State of the Art of New Vaccine Research and Development

Total Page:16

File Type:pdf, Size:1020Kb

State of the Art of New Vaccine Research and Development WHO/IVB/06.01 ORIGINAL: ENGLISH State of the art of new vaccine Iresearch and development VImmunization,B Vaccines and Biologicals WHO/IVB/06.01 ORIGINAL: ENGLISH State of the art of new vaccine Iresearch and development VImmunization,B Vaccines and Biologicals The Department of Immunization, Vaccines and Biologicals thanks the donors whose unspecified financial support has made the production of this document possible. This document was produced by the Initiative for Vaccine Research of the Department of Immunization, Vaccines and Biologicals Ordering code: WHO/IVB/06.01 Printed: January 2006 This publication is available on the Internet at: www.who.int/vaccines-documents/ Copies may be requested from: World Health Organization Department of Immunization, Vaccines and Biologicals CH-1211 Geneva 27, Switzerland • Fax: + 41 22 791 4227 • Email: [email protected] • © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. The views expressed in documents by named authors are solely the responsibility of those authors. Printed by the WHO Document Production Services, Geneva, Switzerland ii Contents Abbreviations and acronyms .......................................................................................... v Acknowledgements ......................................................................................................... ix Preface .............................................................................................................................. xi 1. Diarrhoeal diseases ................................................................................................. 1 1.1 Caliciviruses ....................................................................................................... 1 1.2.Campylobacter................................................................................................... 2 1.3.Cholera................................................................................................................ 3 1.4.Enterotoxigenic Escherichia coli (ETEC)....................................................... 5 1.5.Rotavirus............................................................................................................. 7 1.6.Shigellosis ......................................................................................................... 10 1.7.Typhoid fever ................................................................................................... 12 2. Respiratory infections .......................................................................................... 15 2.1.Influenza ........................................................................................................... 16 2.2.Parainfluenza viruses ...................................................................................... 20 2.3.Respiratory syncytial virus (RSV)................................................................. 21 2.4.Severe acute respiratory syndrome (SARS) ................................................ 25 2.5.Streptococcus pneumoniae ............................................................................. 26 2.6.Tuberculosis...................................................................................................... 29 3. Bacterial infections ............................................................................................... 34 3.1.Helicobacter pylori .......................................................................................... 34 3.2.Neisseria meningitidis ...................................................................................... 35 3.3.Mycobacterium ulcerans (Buruli ulcer)......................................................... 39 3.4.Staphylococcus aureus ..................................................................................... 40 3.5.Group A Streptococcus ................................................................................... 41 3.6.Group B Streptococcus .................................................................................... 42 4. Parasitic diseases.................................................................................................... 44 4.1.Amoebiasis........................................................................................................ 44 4.2.Hookworm disease .......................................................................................... 45 4.3.Leishmaniasis ................................................................................................... 46 4.4.Malaria .............................................................................................................. 48 4.5.Schistosomiasis................................................................................................. 56 5. Sexually transmitted diseases ............................................................................. 59 5.1.Chlamydia trachomatis................................................................................... 59 5.2.Gonorrhoea ...................................................................................................... 61 5.3.Herpes simplex type 2 .................................................................................... 62 5.4.HIV/AIDS........................................................................................................ 65 iii 6. Vector-borne viral infections .............................................................................. 72 6.1.Dengue fever .................................................................................................... 72 6.2.Japanese encephalitis ....................................................................................... 75 6.3.Tick-borne encephalitis ................................................................................... 78 6.4.West Nile virus ................................................................................................ 79 7. Zoonotic infections ................................................................................................ 82 7.1.Anthrax ............................................................................................................. 