Symbolic Dynamics and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Symbolic Dynamics and Its Applications http://dx.doi.org/10.1090/psapm/060 AMS SHORT COURSE LECTURE NOTES Introductory Survey Lectures published as a subseries of Proceedings of Symposia in Applied Mathematics Proceedings of Symposia in APPLIED MATHEMATICS Volume 60 Symbolic Dynamics and its Applications American Mathematical Society Short Course January 4-5, 2002 San Diego, California Susan G. Williams Editor jgEMATf American Mathematical Society $ Providence, Rhode Island Editorial Board Peter S. Constant in (Chair) Eitan Tadmor Marsha J. Berger LECTURE NOTES PREPARED FOR THE AMERICAN MATHEMATICAL SOCIETY SHORT COURSE SYMBOLIC DYNAMICS AND ITS APPLICATIONS HELD IN SAN DIEGO, CALIFORNIA JANUARY 4-5, 2002 The AMS Short Course Series is sponsored by the Society's Program Committee for National Meetings. The series is under the direction of the Short Course Subcommittee of the Program Committee for National Meetings. 2000 Mathematics Subject Classification. Primary 37B10, 37B50, 37A15, 37F45, 94B05, 19C99. Library of Congress Cataloging-in-Publication Data American Mathematical Society Short Course on Symbolic Dynamics and its Applications : (2002 : San Diego, Calif.) Symbolic dynamics and its applications : American Mathematical Society, Short Course, Jan• uary 4-5, 2002, San Diego, California / Susan G. Williams, editor. p. cm. — (Proceedings of symposia in applied mathematics, ISSN 0160-7634 ; v. 60) Includes bibliographical references and index. ISBN 0-8218-3157-7 (alk. paper) 1. Symbolic dynamics—Congresses. I. Williams, Susan C, 1953- II. Title. III. Series. QA614.85.A44 2002 514/.74—dc22 2003062891 Copying and reprinting. Material in this book may be reproduced by any means for edu• cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg• ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math• ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) © 2004 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 09 08 07 06 05 04 Contents Preface vn Introduction to symbolic dynamics \ SUSAN G. WILLIAMS Combining modulation codes and error correcting codes 13 BRIAN MARCUS Complex dynamics and symbolic dynamics 37 PAUL BLANCHARD, ROBERT L. DEVANEY, and LINDA KEEN Multi-dimensional symbolic dynamics 61 DOUGLAS LIND Symbolic dynamics and tilings of Rd 81 E. ARTHUR ROBINSON, JR. Strong shift equivalence theory 121 J.B. WAGONER Index 155 Preface The foundation of the field of symbolic dynamics is generally credited to Jacques Hadamard, who used infinite symbol sequences in his analysis of geodesic flow on negatively curved surfaces in 1898. Hadamard's symbolic techniques were soon adopted and extended by other authors. However, the field had to wait forty years for its christening by Marston Morse and Gustav Hedlund, who provided the first systematic study of symbolic dynamical systems as objects of interest in their own right. This rather prescient paper at the dawn of the computer age set the stage for the mathematical analysis of codes and finite-alphabet communication systems using the techniques of dynamics and ergodic theory, most notably in the pioneering work of C.E. Shannon on the mathematical theory of communication. Fifty years after Hadamard applied symbolic techniques to dynamics, Shannon and others were applying dynamical techniques to symbols. In the fifty-odd years since then, symbolic dynamics has expanded