Human Leukemia T-Cell Lines As Alternatives to Animal Use for Detecting Biologically Active Staphylococcal Enterotoxin Type B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Saxitoxin Poisoning (Paralytic Shellfish Poisoning [PSP])
Saxitoxin Poisoning (Paralytic Shellfish Poisoning [PSP]) PROTOCOL CHECKLIST Enter available information into Merlin upon receipt of initial report Review information on Saxitoxin and its epidemiology, case definition and exposure information Contact provider Interview patient(s) Review facts on Saxitoxin Sources of poisoning Symptoms Clinical information Ask about exposure to relevant risk factors Type of fish or shellfish Size and weight of shellfish/puffer fish or other type of fish Amount of shellfish/puffer fish or other type of fish consumed Where the shellfish/puffer fish or other type of fish was caught or purchased Where the shellfish/puffer fish or other type of fish was consumed Secure any leftover product for potential testing Restaurant meals Other Contact your Regional Environmental Epidemiologist (REE) Identify symptomatic contacts or others who ate the shellfish/puffer fish or other type of fish Enter any additional information gathered into Merlin Saxitoxin Poisoning Guide to Surveillance and Investigation Saxitoxin Poisoning 1. DISEASE REPORTING A. Purpose of reporting and surveillance 1. To gather epidemiologic and environmental data on saxitoxin shellfish, Florida puffer fish or other type of fish poisoning cases to target future public health interventions. 2. To prevent additional cases by identifying any ongoing public health threats that can be mitigated by identifying any shellfish or puffer fish available commercially and removing it from the marketplace or issuing public notices about the risks from consuming molluscan shellfish from Florida and non-Florida waters, such as from the northern Pacific and other cold water sources. 3. To identify all exposed persons with a common or shared exposure to saxitoxic shellfish or puffer fish; collect shellfish and/or puffer fish samples for testing by the Florida Fish and Wildlife Conservation Commission (FWC) and the U.S. -
The Science of the Bioeconomy
The science of the Bioeconomy Dr. Henrike Gebhardt 05 December 2014 Our positioning Evonik is the creative industrial group from Germany and one of the world’s leading specialty chemicals companies. The Science of the Bioeconomy Page 3 Our credo The Bioeconomy is one driver to promote a more resource-efficient and sustainable economy. Industrial biotechnology is a key technology for realising the bioeconomy. The Science of the Bioeconomy Page 5 Overview Bioeconomy Biotechnology Genetic engineering The Science of the Bioeconomy Page 6 Definitions Bioeconomy Production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, and other industrial products and energy. COM(2012) 60, EU Commission, mod. Bio-basedBiotechnology products ProductsThe use whollyof living or organisms partly derived or their from components biomass. EN to16575 make products. Genetic engineering Any of various applications of biological science used in the manipulation of the genome of an organism The Science of the Bioeconomy Page 7 Bio-based products offered by Evonik Polyamids Polyesters VESTAMID ®Terra DYNACOLL ®Terra DYNAPOL ®Terra VISIOMER ®Terra Additives Amino acids Cosmetics BioMTBE Feed additives Health – purified TEGOSOFT ®MM bio-based AdditivesCleaning Health VISCOPLEX ® Series 10 Esterquats RESOMER ® bio- degradable The Science of the Bioeconomy Page 8 Evonik invests in high-growth chemical megatrends Lighthouse investment projects Lysine Russia Consumer Specialties China C4 Chemistry H O / HPPO Europe 2 2 Lysine Expansion China USA Crosslinkers, Isophorone China Consumer Specialties Superabsorbents Brazil Saudi Arabia Methionine Singapore Biodiesel catalysts Argentina Bioeconomy Lysine Traditional Brazil The Science of the Bioeconomy Page 9 Bioeconomy Press releases Company Raw Intermediate Product Material Date of Issue Volume Commissioning DSM/POET (USA) Cellulosics Ethanol Biofuels from corn Jan 2012 90 kta H1.2014 cobs Purac/BASF (ES) Cellulosics Succinic acid e. -
Cyanobacterial Toxins: Saxitoxins
WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol -
International Handbook of Foodborne Pathogens
INTERNATIONAL HANDBOOK OF FOODBORNE PATHOGENS EDITED BY MARIANNE D. MILIOTIS U.S. Food and Drug Administration College Park, Maryland, U.S.A. JEFFREY W. BIER Food Safety Consultant Alexandria, Virginia, U.S.A. MARCEL H MARCEL DEKKER, INC. NEW YORK • BASEL Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. ISBN: 0-8247-0685-4 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-260-6300; fax: 41-61-260-6333 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. FOOD SCIENCE AND TECHNOLOGY A Series of Monographs, Textbooks, and Reference Books EDITORIAL BOARD Senior Editors Owen R. Fennema University of Wisconsin-Madison Y. H. Hui Science Technology System Marcus Karel Rutgers University (emeritus) Pieter Walstra Wagenmgen University John R. -
Understanding Fungal (Mold) Toxins (Mycotoxins) Michael P
® ® KFSBOPFQVLCB?O>PH>¨ FK@LIKUQBKPFLK KPQFQRQBLCDOF@RIQROB>KA>QRO>IBPLRO@BP KLTELT KLTKLT G1513 Understanding Fungal (Mold) Toxins (Mycotoxins) Michael P. Carlson, Diagnostic Toxicologist/Analytical Chemist; and Steve M. Ensley, Veterinary Toxicologist of the immune system. Common mycoses include athlete’s This NebGuide briefly discusses mycotoxins commonly foot and ringworm. encountered in grains and feeds used in Nebraska and the mycotoxicoses they cause. Myco toxin sources and clini- Diagnosis and Treatment of Mycotoxicoses cal signs, lesions, diagnostic aids and treatment for each mycotoxicosis are listed. Different mycotoxins cause different diseases. Although they all are called mycotoxicoses, they are very different from Mycotoxins are chemicals produced by fungi (molds) each other. under certain conditions. They are not essential for fungal Modern agricultural practices make acute mycotoxicoses growth or reproduction, and are toxic to animals or humans. with high death loss (mortality) rare. Chronic mycotoxicoses Scientists do not yet know how many mycotoxins may ex- are often suspected when clinical signs include poor perfor- ist, even though more than 250 have been detected. They mance, ill thrift, or increased incidence of infectious diseases. represent many different kinds of chemicals. For many, if Establishing cause and effect relationships between consump- not most, their toxicological characteristics have not been tion of mycotoxin-contaminated feed and vague chronic fully determined. conditions is very difficult. Diseases in animals caused by mycotoxins are called my- Diagnosis of mycotoxicoses is usually not very easy. cotoxicoses. There are many different kinds of mycotoxicoses Exposure cannot be established by detection of mycotoxins in because there are many different kinds of mycotoxins. -
Comparative Acute and Combinative Toxicity of Aflatoxin B1 and T-2 Toxin
JOURNAL OF APPLIED TOXICOLOGY TOXICITY OF AFLATOXIN B1 AND T-2 TOXIN 139 J. Appl. Toxicol. 2006; 26: 139–147 Published online 17 October 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jat.1117 Comparative acute and combinative toxicity of aflatoxin B1 and T-2 toxin in animals and immortalized human cell lines Christopher McKean, Lili Tang, Madhavi Billam, Meng Tang, Christopher W. Theodorakis, Ronald J. Kendall and Jia-Sheng Wang* The Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Box 41163, Lubbock TX 79409-1163, USA Received 27 September 2004; Revised 14 June 2005; Accepted 8 August 2005 ABSTRACT: Aflatoxin B1 (AFB1) and T-2 toxin (T-2) are important food-borne mycotoxins that have been implicated in human health and as potential biochemical weapons threats. In this study the acute and combinative toxicity of AFB1 and T-2 were tested in F-344 rats, mosquitofish (Gambusia affinis), immortalized human hepatoma cells (HepG2) and human bronchial epithelial cells (BEAS-2B). Preliminary experiments were conducted in order to assess the acute toxicity and to obtain LD50, LC50 and IC50 values for individual toxins in each model, respectively. This was followed by testing combinations of AFB1 and T-2 to obtain LD50, LC50 and IC50 values for the combination in each model. All models demonstrated a significant dose response in the observed parameters to treatment. The potency of the mixture was gauged through the determination of the interaction index metric. The results of this study demonstrate that these two toxins interacted to produce alterations in the toxic responses generally classifiable as additive; however, a synergistic interaction was noted in the case of BEAS-2B. -