82 7.2.Hepatitis E ........................................................................................................ 84 7.3.Leptospirosis .................................................................................................... 86 7.4.Plague ................................................................................................................ 86 7.5.Rabies ................................................................................................................ 88 8. Viral cancers........................................................................................................... 91 8.1.Epstein-Barr virus ........................................................................................... 91 8.2.Hepatitis C ....................................................................................................... 93 8.3.Human papillomavirus .................................................................................... 96 iv Abbreviations and acronyms AIDS acquired immunodeficiency syndrome ANRS French National AIDS Research Agency ARI acute respiratory infection BCG Bacille Calmette–Guérin (vaccine) BL Burkitt’s lymphoma bp base pair (ribo- or deoxyribo-nucleotide) BV Buruli ulcer cAMP cyclic adenosine monophosphate CDC Centers for Disease Control and Prevention (USA) CFA colonization factor antigen (E. coli) CFR case fatality rate CRM cross-reactive material (diphteria toxin) CS E. coli surface (antigen) CSP circumsporozoite protein CT cholera toxin CTB cholera toxin (subunit) B CTL cytotoxic T lymphocyte CVD Center for Vaccine Development (University of Maryland) DHF dengue haemorrhagic fever DNA deoxyribonucleic acid DOTS directly observed treatment, short course DSS
Recommended publications
  • The Bill & Melinda Gates Foundation Tax Return Was E-Filed with The
    The Bill & Melinda Gates Foundation tax return was e-filed with the Internal Revenue Service. The tax return and accompanying attachments posted on our website are presented as a view of the electronically filed data. Please note for ease of navigating the tax return we have bookmarked the various sections of the return. efile GRAPHIC print - DO NOT PROCESS ORIGINAL DATA - EIN: 562618866 Return of Private Foundation OMB No. 1545-0052 Form 990-PF or Section 4947(a)(1) Nonexempt Charitable Trust Treated as a Private Foundation 2007 Department of the Treasury Note: The foundation may be able to use a copy of this return to satisfy state reporting requirements. Internal Revenue Service For calendar year 2007 , or tax year beginning 01-01-2007 and ending 12-31-2007 G Check all that apply: Initial return Final return Amended return Address change Name change Name of foundation A Employer identification number Use the IRS BILL & MELINDA GATES FOUNDATION label. 56-2618866 Otherwise, B Telephone number (see page 10 of the instructions) print Number and street (or P.O. box number if mail is not delivered to street address) Room/ suite or type. 1551 EASTLAKE AVENUE EAST (206) 709-3100 See Specific Instructions. City or town, state, and ZIP code C If exemption application is pending, check here SEATTLE, WA 98102 D 1. Foreign organizations, check here . H Check type of organization: Section 501(c)(3) exempt private foundation 2. Foreign organizations meeting the 85% test, check here and attach computation Section 4947(a)(1) nonexempt charitable trust Other taxable private foundation E If private foundation status was terminated I Fair market value of all assets at end J Accounting method: Cash Accrual under section 507(b)(1)(A), check here of year (from Part II, col.
    [Show full text]
  • Review Article How the Knowledge of Interactions Between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria Meningitidis Vaccines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Florence Research Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 189153, 26 pages http://dx.doi.org/10.1155/2015/189153 Review Article How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines R. Gasparini,1 D. Panatto,1 N. L. Bragazzi,1 P. L. Lai,1 A. Bechini,2 M. Levi,2 P. Durando,1 and D. Amicizia1 1 Department of Health Sciences, University ofGenoa,ViaPastore1,16132Genoa,Italy 2Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy Correspondence should be addressed to R. Gasparini; [email protected] Received 21 January 2015; Accepted 9 June 2015 Academic Editor: Nejat K. Egilmez Copyright © 2015 R. Gasparini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed.
    [Show full text]
  • Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasitic Load and Blood Loss After Hookworm Infection in Dogs
    Open access, freely available online PLoS MEDICINE Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasite Load and Blood Loss after Hookworm Infection in Dogs Alex Loukas1*, Jeffrey M. Bethony2, Susana Mendez2, Ricardo T. Fujiwara2, Gaddam Narsa Goud2, Najju Ranjit1, Bin Zhan2, Karen Jones2, Maria Elena Bottazzi2, Peter J. Hotez2* 1 Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia, 2 Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, District of Columbia, United States of America Competing Interests: The authors have declared that no competing ABSTRACT interests exist. Background Author Contributions: AL, JMB, MEB, and PJH designed the study. Hookworms infect 730 million people in developing countries where they are a leading cause AL, RTF, GNG, NR, BZ, performed of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult experiments. AL, PJH, JMB, SM, and hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites KJ analyzed the data. AL, PJH, JMB, and SM contributed to writing the subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins paper. with the Ancylostoma caninum aspartic protease 1, APR-1. Academic Editor: Maria Yazdanbakhsh, Leiden University Methods and Findings Medical Center, the Netherlands Citation: Loukas A, Bethony JM, We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular Mendez S, Fujiwara RT, Goud GN, et responses and resulted in significantly reduced hookworm burdens (p ¼ 0.056) and fecal egg al. (2005) Vaccination with counts (p ¼ 0.018) in vaccinated dogs compared to control dogs after challenge with infective recombinant aspartic hemoglobinase reduces parasite larvae of A.