its reach to apply, and be applied to, many areas. It has broken the confines of one dimension to encompass multi-dimensional arrays. The six chapters of this volume provide an introduction to the field as it is studied today and a sampler of its concerns and applications. They are expanded versions of the lectures given in the American Mathematical Society Short Course on Symbolic Dynamics and its Applications held in San Diego on January 4-5, 2002. I would like to take this opportunity to thank Jim Maxwell, Wayne Drady and the other AMS staff members who coordi• nated the short course and worked behind the scenes to make it run smoothly. Susan G. Williams Index (n, M) block code, 21 Douady-Hubbard theory of external rays, \n,M,d) codeC, 21 42 K^R), 141 edge shift, 6, 123 K2(R), 141 #3, 147 edge-to-edge, 83 ^-Construction, 132 eigenfunction, 104 A-strategy, 140 eigenvalue, 104 c-charge-constrained shift, 17 Perron-Frobenius, 103 d-dimensional shift of finite type, 63 eigenvector q-th power graph, 21 Perron-Frobenius, 103 2-dimensional golden mean shift, 64 einstein, 89 2-patch closure property, 91 elementary strong shift equivalence, 124 ellipse field, 43 algebraic Zd-action, 72 entropy, 8, 9, 20, 70 Algebraic Shift Equivalence Problem, 126 topological, 109 almost 1:1, 99 Entropy and the Zeta Function, 135 almost periodic, 94 escape locus, 48 Automorphisms of the Shift, 38 escape rate, 42 automorphisms of the two-sided shift, 58 even shift, 4 existence problem for higher-dimensional beta expansions, 3 shifts of finite type, 68 Bowen-Franks group, 9 factor map, 4 Cantor set, 37 finite-state (5, n)-encoder, 18 cellular automata, 66 finite-state code, 18 code, 4 forbidden patches, 86 complex structure, 43 full shift, 3 complexity, 108 Furstenberg's conjecture, 77 conjugacy, 5, 20 generator matrix, 22 topological, 5, 98, 123 golden mean shift, 3 control point, 96 Gottschalk's Theorem, 94 Cubic, 51 Henon map, 58 decomposition, 89 higher block codes, 5 Dehn twist, 44 Higher Degree Polynomials, 47 Delone set, 108 holographic data storage, 71 diffraction, 105 inert automorphisms, 146 dilatation, 44 dimension, 22 Julia set, 37 Dimension Group, 135 dimension group, 125 Ledrappier's example, 64 dimension group homomorphism, 129 Lehmer's Conjecture, 76 discrete spectrum, 105 local complexity 155 156 INDEX finite, 83 standard structure, 43 local matching rule, 86 Strong Shift Equivalence Problem, 126 locally derivable, 98 strong shift equivalence spaces, 127 mutually, 98 strong shift equivalent over Z+, 124 locally isomorphic, 96 structure matrix, 92 subshift, 3 Mahler measure, 75 subshift of finite type, 122 Mandelbrot set, 39 support, 83 mar-ker automorphism, 38 symbolic trajectory, 1, 2 marker sets, 57 Markov chain, 6 Theorem topological, 6 Perron-Frobenius, 103 maximum distance separable, 23 tile, 82 Measurable Riemann Mapping Theorem, 43 tiles minimal, 94 Penrose, 86 minimal markers, 57 Wang, 87 mixing tiling, 82 strong, 105 aperiodic, 88 weak, 105 periodic, 88 monodromy map, 42, 47 self-affine, 96 self-similar, 96 no Z-cycles condition, 130 tiling dynamical system, 85 Nonnegative Row and Column Operations, tiling metric, 84 137 tiling space, 85 finite type, 86 one-sided d-shift, 38 full, 82 one-sided shift, 3 tiling substitution, 89 parity insertion scheme, 25 invert ible, 92 parity-check matrix, 22 primitive, 92 patch, 83 tiling topology, 84 Path Space Construction, 131 tilings Pisot number, 106 