Mrna Vaccine: a Potential Therapeutic Strategy Yang Wang† , Ziqi Zhang† , Jingwen Luo† , Xuejiao Han† , Yuquan Wei and Xiawei Wei*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lanosterol 14Α-Demethylase (CYP51)
463 Lanosterol 14-demethylase (CYP51), NADPH–cytochrome P450 reductase and squalene synthase in spermatogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol G Majdicˇ, M Parvinen1, A Bellamine2, H J Harwood Jr3, WWKu3, M R Waterman2 and D Rozman4 Veterinary Faculty, Clinic of Reproduction, Cesta v Mestni log 47a, 1000 Ljubljana, Slovenia 1Institute of Biomedicine, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland 2Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232–0146, USA 3Pfizer Central Research, Department of Metabolic Diseases, Box No. 0438, Eastern Point Road, Groton, Connecticut 06340, USA 4Institute of Biochemistry, Medical Center for Molecular Biology, Medical Faculty University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia (Requests for offprints should be addressed to D Rozman; Email: [email protected]) (G Majdicˇ is now at Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75235–8857, USA) Abstract Lanosterol 14-demethylase (CYP51) is a cytochrome detected in step 3–19 spermatids, with large amounts in P450 enzyme involved primarily in cholesterol biosynthe- the cytoplasm/residual bodies of step 19 spermatids, where sis. CYP51 in the presence of NADPH–cytochrome P450 P450 reductase was also observed. Squalene synthase was reductase converts lanosterol to follicular fluid meiosis immunodetected in step 2–15 spermatids of the rat, activating sterol (FF-MAS), an intermediate of cholesterol indicating that squalene synthase and CYP51 proteins are biosynthesis which accumulates in gonads and has an not equally expressed in same stages of spermatogenesis. additional function as oocyte meiosis-activating substance. -
Characterization of Methylene Diphenyl Diisocyanate Protein Conjugates
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-5-2014 Characterization of Methylene Diphenyl Diisocyanate Protein Conjugates Morgen Mhike Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Allergy and Immunology Commons, and the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Mhike, Morgen, "Characterization of Methylene Diphenyl Diisocyanate Protein Conjugates" (2014). Dissertations and Theses. Paper 1844. https://doi.org/10.15760/etd.1843 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Characterization of Methylene Diphenyl Diisocyanate Protein Conjugates by Morgen Mhike A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Dissertation Committee: Reuben H. Simoyi, Chair Paul D. Siegel Itai Chipinda Niles Lehman Shankar B. Rananavare Robert Strongin E. Kofi Agorsah Portland State University 2014 © 2014 Morgen Mhike ABSTRACT Diisocyanates (dNCO) such as methylene diphenyl diisocyanate (MDI) are used primarily as cross-linking agents in the production of polyurethane products such as paints, elastomers, coatings and adhesives, and are the most frequently reported cause of chemically induced immunologic sensitization and occupational asthma (OA). Immune mediated hypersensitivity reactions to dNCOs include allergic rhinitis, asthma, hypersensitivity pneumonitis and allergic contact dermatitis. There is currently no simple diagnosis for the identification of dNCO asthma due to the variability of symptoms and uncertainty regarding the underlying mechanisms. -
Resiquimod As an Immunologic Adjuvant for NY-ESO-1 Protein
Published OnlineFirst January 29, 2015; DOI: 10.1158/2326-6066.CIR-14-0202 Research Article Cancer Immunology Research Resiquimod as an Immunologic Adjuvant for NY-ESO-1 Protein Vaccination in Patients with High-Risk Melanoma Rachel Lubong Sabado1,2, Anna Pavlick1, Sacha Gnjatic2,3, Crystal M. Cruz1, Isabelita Vengco1, Farah Hasan1, Meredith Spadaccia1, Farbod Darvishian4, Luis Chiriboga4, Rose Marie Holman1, Juliet Escalon1, Caroline Muren1, Crystal Escano1, Ethel Yepes1, Dunbar Sharpe1, John P.Vasilakos5, Linda Rolnitzsky6, Judith D. Goldberg6, John Mandeli2, Sylvia Adams1, Achim Jungbluth7, Linda Pan3, Ralph Venhaus3, Patrick A. Ott1,8, and Nina Bhardwaj1,2,4 Abstract The Toll-like receptor (TLR) 7/8 agonist resiquimod has been vaccine regimens were generally well tolerated. NY-ESO-1–specific used as an immune adjuvant in cancer vaccines. We evaluated the humoral responses were induced or boosted in all patients, many safety and immunogenicity