    [Show full text]
  • Developing Vaccines for Neglected Diseases
    Developing Vaccines for Neglected Diseases Vaccine Technologies II Albufeira, Portugal June 5th, 2008 Douglas Holtzman, Ph.D., M.P.H. Senior Program Officer, Global Health Program Bill & Melinda Gates Foundation 1 Three Programs, One Goal: Equity US Program » High school education » Public library internet access Global Development » Financial services for the poor (e.g. microfinance) » Agricultural productivity and markets Global Health 2 Perspective on Global Health The vision: To ensure that a child born in the developing world has the same chance for good health as a child born in the developed world The goal: Build on advances in science and technology to save lives, improve health, and reduce disease in the developing world 3 Prioritization Burden of disease Inequity of burden Lack of attention Possibility for impact 4 Disease Areas HIV (vaccines, microbicides, treatment, prevention, education) TB (drugs, vaccines, diagnostics) Malaria (drugs, vaccines, vector control, diagnostics, scale-up) Pneumonia Diarrhea Nutrition Maternal Health Discover, develop and deliver Kinetoplastids innovative solutions Helminths HPV Dengue/Japanese Encephalitis Polio 5 Partnerships Global Alliance for Vaccines and Immunization (GAVI) Global Fund for AIDS, TB and Malaria HIV Vaccine Enterprise Medicines for Malaria Venture (MMV) Malaria Vaccine Initiative (MVI) MACEPA PATH Vaccine Solutions (PVS) Aeras (TB Vaccines) Global Alliance for TB Drug Development (GATB) ACHAP Grand Challenges in Global Health IVI/PDVI Etc….
    [Show full text]
  • Assessment of Varicella Vaccine for Inclusion in the National Immunisation Schedule, Outcome Management Services: Specialists in Cost Benefit Analysis, Wellington
    Varicella Vaccine Assessment Report 2012 Varicella Vaccination in New Zealand: NHC Assessment 2012 In 2014 the National Health Committee (NHC) received a request for a copy of the NHC’s assessment report on varicella (chicken pox) vaccination. This report was part of early assessment work the NHC undertook in both varicella and rotavirus vaccination in 2011/12, before responsibility for the management and purchasing of vaccines (including considering any changes to the National Immunisation Schedule) transferred from the Ministry of Health to New Zealand’s Pharmaceutical management Agency (PHARMAC). The NHC provided PHARMAC copies of the vaccine assessment reports and recommendations papers in 2013 and formal NHC recommendations on this work were never provided to the Minister of Health. Following the principal of open disclosure the Committee has decided to release the package of NHC vaccination assessments and recommendations on their website (www.nhc.health.govt.nz). National Health Committee Page 1 of 61 Varicella Vaccine Assessment Report 2012 Table of Contents List of Tables ................................................................................................................. 4 Executive Summary ...................................................................................................... 5 Policy Question ............................................................................................................. 6 Who initiated or commissioned the report? ..............................................................
    [Show full text]
  • Pichia Pastoris (Komagataella Phaffii) As a Cost-Effective Tool for Vaccine
    bioengineering Review Pichia pastoris (Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs) Salomé de Sá Magalhães and Eli Keshavarz-Moore * Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK; [email protected] * Correspondence: [email protected] Abstract: Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies. Keywords: vaccines; LMICs; expression platforms; P. pastoris (Komagataella phaffii) Citation: de Sá Magalhães, S.; Keshavarz-Moore, E. Pichia pastoris (Komagataella phaffii) as a Cost-Effective 1. Introduction Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Infectious diseases have a significant global economic and societal impact. As a result, Bioengineering 2021, 8, 119. https:// during the last two centuries, we have witnessed the remarkable success of vaccination doi.org/10.3390/bioengineering8090119 reducing the burden of infectious diseases [1].