Ammann-Beenker, 112 polynomial strong shift equations, 143 binary, 91, 92 prototiles, 82 chair, 89, 93 pushing deformation, 55 folding table, 90 generalized Penrose, 113 Quadratic Polynomials, 39 Kari & Culik, 88 quasiconformal mapping, 44 octagonal, 112 Penrose, 86 rate p: q finite-state encoder, 18 pinwheel, 91, 108 rate of escape function, 42 quasiperiodic, 112 repetitive, 94 substitution, 92 reversed concatenation, 29 table, 89 Riemann map, 42 triangular Penrose, 90 Robinson tiles, 68 unmarked Penrose, 99 runlength-limited (RLL)(d, k) shift, 16 topological quantum field theory, 148 translation, 83 shift equivalence, 9 Triangle Identities, 127, 147 Shift Equivalence Problem, 125 two-sided d-shift map, 58 shift equivalent, 124 shift of finite type, 4, 17 uniquely ergodic, 102 Singleton bound, 23 sliding block code, 5, 69 vertex shift, 5 sliding-block decodable, 19 Wang tiles, 65 sliding-block decoder, 19 Wang's Conjecture, 88 sofic shift, 6, 16 Spinning, 45 zeta function, 8 spinning construction, 48 standard concatenation, 25 Titles in This Series 60 Susan G. Williams, Editor, Symbolic dynamics and its applications (San Diego, California, January 2002) 59 James Sneyd, Editor, An introduction to mathematical modeling in physiology, cell biology, and immunology (New Orleans, Louisiana, January 2001) 58 Samuel J. Lomonaco, Jr., Editor, Quantum computation: A grand mathematical challenge for the twenty-first century and the millennium (Washington, DC, January 2000) 57 David C. Heath and Glen Swindle, Editors, Introduction to mathematical finance (San Diego, California, January 1997) 56 Jane Cronin and Robert E. O'Malley, Jr., Editors, Analyzing multiscale phenomena
Recommended publications
  • Effective S-Adic Symbolic Dynamical Systems
    Effective S-adic symbolic dynamical systems Val´erieBerth´e,Thomas Fernique, and Mathieu Sablik? 1 IRIF, CNRS UMR 8243, Univ. Paris Diderot, France [email protected] 2 LIPN, CNRS UMR 7030, Univ. Paris 13, France [email protected] 3 I2M UMR 7373, Aix Marseille Univ., France [email protected] Abstract. We focus in this survey on effectiveness issues for S-adic sub- shifts and tilings. An S-adic subshift or tiling space is a dynamical system obtained by iterating an infinite composition of substitutions, where a substitution is a rule that replaces a letter by a word (that might be multi-dimensional), or a tile by a finite union of tiles. Several notions of effectiveness exist concerning S-adic subshifts and tiling spaces, such as the computability of the sequence of iterated substitutions, or the effec- tiveness of the language. We compare these notions and discuss effective- ness issues concerning classical properties of the associated subshifts and tiling spaces, such as the computability of shift-invariant measures and the existence of local rules (soficity). We also focus on planar tilings. Keywords: Symbolic dynamics; adic map; substitution; S-adic system; planar tiling; local rules; sofic subshift; subshift of finite type; computable invariant measure; effective language. 1 Introduction Decidability in symbolic dynamics and ergodic theory has already a long history. Let us quote as an illustration the undecidability of the emptiness problem (the domino problem) for multi-dimensional subshifts of finite type (SFT) [8, 40], or else the connections between effective ergodic theory, computable analysis and effective randomness (see for instance [14, 33, 44]).