of the cancer testis antigen NY-ESO-1 of whom had high titer antibodies. In part II, 16 of 20 patients in þ þ given in combination with Montanide (Seppic) with or without both arms had NY-ESO-1–specificCD4 T-cell responses. CD8 T- resiquimod in patients with high-risk melanoma. In part I of the cell responses were only seen in 3 of 12 patients in arm B. Patients study, patients received 100 mg of full-length NY-ESO-1 protein with TLR7 SNP rs179008 had a greater likelihood of developing þ emulsified in 1.25 mL of Montanide (day 1) followed by topical NY-ESO-1–specificCD8 responses. In conclusion, NY-ESO-1 application of 1,000 mg of 0.2% resiquimod gel on days 1 and 3 protein in combination with Montanide with or without topical þ (cohort 1) versus days 1, 3, and 5 (cohort 2) of a 21-day cycle. -
Cytochrome Oxidase (A3) Heme and Copper Observed by Low- Temperature Fourier Transform Infrared Spectroscopy Ofthe CO Complex (Photolysis/Mitoehondria/Beef Heart) J
Proc. Natl Acad. Sci. USA Vol. 78, No. 1, pp. 234-237, January 1981 Biochemistry Cytochrome oxidase (a3) heme and copper observed by low- temperature Fourier transform infrared spectroscopy ofthe CO complex (photolysis/mitoehondria/beef heart) J. 0. ALBEN, P. P. MOH, F. G. FIAMINGO, AND R. A. ALTSCHULD Department ofPhysiological Chemistry, The Ohio State University, Columbus, Ohio 43210 Communicated by Hans Frauenfelder, October 10, 1980 ABSTRACT Carbon monoxide bound to iron or copper in sub- chondria is bound reversibly to the a3 copper would appear to strate-reduced mitochondrial cytochrome c oxidase (ferrocyto- explain these results. Here, we extend the observations to lower chrome c:oxygen oxidoreductase, EC 1.9.3.1) from beefheart has beenused toexplore the structural interaction ofthea3 heme-copper temperatures, illustrate the structural differences between pocket at.15 K and 80 K in the dark and in the presence ofvisible heme and copper CO complexes in cytochrome a3, and show light. The vibrational absorptions of CO measured by a Fourier how this may be related to the functional contributions ofthese transform infrared interferometer occur in the dark at 1963 cm-' metal centers. with small absorptions near 1952 cm-', and aredue toa3 heme-CO complexes. These disappear in strong visible light and are re- placed by a major absorption at 2062 cm' and a minor one at 2043 MATERIALS AND METHODS cm' due to CU-CO. Relaxation in the dark is rapid and quantita- tive at 210 K, but becomes negligible below 140 K. The multiple Mitochondria, prepared from fresh beef heart by use of Nagarse absorptions indicate structural heterogeneity of.cytochrome oxi- (8), were kindly donated by G. -
A Review of COVID-19 Vaccines in Development: 6 Months Into the Pandemic
Article Review A review of COVID-19 vaccines in development: 6 months into the pandemic Merlin Sanicas, Melvin Sanicas, Doudou Diop, Emanuele Montomoli Corresponding author: Doudou Diop, PATH, Dakar, Sénégal. [email protected] Received: 13 Jul 2020 - Accepted: 29 Jul 2020 - Published: 05 Oct 2020 Keywords: Coronavirus, COVID-19, pandemic, vaccine development Copyright: Merlin Sanicas et al. Pan African Medical Journal (ISSN: 1937-8688). This is an Open Access article distributed under the terms of the Creative Commons Attribution International 4.0 License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cite this article: Merlin Sanicas et al. A review of COVID-19 vaccines in development: 6 months into the pandemic. Pan African Medical Journal. 2020;37(124). 10.11604/pamj.2020.37.124.24973 Available online at: https://www.panafrican-med-journal.com/content/article/37/124/full A review of COVID-19 vaccines in development: 6 Abstract months into the pandemic 1 2 3,& The advent of the COVID-19 pandemic and the Merlin Sanicas , Melvin Sanicas , Doudou Diop , dynamics of its spread is unprecedented. 4,5 Emanuele Montomoli Therefore, the need for a vaccine against the virus is huge. Researchers worldwide are working 1Centre de Recherche en Cancérologie de around the clock to find a vaccine. Experts Marseille, Université Aix-Marseille, Marseille, 2 estimate that a fast-tracked vaccine development France, Clinical Development, Takeda process could speed a successful candidate to Pharmaceuticals International AG, Zurich, 3 4 market in approximately 12-18 months. -
B-Cell Epitope Prediction for Peptide-Based Vaccine Design: Towards a Paradigm of Biological Outcomes for Global Health