    [Show full text]
  • Infectious Diseases
    2013 MEDICINES IN DEVELOPMENT REPORT Infectious Diseases A Report on Diseases Caused by Bacteria, Viruses, Fungi and Parasites PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Research Evolves Against Infectious Diseases with Nearly 400 Medicines and Vaccines in Testing Throughout history, infectious diseases hepatitis C that inhibits the enzyme have taken a devastating toll on the lives essential for viral replication. and well-being of people around the • An anti-malarial drug that has shown Medicines in Development world. Caused when pathogens such activity against Plasmodium falci- For Infectious Diseases as bacteria or viruses enter a body and parum malaria which is resistant to multiply, infectious diseases were the current treatments. Application leading cause of death in the United Submitted States until the 1920s. Today, vaccines • A potential new antibiotic to treat methicillin-resistant Staphylococcus Phase III and infectious disease treatments have proven to be effective treatments in aureus (MRSA). Phase II many cases, but infectious diseases still • A novel treatment that works by Phase I pose a very serious threat to patients. blocking the ability of the smallpox Recently, some infectious pathogens, virus to spread to other cells, thus 226 such as pseudomonas bacteria, have preventing it from causing disease. become resistant to available treatments. Infectious diseases may never be fully Diseases once considered conquered, eradicated. However, new knowledge, such as tuberculosis, have reemerged new technologies, and the continuing as a growing health threat. commitment of America’s biopharma- America’s biopharmaceutical research ceutical research companies can help companies are developing 394 medicines meet the continuing—and ever-changing and vaccines to combat the many threats —threat from infectious diseases.
    [Show full text]
  • The Search for a Schistosomiasis Vaccine: Australia’S Contribution
    Review The Search for a Schistosomiasis Vaccine: Australia’s Contribution Donald P. McManus Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; [email protected]; Tel.: +61-418-744-006 Abstract: Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area. Keywords: Schistosoma; schistosomiasis; vaccine; vaccination; Australia; Australian researchers 1. Introduction Citation: McManus, D.P. The Search for a Schistosomiasis Vaccine: The neglected tropical parasitic disease of schistosomiasis, caused by blood flukes of Australia’s Contribution. Vaccines the genus Schistosoma, has long been a scourge of humankind. It results in considerable 2021, 9, 872. https://doi.org/ morbidity, even leading to death, in sub-Saharan Africa, parts of South America, the Middle 10.3390/vaccines9080872 East and Southeast Asia.
    [Show full text]
  • Mrna Vaccine: a Potential Therapeutic Strategy Yang Wang† , Ziqi Zhang† , Jingwen Luo† , Xuejiao Han† , Yuquan Wei and Xiawei Wei*
    Wang et al. Molecular Cancer (2021) 20:33 https://doi.org/10.1186/s12943-021-01311-z REVIEW Open Access mRNA vaccine: a potential therapeutic strategy Yang Wang† , Ziqi Zhang† , Jingwen Luo† , Xuejiao Han† , Yuquan Wei and Xiawei Wei* Abstract mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases. Keywords: mRNA vaccine, Self-amplifying RNA, Non-replicating mRNA, Modification, Immunogenicity, Delivery strategy, COVID-19 mRNA vaccine, Clinical trials, Antibody-dependent enhancement, Dendritic cell targeting Introduction scientists are seeking to develop effective cancer vac- A vaccine stimulates the immune response of the body’s cines.
    [Show full text]
  • Artículos Científicos
    Editor: NOEL GONZÁLEZ GOTERA Número 086 Diseño: Lic. Roberto Chávez y Liuder Machado. Semana 010613 - 070613 Foto: Lic. Belkis Romeu e Instituto Finlay La Habana, Cuba. ARTÍCULOS CIENTÍFICOS Publicaciones incluidas en PubMED durante el período comprendido entre el el 1 y el 7 de junio de 2013. Con “vaccin*” en título: 131 artículos recuperados. Vacunas Neumococo (Streptococcus pneumoniae) 98. Is there an authentic increased risk of pneumococcal pneumonia among young mothers whose children were fully vaccinated with PCV7? The role of methodological shortcomings. Castiglia P, Piana A, Sotgiu G. Vaccine. 2013 May 29. doi:pii: S0264-410X(13)00655-5. 10.1016/j.vaccine.2013.05.055. [Epub ahead of print] No abstract available. PMID: 23727001 [PubMed - as supplied by publisher] Related citations Select item 23726847 121. Clonal Expansion within Pneumococcal Serotype 6C after Use of Seven-Valent Vaccine. Loman NJ, Gladstone RA, Constantinidou C, Tocheva AS, Jefferies JM, Faust SN, O'Connor L, Chan J, Pallen MJ, Clarke SC. PLoS One. 2013 May 28;8(5):e64731. doi: 10.1371/journal.pone.0064731. Print 2013. PMID: 23724086 [PubMed - in process] Free Article Related citations Select item 23724021 1 Vacuna Tosferina (Bordetella pertussis) 108. [Pertussis in fully vaccinated infants and children. Are new vaccination strategies required?] Moraga-Llop FA, Mendoza-Palomar N, Muntaner-Alonso A, Codina-Grau G, Fàbregas-Martori A, Campins-Martí M. Enferm Infecc Microbiol Clin. 2013 May 29. doi:pii: S0213-005X(13)00124-9. 10.1016/j.eimc.2013.04.007. [Epub ahead of print] Spanish. PMID: 23725786 [PubMed - as supplied by publisher] Related citations Select item 23725785 125.