    [Show full text]
  • Strictly Ergodic Symbolic Dynamical Systems
    STRICTLY ERGODIC SYMBOLIC DYNAMICAL SYSTEMS SHIZUO KAKUTANI YALE UNIVERSITY 1. Introduction We continue the study of strictly ergodic symbolic dynamical systems which was started in our earlier report [6]. The main tools used in this investigation are "homomorphisms" and "substitutions". Among other things, we construct two strictly ergodic symbolic dynamical systems which are weakly mixing but not strongly mixing. 2. Strictly ergodic symbolic dynamical systems Let A be a finite set consisting of more than one element. Let (2.1) X = AZ = H A, An = A forallne Z, neZ be the set of all two sided infinite sequences (2.2) x = {a"In Z}, an = A for all n E Z, where (2.3) Z = {nln = O, + 1, + 2,} is the set of all integers. For each n E Z, an is called the nth coordinate of x, and the mapping (2.4) 7r,: x -+ a, = 7En(x) is called the nth projection of the power space X = AZ onto the base space An = A. The space X is a totally disconnected, compact, metrizable space with respect to the usual direct product topology. Let q be a one to one mapping of X = AZ onto itself defined by (2.5) 7En(q(X)) = ir.+1(X) for all n E Z. The mapping p is a homeomorphism ofX onto itself and is called the shift trans- formation. The dynamical system (X, (p) thus obtained is called the shift dynamical system. This research was supported in part by NSF Grant GP16392. 319 320 SIXTH BERKELEY SYMPOSIUM: KAKUTANI Let X0 be a nonempty closed subset of X which is invariant under (p.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Turbulence, Entropy and Dynamics
    TURBULENCE, ENTROPY AND DYNAMICS Lecture Notes, UPC 2014 Jose M. Redondo Contents 1 Turbulence 1 1.1 Features ................................................ 2 1.2 Examples of turbulence ........................................ 3 1.3 Heat and momentum transfer ..................................... 4 1.4 Kolmogorov’s theory of 1941 ..................................... 4 1.5 See also ................................................ 6 1.6 References and notes ......................................... 6 1.7 Further reading ............................................ 7 1.7.1 General ............................................ 7 1.7.2 Original scientific research papers and classic monographs .................. 7 1.8 External links ............................................. 7 2 Turbulence modeling 8 2.1 Closure problem ............................................ 8 2.2 Eddy viscosity ............................................. 8 2.3 Prandtl’s mixing-length concept .................................... 8 2.4 Smagorinsky model for the sub-grid scale eddy viscosity ....................... 8 2.5 Spalart–Allmaras, k–ε and k–ω models ................................ 9 2.6 Common models ........................................... 9 2.7 References ............................................... 9 2.7.1 Notes ............................................. 9 2.7.2 Other ............................................. 9 3 Reynolds stress equation model 10 3.1 Production term ............................................ 10 3.2 Pressure-strain interactions
    [Show full text]
  • Symbolic Dynamics and Markov Partitions
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 1, January 1998, Pages 1–56 S 0273-0979(98)00737-X SYMBOLIC DYNAMICS AND MARKOV PARTITIONS ROY L. ADLER Abstract. The decimal expansion of real numbers, familiar to us all, has a dramatic generalization to representation of dynamical system orbits by sym- bolic sequences. The natural way to associate a symbolic sequence with an orbit is to track its history through a partition. But in order to get a useful symbolism, one needs to construct a partition with special properties. In this work we develop a general theory of representing dynamical systems by sym- bolic systems by means of so-called Markov partitions. We apply the results to one of the more tractable examples: namely, hyperbolic automorphisms of the two dimensional torus. While there are some results in higher dimensions, this area remains a fertile one for research. 1. Introduction We address the question: how and to what extent can a dynamical system be represented by a symbolic one? The first use of infinite sequences of symbols to describe orbits is attributed to a nineteenth century work of Hadamard [H]. How- ever the present work is rooted in something very much older and familiar to us all: namely, the representation of real numbers by infinite binary expansions. As the example of Section 3.2 shows, such a representation is related to the behavior of a special partition under the action of a map. Partitions of this sort have been linked to the name Markov because of their connection to discrete time Markov processes.
