 4CMenB; rLP2086; outer member vesicles (OMV); bactericidal activity 1.
    [Show full text]
  • CARTWRIGHT ANNIVERSARY SEMINAR 5Th August 2008 Presented by Lynda Williams
    CARTWRIGHT ANNIVERSARY SEMINAR 5th August 2008 Presented by Lynda Williams “GARDASIL – CARTWRIGHT’S DAUGHTER?” My involvement in the issue of HPV vaccines formally began on 20 February 2006 when a representative from CSL, the manufacturer of Gardasil, came to meet with members of the Auckland Women’s Health Council and Women’s Health Action. Her visit rang alarm bells. When drug company reps want to come and visit with women’s health groups my alarm bells always start ringing, but this visit was particularly worrying. For a start the young woman couldn’t answer many of the questions we had about the research results. She also made claims about there being a reduction in the timeframe between infection with the human papilloma virus (HPV) and the development of cervical cell abnormalities which she said would be substantiated when new research results were published in 2 – 3 months time – this didn’t happen. And she was obviously hoping that we would support CSL’s endeavours to get the vaccine introduced into the school-based vaccination programme. We made it quite clear that we wouldn’t. We also had major issues around how long the vaccine would last and the need to include males in any anti-HPV vaccination programme. We had other concerns as well and I will come to these later. But before I say any more about Gardasil, we need to go back and set the scene for why this particular issue is the topic of today’s Cartwright lunch time seminar and is one that women’s groups are examining through what we refer to as a “Cartwright lens.” Cervical Cancer Inquiry It is exactly 20 years today since the report of Judge Silvia Cartwright’s Inquiry into the treatment of cervical cancer at National Women’s Hospital was released.
    [Show full text]
  • Meningococcal Disease Factsheet for Parents and Caregivers
    Meningococcal disease FactSheet For Parents and Caregivers What is meningococcal disease? Who is at risk? Meningococcal disease is caused by the bacterium Neisseria Infants, children less than five years of age and adolescents meningitidis. At least 13 groups have been identified and have an increased risk of meningococcal disease.1,2,8 Infants of these groups A, B, C, Y and W-135 are the most likely less than one year of age and children less than five years who to cause disease in humans.1-4 Patterns of infection differ are Māori or Pacific Peoples have the highest risk.5 throughout the world. In New Zealand groups B and C are most likely to cause disease.5 Humans are the only host of Being exposed to tobacco smoke, living in a crowded these bacteria.1,3 household or having another respiratory infection, e.g. influenza, can increase a person’s chances of carrying the How do you catch it? bacteria.1,9-11 Meningococcal bacteria are commonly carried in the nose Some groups are also at increased risk of infection: and throat, and do not usually cause disease. The bacteria can household and other close contacts of someone with the be transferred from person to person through contact with disease, e.g. those who have been intimate or shared food saliva, e.g. intimate kissing.2-4,6 Saliva on shared drink bottles and beverages, infants and children attending day care or an or pacifiers (dummies) may also have a limited role in passing early childhood education centre, and adolescents and young the bacteria from one person to another.6,7 The bacteria people at boarding school or living in hostels.1,12 may also be shared through droplets of saliva in the air from 2,4 people coughing, sneezing or laughing.
    [Show full text]