Caoili et al. Immunome Research 2011, 7:2:2 http://www.immunome-research.net/ RESEARCH Open Access B-cell epitope prediction for peptide-based vaccine design: towards a paradigm of biological outcomes for global health Salvador Eugenio C. Caoili Abstract Global health must address a rapidly evolving burden of disease, hence the urgent need for versatile generic technologies exemplified by peptide-based vaccines. B-cell epitope prediction is crucial for designing such vaccines; yet this approach has thus far been largely unsuccessful, prompting further inquiry into the underly- ing reasons for its apparent inadequacy. Two major obstacles to the development of B-cell epitope prediction for peptide-based vaccine design are (1) the prevailing binary classification paradigm, which mandates the problematic dichotomization of continuous outcome variables, and (2) failure to explicitly model biological consequences of immunization that are relevant to practical considerations of safety and efficacy. The first obstacle is eliminated by redefining the predictive task as quantitative estimation of empirically observable biological effects of antibody-antigen binding, such that prediction is benchmarked using measures of corre- lation between continuous rather than dichotomous variables; but this alternative approach by itself fails to address the second obstacle even if benchmark data are selected to exclusively reflect functionally relevant cross-reactivity of antipeptide antibodies with protein antigens (as evidenced by antibody-modulated protein biological activity), particularly where only antibody-antigen binding is actually predicted as a surrogate for its biological effects. To overcome the second obstacle, the prerequisite is deliberate effort to predict, a priori, biological outcomes that are of immediate practical significance from the perspective of vaccination. -
Heterosubtypic Influenza Protection Elicited by Double-Layered
Heterosubtypic influenza protection elicited by double- layered polypeptide nanoparticles in mice Lei Denga, Timothy Z. Changb, Ye Wanga, Song Lib, Shelly Wangc, Shingo Matsuyamaa, Guoying Yud, Richard W. Compansc, Jian-Dong Lia, Mark R. Prausnitzb, Julie A. Championb, and Bao-Zhong Wanga,1 aCenter for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303; bSchool of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332; cEmory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307; and dState Key Laboratory of Fibrosis Biology, College of Life Science, Henan Normal University, Xinxiang, 453002 Henan, China Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved July 9, 2018 (received for review April 5, 2018) Influenza is a persistent threat to public health. Here we report required for complete protection against a lethal influenza A that double-layered peptide nanoparticles induced robust specific challenge (14). immunity and protected mice against heterosubtypic influenza A Nanotechnology provides a promising approach for the de- virus challenges. We fabricated the nanoparticles by desolvating a velopment of new generations of influenza vaccines. Physiolog- composite peptide of tandem copies of nucleoprotein epitopes into ically activated disassembling nanoparticles mimic the biophysical nanoparticles as cores and cross-linking another composite peptide of and biochemical cues of virions and initiate “danger” signals that four tandem copies of influenza matrix protein 2 ectodomain epitopes enhance the activation of innate immunity and elicit potent cellular to the core surfaces as a coating. Delivering the nanoparticles via dis- and humoral immune responses with minimal cytotoxicity (15). -
Plant-Made HIV Vaccines and Potential Candidates
Plant-made HIV vaccines and potential candidates Jocelyne Tremouillaux-Guiller1, Khaled Moustafa2, Kathleen Hefferon3, Goabaone Gaobotse4, and Abdullah Makhzoum4 1Faculty of Pharmaceutical Sciences, University François Rabelais, Tours, France. 2Arabic Science Archive – ArabiXiv (https://arabixiv.org). 