    [Show full text]
  • Arxiv:Math/0611322V1 [Math.DS] 10 Nov 2006 Sisfcsalte Rmhdudt Os,Witnbtent Between Int Written Subject the Morse, Turn to to Intention Hedlund His Explicit
    ON THE GENESIS OF SYMBOLIC DYNAMICS AS WE KNOW IT ETHAN M. COVEN AND ZBIGNIEW H. NITECKI Abstract. We trace the beginning of symbolic dynamics—the study of the shift dynamical system—as it arose from the use of coding to study recurrence and transitivity of geodesics. It is our assertion that neither Hadamard’s 1898 paper, nor the Morse-Hedlund papers of 1938 and 1940, which are normally cited as the first instances of symbolic dynamics, truly present the abstract point of view associated with the subject today. Based in part on the evidence of a 1941 letter from Hedlund to Morse, we place the beginning of symbolic dynamics in a paper published by Hedlund in 1944. Symbolic dynamics, in the modern view [LM95, Kit98], is the dynamical study of the shift automorphism on the space of bi-infinite sequences of symbols, or its restriction to closed invariant subsets. In this note, we attempt to trace the begin- nings of this viewpoint. While various schemes for symbolic coding of geometric and dynamic phenomena have been around at least since Hadamard (or Gauss: see [KU05]), and the two papers by Morse and Hedlund entitled “Symbolic dynamics” [MH38, MH40] are often cited as the beginnings of the subject, it is our view that the specific, abstract version of symbolic dynamics familiar to us today really began with a paper,“Sturmian minimal sets” [Hed44], published by Hedlund a few years later. The outlines of the story are familiar, and involve the study of geodesic flows on surfaces, specifically their recurrence and transitivity properties; this note takes as its focus a letter from Hedlund to Morse, written between their joint papers and Hedlund’s, in which his intention to turn the subject into a part of topology is explicit.1 This letter is reproduced on page 6.
    [Show full text]
  • Geometry of Chaos
    Part I Geometry of chaos e start out with a recapitulation of the basic notions of dynamics. Our aim is narrow; we keep the exposition focused on prerequisites to the applications to W be developed in this text. We assume that the reader is familiar with dynamics on the level of the introductory texts mentioned in remark 1.1, and concentrate here on developing intuition about what a dynamical system can do. It will be a broad stroke description, since describing all possible behaviors of dynamical systems is beyond human ken. While for a novice there is no shortcut through this lengthy detour, a sophisticated traveler might bravely skip this well-trodden territory and embark upon the journey at chapter 18. The fate has handed you a law of nature. What are you to do with it? 1. Define your dynamical system (M; f ): the space M of its possible states, and the law f t of their evolution in time. 2. Pin it down locally–is there anything about it that is stationary? Try to determine its equilibria / fixed points (chapter2). 3. Cut across it, represent as a return map from a section to a section (chapter3). 4. Explore the neighborhood by linearizing the flow; check the linear stability of its equilibria / fixed points, their stability eigen-directions (chapters4 and5). 5. Does your system have a symmetry? If so, you must use it (chapters 10 to 12). Slice & dice it (chapter 13). 6. Go global: train by partitioning the state space of 1-dimensional maps. Label the regions by symbolic dynamics (chapter 14).
    [Show full text]
  • Symbolic Dynamics and Its Applications Michael C
    Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 2005 Symbolic Dynamics and its Applications Michael C. Sullivan Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles Part of the Mathematics Commons Published in SIAM Review, 47(2), 397-400. © 2005 Society for Industrial and Applied Mathematics. Recommended Citation Sullivan, Michael C. "Symbolic Dynamics and its Applications." (Jan 2005). This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles and Preprints by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Symbolic Dynamics and its Applications: AMS Short Course, January 4-5, 2002, San Diego California, in the series Proceedings of Symposia in Applied Mathematics, Vol. 60. Edited by Susan G. Williams. American Mathematical Society, 168 pp., hardcover. $39.00. ISBN 0-8218-3157-7. This volume consists of a preface and six chapters based on lectures given in an AMS Short Course on symbolic dynamics organized by Susan Williams in San Diego 2002. Each article was refereed. Symbolic dynamics is a field of growing importance. The range of its applications and the depth of its theoretical base are expanding rapidly as this volume attests. We briefly introduce the reader to the field. Let A be a finite set. Let F, the set of forbidden words, be a list of finite words made from elements (symbols) of A. Let X be the subset set of ZA (bi-infinite sequences of symbols from A) such that no member of F appears as a subword of a sequence.