A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance
Chapter 21 A Review of Chemical Defense in Poison Frogs (Dendrobatidae): Ecology, Pharmacokinetics, and Autoresistance Juan C. Santos , Rebecca D. Tarvin , and Lauren A. O’Connell 21.1 Introduction Chemical defense has evolved multiple times in nearly every major group of life, from snakes and insects to bacteria and plants (Mebs 2002 ). However, among land vertebrates, chemical defenses are restricted to a few monophyletic groups (i.e., clades). Most of these are amphibians and snakes, but a few rare origins (e.g., Pitohui birds) have stimulated research on acquired chemical defenses (Dumbacher et al. 1992 ). Selective pressures that lead to defense are usually associated with an organ- ism’s limited ability to escape predation or conspicuous behaviors and phenotypes that increase detectability by predators (e.g., diurnality or mating calls) (Speed and Ruxton 2005 ). Defended organisms frequently evolve warning signals to advertise their defense, a phenomenon known as aposematism (Mappes et al. 2005 ). Warning signals such as conspicuous coloration unambiguously inform predators that there will be a substantial cost if they proceed with attack or consumption of the defended prey (Mappes et al. 2005 ). However, aposematism is likely more complex than the simple pairing of signal and defense, encompassing a series of traits (i.e., the apose- matic syndrome) that alter morphology, physiology, and behavior (Mappes and J. C. Santos (*) Department of Zoology, Biodiversity Research Centre , University of British Columbia , #4200-6270 University Blvd , Vancouver , BC , Canada , V6T 1Z4 e-mail: [email protected] R. D. Tarvin University of Texas at Austin , 2415 Speedway Stop C0990 , Austin , TX 78712 , USA e-mail: [email protected] L. -
Botulinum Toxin Ricin Toxin Staph Enterotoxin B
Botulinum Toxin Ricin Toxin Staph Enterotoxin B Source Source Source Clostridium botulinum, a large gram- Ricinus communis . seeds commonly called .Staphylococcus aureus, a gram-positive cocci positive, spore-forming, anaerobic castor beans bacillus Characteristics Characteristics .Appears as grape-like clusters on Characteristics .Toxin can be disseminated in the form of a Gram stain or as small off-white colonies .Grows anaerobically on Blood Agar and liquid, powder or mist on Blood Agar egg yolk plates .Toxin-producing and non-toxigenic strains Pathogenesis of S. aureus will appear morphologically Pathogenesis .A-chain inactivates ribosomes, identical interrupting protein synthesis .Toxin enters nerve terminals and blocks Pathogenesis release of acetylcholine, blocking .B-chain binds to carbohydrate receptors .Staphylococcus Enterotoxin B (SEB) is a neuro-transmission and resulting in on the cell surface and allows toxin superantigen. Toxin binds to human class muscle paralysis complex to enter cell II MHC molecules causing cytokine Toxicity release and system-wide inflammation Toxicity .Highly toxic by inhalation, ingestion Toxicity .Most lethal of all toxic natural substances and injection .Toxic by inhalation or ingestion .Groups A, B, E (rarely F) cause illness in .Less toxic by ingestion due to digestive humans activity and poor absorption Symptoms .Low dermal toxicity .4-10 h post-ingestion, 3-12 h post-inhalation Symptoms .Flu-like symptoms, fever, chills, .24-36 h (up to 3 d for wound botulism) Symptoms headache, myalgia .Progressive skeletal muscle weakness .18-24 h post exposure .Nausea, vomiting, and diarrhea .Symmetrical descending flaccid paralysis .Fever, cough, chest tightness, dyspnea, .Nonproductive cough, chest pain, .Can be confused with stroke, Guillain- cyanosis, gastroenteritis and necrosis; and dyspnea Barre syndrome or myasthenia gravis death in ~72 h .SEB can cause toxic shock syndrome + + + Gram stain Lipase on Ricin plant Castor beans S. -
Metabolic Changes of Aflatoxin B1 to Become an Active Carcinogen And