3Department of Microbiology, Cornell University, USA. 4Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana. Correspondence: [email protected]; [email protected] Highlights HIV/AIDS is a partially treatable but not completely curable pandemic disease. Major advances have been made to treat patients living with HIV/AIDS. Developing HIV vaccines is an ongoing endeavor and moves at an accelerated pace Plant molecular pharming is a valuable tool in HIV/AIDS vaccine research. Abstract Millions of people around the world suffer from heavy social and health burdens related to HIV/AIDS and its associated opportunistic infections. To reduce these burdens, preventive and therapeutic vaccines are required. Effective HIV vaccines have been under investigation for several decades using different animal models. Potential plant-made HIV vaccine candidates have also gained attention in the past few years. In addition to this, broadly neutralizing antibodies produced in plants which can target conserved viral epitopes and neutralize mutating HIV strains have been identified. Numerous epitopes of glycoproteins and capsid proteins of HIV-1 are a part of HIV therapy. Here, we discuss some recent findings aiming to produce anti-HIV-1 recombinant proteins in engineered plants for AIDS prophylactics and therapeutic treatments. Keywords: plant made pharmaceuticals; HIV vaccine; AIDS drug; plant molecular pharming/farming; multiepitopic HIV vaccine. 1 Introduction Acquired Immunodeficiency Syndrome (AIDS) is one of the greatest challenges to global public health today. -
Vaccination in Developing Countries: Problems, Challenges and Opportunities - T
GLOBAL PERSPECTIVES IN HEALTH - Vol. II - Vaccination in Developing Countries: Problems, Challenges and Opportunities - T. Pang VACCINATION IN DEVELOPING COUNTRIES: PROBLEMS, CHALLENGES, AND OPPORTUNITIES T. Pang Department of Research Policy and Cooperation, World Health Organization, Geneva, Switzerland Keywords: Developing countries, vaccination, immunization Contents 1. Introduction 2. Challenges to Improving Vaccination 3. Obstacles to Effective Vaccination 4. Solutions to Problems of Access and Coverage 5. Mechanisms: Cooperation Between Industrialized Nations and Developing Nations 6. Recent Initiatives—A Brighter Future? 6.1. The International Vaccine Institute 6.2. Global Alliance for Vaccines and Immunization 6.3. Millennium Vaccine Initiative 6.4. International AIDS Vaccine Initiative 6.5. Malaria Vaccine Initiative 7. Role of the World Health Organization 8. The Future Glossary Bibliography Biographical Sketch Summary Vaccines are the most inexpensive means of improving health and lowering morbidity and mortality caused by infectious diseases in the developing world. However, and in spite of significant advances in science and technology, the implementation of global vaccination coverage remains a pipe dream. Many obstacles and challenges remain, and imaginative and bold solutions are required. Recent initiatives based on international cooperation,UNESCO philanthropy, and goodwill – promise EOLSS a brighter future for those in need living in the developing world. 1. IntroductionSAMPLE CHAPTERS The eradication of smallpox and the imminent demise of polio are clear reminders of the power of vaccination in dealing with the scourge of communicable diseases in the developing world. The World Health Organization’s (WHO) Expanded Program for Immunization (EPI), which is focused on the six major diseases of childhood (diphtheria, pertussis, tetanus, polio, measles, and tuberculosis), succeeded in dramatically raising immunization coverage in developing countries from 5% in the 1970s to more than 80% of the birth cohort in the 1990s. -
HIV Envelope Antigen Valency on Peptide Nanofibers
www.nature.com/scientificreports OPEN HIV envelope antigen valency on peptide nanofbers modulates antibody magnitude and binding breadth Chelsea N. Fries1,9, Jui‑Lin Chen2,3,9, Maria L. Dennis3, Nicole L. Votaw1, Joshua Eudailey3, Brian E. Watts3, Kelly M. Hainline1, Derek W. Cain3, Richard Barfeld4, Cliburn Chan4, M. Anthony Moody3,5,6, Barton F. Haynes3,6, Kevin O. Saunders2,3,6,7, Sallie R. Permar2,3,5,6,8, Genevieve G. Fouda2,3,5* & Joel H. Collier1,6* A major challenge in developing an efective vaccine against HIV‑1 is the genetic diversity of its viral envelope. Because of the broad range of sequences exhibited by HIV‑1 strains, protective antibodies must be able to bind and neutralize a widely mutated viral envelope protein. No vaccine has yet been designed which induces broadly neutralizing or protective immune responses against HIV in humans. Nanomaterial‑based vaccines have shown the ability to generate antibody and cellular immune responses of increased breadth and neutralization potency. Thus, we have developed supramolecular nanofber‑based immunogens bearing the HIV gp120 envelope glycoprotein. These immunogens generated antibody responses that had increased magnitude and binding breadth compared to soluble gp120. By varying gp120 density on nanofbers, we determined that increased antigen valency was associated with increased antibody magnitude and germinal center responses. This study presents a proof‑of‑concept for a nanofber vaccine platform generating broad, high binding antibody responses against the HIV‑1 envelope glycoprotein. HIV-1/AIDS has been responsible for 30 million deaths since it became a global pandemic1. Despite decades of research, a vaccine against HIV-1 has remained elusive. -