    [Show full text]
  • A Short History of Dynamical Systems Theory: 1885-2007 - Philip Holmes
    HISTORY OF MATHEMATICS – A Short History Of Dynamical Systems Theory: 1885-2007 - Philip Holmes A SHORT HISTORY OF DYNAMICAL SYSTEMS THEORY: 1885- 2007 Philip Holmes Princeton University, Princeton, NJ 08544, U.S.A. Keywords: Arnold diffusion, bifurcation, center manifold, deterministic chaos, dimension reduction, ergodic, homoclinic orbit, hyperbolic set, instability, invariant manifold, K system, Kolmogorov-Arnold Moser theorem, Melnikov function, mixing, quasiperiodic orbit, nonlinear dynamics, nonlinear oscillators, normal form theory, Poincare map, random, Smale horseshoe, stability, strange attractor, structural stability, symbolic dynamics, unfolding, van der Pol equation. Contents 1. Introduction 2. The qualitative theory of dynamical systems 2.1. Early History: Homoclinic Points and Global Behavior 2.1.1. Poincaré and Birkhoff 2.1.2. Andronov and Kolmogorov 2.1.3. Smale’s Topological Viewpoint 2.1.4. Perturbations and Applications 2.2. The Middle Period: Center Manifolds and Local Bifurcations 3. Central themes 3.1. Dimension Reduction 3.2. Judicious Linearization 3.3. Good Coordinates 3.4. Structural Stability and Generic Properties 3.5. Canonical Models 4. Some recent extensions and applications of dynamical systems 4.1. Infinite-dimensional Evolution Equations 4.2. Completely Integrable Partial Differential Equations 4.3. Stochastic Differential Equations 4.4. Numerically-assisted Proofs and Integration Algorithms 4.5. Low Dimensional Models of Turbulence 4.6. NonlinearUNESCO Elasticity – EOLSS 4.7. Nonlinear Dynamics in Neuroscience and Biology 5. Epilogue and further reading AcknowledgementsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary This chapter reviews the early (1885− 1975) and more recent (1975− 2007 ) history of dynamical systems theory, identifying key principles and themes, including those of ©Encyclopedia Of Life Support Systems (EOLSS) HISTORY OF MATHEMATICS – A Short History Of Dynamical Systems Theory: 1885-2007 - Philip Holmes dimension reduction, normal form transformation and unfolding of degenerate systems.
    [Show full text]
  • Dynamical Systems and Ergodic Theory MATH 36206 and MATH M6206
    Dynamical Systems and Ergodic Theory MATH 36206 and MATH M6206 Lecturer: Professor Alexander Gorodnik <[email protected]> Howard House 5a Course Webpage: https://people.maths.bris.ac.uk/~mazag/ds17/ Monday 10-11am at MATH SM4 Class Times: Wednesday 11-12pm at QUEENS BLDG 1.58 Friday 11-12pm at MATH SM4 Office hours: Friday 10-11am, Howard House 5a Prerequisites: MATH10003 Analysis 1A, MATH10006 Analysis 1B, MATH11007 Calculus 1 Course Description: A dynamical system can be obtained by iterating a function or con- sidering evolutions of physical systems in time. Even if the rules of evolution are deterministic, the long term behaviour of the systems are often unpredictable and chaotic. The Theory of Dynamical Systems provides tools to analyse this chaotic behaviour and estimate it on average. It is an exciting and active field of mathematics that has connections with Analysis, Geometry, and Number Theory. At the beginning of the course we concentrate on presenting many fundamental examples of dynamical systems (such as Circle Rotations, the Baker Map, the Continued Fraction Map, and others). Motivated by theses examples, we introduce some of the important notions that one is interested in studying. Then in the second part of the course we will formalise these concepts and cover the basic definitions and some of the fundamental results in Topological Dynamics, Symbolic Dynamics, and Ergodic Theory. During the course we also discuss applications to other areas of mathematics and to concrete problems such as, for instance, Internet search engines. Course Assessment: The course will be assessed by a standard 2.5 hour written examination (90%) together with assessed weekly homework (10%), which will consist of 10 exercise sheets.