ome Re un se m a rc Im h Immunome Research Carvajal-Moreno M, Immunome Res 2015, 11:2 ISSN: 1745-7580 DOI: 10.4172/1745-7580.10000104 Review Article Open Access Metabolic Changes of Aflatoxin B1 to become an Active Carcinogen and the Control of this Toxin Magda Carvajal-Moreno Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, 04510 México DF Corresponding author: Magda Carvajal-Moreno, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, 04510 México DF, Tel: +52 55 5622 1332; E-mail: [email protected] Received date: November 07, 2015; Accepted date: December 18, 2015; Published date: December 22, 2015 Copyright: © 2015 Carvajal-Moreno M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Although aflatoxins are unavoidable toxins of food, many methods are available to control them, ranging from natural detoxifying methods to more sophisticated ones. The present review englobes the main characteristics of Aflatoxins as mutagens and carcinogens for humans, their physicochemical properties, the producing fungi, susceptible crops, effects and metabolism. In the metabolism of Aflatoxins the role of cytochromes and isoenzymes, epigenetics, glutathione-S-transferase enzymes, oncogenes and the role of aflatoxins -
Cyanobacterial Toxins: Saxitoxins
WHO/HEP/ECH/WSH/2020.8 Cyanobacterial toxins: saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments WHO/HEP/ECH/WSH/2020.8 © World Health Organization 2020 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/ licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/ mediation/rules/). Suggested citation. Cyanobacterial toxins: saxitoxins. Background document for development of WHO Guidelines for drinking-water quality and Guidelines for safe recreational water environments. Geneva: World Health Organization; 2020 (WHO/HEP/ECH/WSH/2020.8). -
Clostridium Perfringens
New Hampshire Department of Health and Human Services Fact Sheet Division of Public Health Services Clostridium. perfringens What is C. perfringens? Why is there concern about C. Clostridium perfringens toxins are widely perfringens as a weapon? distributed in the environment and frequently The toxins can be purified into a concentrated occur in the intestines of humans and many form which could then be aerosolized and domestic and feral animals. The toxins are used to infect a large number of people. It produced by certain bacteria, plants, or other could also be placed in food or water to make living organisms. Spores of the organism people ill and it would take a while to figure persist in soil, sediment, and areas subject to out the cause. human or animal fecal pollution. What happens when someone gets How does C. perfringens make people sick from C. perfringens toxins? sick? Food poisoning: The symptoms of C. C. perfringens toxins can make a person ill if perfringens causing illness from food include they ingest enough. Perfringens food crampy stomach pain followed by diarrhea poisoning is the term used to describe the which may begin 6 to 24 hours after eating common foodborne illness caused by C. the contaminated food. Nausea is common, perfringens. A more serious but rare illness is but fever and vomiting usually are not also caused by ingesting food contaminated symptoms. The illness is usually over within with Type C strains. The latter illness is 24 hours, but less severe symptoms may known as enteritis necroticans or pig-bel persist in some individuals for 1 to 2 weeks. -
Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017
EPA/600/R-17/356 | September 2017 www.epa.gov/homeland-security-research Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 Office of Research and Development Homeland Security Research Program This page left intentionally blank EPA/600/R-17/356 | September 2017 Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Office of Research and Development Homeland Security Research Program Disclaimer Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract EP-C-15-012 to CSRA Inc. This document is undergoing review and has not been approved for publication. The contents reflect the views of the contributors and technical work groups and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Romy Campisano National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7016 [email protected] Kathy Hall National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King