Polymeric Biomaterial Drug Delivery Systems for Glioblastoma Therapy and Vaccines
POLYMERIC BIOMATERIAL DRUG DELIVERY SYSTEMS FOR GLIOBLASTOMA THERAPY AND VACCINES Kathryn Margaret Moore A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Engineering in the School of Medicine. Chapel Hill 2020 Approved by: Kristy M. Ainslie David Zaharoff Yevgeny Brudno Shawn D. Hingtgen Aaron Anselmo 2020 Kathryn Margaret Moore ALL RIGHTS RESERVED ii ABSTRACT Kathryn Margaret Moore: Polymeric Biomaterial Drug Delivery Systems for Glioblastoma Therapy and Vaccines (Under the direction of Kristy M. Ainslie) Polymeric biomaterial drug delivery systems have been explored to improve therapies for a wide range of diseases, including cancer and infectious diseases, by providing control over delivery of therapeutic cargo. Scaffolds composed of polymeric biomaterials have been used to increase efficacy of cell therapies by promoting cell implantation and viability thereafter. Both scaffolds and particles can be loaded with small molecules and biological agents to enhance delivery to target cells. This dissertation aims to explore the use of polymeric biomaterials to improve both glioblastoma therapy and vaccines. In the case of glioblastoma, the most common primary brain tumor, local drug delivery is a beneficial therapeutic strategy because its bypasses the blood brain barrier and allows for direct access to the site of tumor recurrence. Herein, scaffolds were fabricated by the process of electrospinning and characterized for the delivery of tumoricidal agent producing stem cells and chemotherapeutics into the glioblastoma surgical resection cavity. This work places a strong emphasis on the impact of scaffold degradation on the local glioblastoma therapies by utilizing the tunable polymer, acetalated dextran. -
17F8-Estradiol Hydroxylation Catalyzed by Human Cytochrome P450 Lbl (Catechol Estrogen/Indole Carbinol/Dioxin/Breast Cancer/Uterine Cancer) CARRIE L
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9776-9781, September 1996 Medical Sciences 17f8-Estradiol hydroxylation catalyzed by human cytochrome P450 lBl (catechol estrogen/indole carbinol/dioxin/breast cancer/uterine cancer) CARRIE L. HAYES*, DAVID C. SPINKt, BARBARA C. SPINKt, JOAN Q. CAOt, NIGEL J. WALKER*, AND THOMAS R. SUTTER*t *Department of Environmental Health Sciences, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205-2179; and tWadsworth Center, New York State Department of Health, Albany, NY 12201-0509 Communicated by Paul Talalay, Johns Hopkins University, Baltimore, MD, June 11, 1996 (received for review April 24, 1996) ABSTRACT The 4-hydroxy metabolite of 178-estradiol of 4-hydroxyestradiol (4-OHE2), and lack of activity of 2-hy- (E2) has been implicated in the carcinogenicity of this hor- droxyestradiol (2-OHE2), (17-19), implicate the 4-hydroxy- mone. Previous studies showed that aryl hydrocarbon- lated metabolites in estrogen-induced carcinogenesis. Perti- receptor agonists induced a cytochrome P450 that catalyzed nent to elucidating the contribution of 4-OHE2 to the devel- the 4-hydroxylation of E2. This activity was associated with opment of human cancer is the identification of the enzyme(s) human P450 lBi. To determine the relationship of the human that produce this metabolite. P450 lBl gene product and E2 4-hydroxylation, the protein Previous studies demonstrated that treatment of MCF-7 was expressed in Saccharomyces cerevisiae. Microsomes from breast cancer cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin the transformed yeast catalyzed the 4- and 2-hydroxylation of (TCDD), an environmental pollutant and potent agonist of the E2 with Km values of 0.71 and 0.78 ,uM and turnover numbers aryl hydrocarbon (Ah)-receptor, resulted in greater than 10- of 1.39 and 0.27 nmol product min'l nmol P450-1, respec- fold increases in the rates of E2 4- and 2-hydroxylation (20).