    [Show full text]
  • Dynamics and Numbers
    669 Dynamics and Numbers A Special Program: June 1–July 31, 2014 International Conference: July 21–25, 2014 Max-Planck Institute for Mathematics, Bonn, Germany Sergiˇı Kolyada Martin Möller Pieter Moree Thomas Ward Editors American Mathematical Society Dynamics and Numbers A Special Program: June 1–July 31, 2014 International Conference: July 21–25, 2014 Max-Planck Institute for Mathematics, Bonn, Germany SergiˇıKolyada Martin Möller Pieter Moree Thomas Ward Editors 669 Dynamics and Numbers A Special Program: June 1–July 31, 2014 International Conference: July 21–25, 2014 Max-Planck Institute for Mathematics, Bonn, Germany SergiˇıKolyada Martin Möller Pieter Moree Thomas Ward Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Catherine Yan 2010 Mathematics Subject Classification. Primary 11J70, 20F65, 22D40, 30E05, 37A15, 37A20, 37A30, 54H20, 60B15. Library of Congress Cataloging-in-Publication Data Names: Kolyada, S. F., editor. | Max-Planck-Institut f¨ur Mathematik. Title: Dynamics and numbers : a special program, June 1–July 31, 2014, Max Planck Insti- tute for Mathematics, Bonn, Germany : international conference, July 21–25, 2014, Max Planck Institute for Mathematics, Bonn, Germany / Sergiˇı Kolyada [and three others] editors. Description: Providence, Rhode Island : American Mathematical Society, [2016] | Series: Con- temporary mathematics ; volume 669 | Includes bibliographical references. Identifiers: LCCN 2015041442 | ISBN 9781470420208 (alk. paper) Subjects: LCSH: Number theory–Congresses. | Ergodic theory–Congresses. | Topological algebras–Congresses. | AMS: Number theory – Diophantine approximation, transcendental num- ber theory – Continued fractions and generalizations. msc | Group theory and generalizations – Special aspects of infinite or finite groups – Geometric group theory. msc | Topological groups, Lie groups – Locally compact groups and their algebras – Ergodic theory on groups.
    [Show full text]
  • Introduction to Symbolic Dynamics
    Proceedings of Symposia in Applied Mathematics Introduction to Symbolic Dynamics Susan G. Williams Abstract. We give an overview of the field of symbolic dynamics: its history, applications and basic definitions and examples. 1. Origins The field of symbolic dynamics evolved as a tool for analyzing general dynamical systems by discretizing space. Imagine a point following some trajectory in a space. Partition the space into finitely many pieces, each labeled by a different symbol. We obtain a symbolic trajectory by writing down the sequence of symbols corresponding to the successive partition elements visited by the point in its orbit. We may ask: Does the symbolic trajectory completely determine the orbit? Can we find a simple description of the set of all possible symbolic trajectories? And, most important, can we learn anything about the dynamics of the system by scrutinizing its symbolic trajectories? The answers to these questions will depend not only on the nature of our dynamical system, but on the judicious choice of a partition. Hadamard is generally credited with the first successful use of symbolic dy- namics techniques in his analysis of geodesic flows on surfaces of negative curvature in 1898 [Ha]. Forty years later the subject received its first systematic study, and its name, in the foundational paper of Marsten Morse and Gustav Hedlund [MH]. Here for the first time symbolic systems are treated in the abstract, as objects in their own right. This abstract study was motivated both by the intrinsic mathemat- ical interest of symbolic systems and the need to better understand them in order to apply symbolic techniques to continuous systems.
    [Show full text]