    [Show full text]
  • A Review of COVID-19 Vaccines in Development: 6 Months Into the Pandemic
    Article Review A review of COVID-19 vaccines in development: 6 months into the pandemic Merlin Sanicas, Melvin Sanicas, Doudou Diop, Emanuele Montomoli Corresponding author: Doudou Diop, PATH, Dakar, Sénégal. [email protected] Received: 13 Jul 2020 - Accepted: 29 Jul 2020 - Published: 05 Oct 2020 Keywords: Coronavirus, COVID-19, pandemic, vaccine development Copyright: Merlin Sanicas et al. Pan African Medical Journal (ISSN: 1937-8688). This is an Open Access article distributed under the terms of the Creative Commons Attribution International 4.0 License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cite this article: Merlin Sanicas et al. A review of COVID-19 vaccines in development: 6 months into the pandemic. Pan African Medical Journal. 2020;37(124). 10.11604/pamj.2020.37.124.24973 Available online at: https://www.panafrican-med-journal.com/content/article/37/124/full A review of COVID-19 vaccines in development: 6 Abstract months into the pandemic 1 2 3,& The advent of the COVID-19 pandemic and the Merlin Sanicas , Melvin Sanicas , Doudou Diop , dynamics of its spread is unprecedented. 4,5 Emanuele Montomoli Therefore, the need for a vaccine against the virus is huge. Researchers worldwide are working 1Centre de Recherche en Cancérologie de around the clock to find a vaccine. Experts Marseille, Université Aix-Marseille, Marseille, 2 estimate that a fast-tracked vaccine development France, Clinical Development, Takeda process could speed a successful candidate to Pharmaceuticals International AG, Zurich, 3 4 market in approximately 12-18 months.
    [Show full text]
  • B-Cell Epitope Prediction for Peptide-Based Vaccine Design: Towards a Paradigm of Biological Outcomes for Global Health
    Caoili et al. Immunome Research 2011, 7:2:2 http://www.immunome-research.net/ RESEARCH Open Access B-cell epitope prediction for peptide-based vaccine design: towards a paradigm of biological outcomes for global health Salvador Eugenio C. Caoili Abstract Global health must address a rapidly evolving burden of disease, hence the urgent need for versatile generic technologies exemplified by peptide-based vaccines. B-cell epitope prediction is crucial for designing such vaccines; yet this approach has thus far been largely unsuccessful, prompting further inquiry into the underly- ing reasons for its apparent inadequacy. Two major obstacles to the development of B-cell epitope prediction for peptide-based vaccine design are (1) the prevailing binary classification paradigm, which mandates the problematic dichotomization of continuous outcome variables, and (2) failure to explicitly model biological consequences of immunization that are relevant to practical considerations of safety and efficacy. The first obstacle is eliminated by redefining the predictive task as quantitative estimation of empirically observable biological effects of antibody-antigen binding, such that prediction is benchmarked using measures of corre- lation between continuous rather than dichotomous variables; but this alternative approach by itself fails to address the second obstacle even if benchmark data are selected to exclusively reflect functionally relevant cross-reactivity of antipeptide antibodies with protein antigens (as evidenced by antibody-modulated protein biological activity), particularly where only antibody-antigen binding is actually predicted as a surrogate for its biological effects. To overcome the second obstacle, the prerequisite is deliberate effort to predict, a priori, biological outcomes that are of immediate practical significance from the perspective of vaccination.
    [Show full text]