Synthesis and Properties of Diorganomagnesium Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2015/179628 Al 26 November 2015 (26.11.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179628 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F 210/16 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 15/03 1952 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 2 1 May 2015 (21 .05.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 14/284,689 22 May 2014 (22.05.2014) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CHEVRON PHILLIPS CHEMICAL COM¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, PANY LP [US/US]; 10001 Six Pines Drive, The Wood TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, lands, TX 77380 (US). -
Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol
Addition of a Grignard Reagent to an Ester: Formation of a Tertiary Alcohol Introduction: Grignard reagents are important and versatile reagents in organic chemistry. In this experiment, you will prepare a Grignard reagent and react it with an ester to prepare a tertiary alcohol. Specifically, in this reaction you will prepare phenyl magnesium bromide from bromobenzene and magnesium metal and then react it with methyl benzoate to prepare triphenylmethanol (Figure 1). In this reaction, two equivalents of phenylmagnesium bromide add to methyl benzoate. Note: Grignard reagents are sensitive to water. ALL glassware must be completely clean and dry. Reagents have been stored over molecular sieves to keep them dry in storage, but you should also keep containers closed as much as possible. Finally, water in the air can also react with the Grignard reagents over time. To successfully prepare triphenylmethanol in this experiment, you will need to be well organized and not take too much time between steps. Figure 1. O 1) Me O OH Br Mg MgBr THF + 2) H3O triphenylmethanol Mechanism: The formation of Grignard reagents from aryl halides is a complex mechanism, which takes place on the surface of the magnesium metal. You do not need to concern yourself with the details of this step of the mechanism. Figure 2. MgBr O Bu MgBr Bu MgBr O + OH O Bu MgBr O H3O Me OEt Bu Me OEt Me Bu Me Bu Me –EtOMgBr Bu Bu The mechanism of the reaction of a Grignard reagent with an ester is shown in Figure 2 (using methyl propionate and butylmagnesium bromide). -
WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 5/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/GB2014/052580 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 August 2014 (22.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13 15098.2 23 August 2013 (23.08.2013) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: SUNAMP LIMITED [GB/GB]; Unit 1, Satel kind of regional protection available): ARIPO (BW, GH, lite Place, Macmerry, Edinburgh EH33 1RY (GB). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors: BISSELL, Andrew John; C/o SunAmp, Unit TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 1, Satellite Place, Macmerry, Edinburgh EH33 1RY (GB). -
Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind. -
Notable Reactivity of Acetonitrile Towards Li2o2/Lio2 Probed By
Topics in Catalysis https://doi.org/10.1007/s11244-018-1072-5 ORIGINAL ARTICLE Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge Tatiana K. Zakharchenko1 · Alina I. Belova1 · Alexander S. Frolov1 · Olesya O. Kapitanova1 · Juan‑Jesus Velasco‑Velez2 · Axel Knop‑Gericke2,5 · Denis Vyalikh3,4 · Daniil M. Itkis1 · Lada V. Yashina1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li 2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem- onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery. Keywords Li–O2 battery · In situ NAP XPS · Acetonitrile · Side reactions 1 Introduction Li–O2 batteries promise extraordinary high specific energy that makes them interesting for the next generation power technologies [1, 2]. -
Grignard Reaction: Synthesis of Triphenylmethanol
*NOTE: Grignard reactions are very moisture sensitive, so all the glassware in the reaction (excluding the work-up) should be dried in an oven with a temperature of > 100oC overnight. The following items require oven drying. They should be placed in a 150mL beaker, all labeled with a permanent marker. 1. 5mL conical vial (AKA: Distillation receiver). 2. Magnetic spin vane. 3. Claisen head. 4. Three Pasteur pipettes. 5. Two 1-dram vials (Caps EXCLUDED). 6. One 2-dram vial (Caps EXCLUDED). 7. Glass stirring rod 8. Adaptor (19/22.14/20) Grignard Reaction: Synthesis of Triphenylmethanol Pre-Lab: In the “equations” section, besides the main equations, also: 1) draw the equation for the production of the byproduct, Biphenyl. 2) what other byproduct might occur in the reaction? Why? In the “observation” section, draw data tables in the corresponding places, each with 2 columns -- one for “prediction” (by answering the following questions) and one for actual drops or observation. 1) How many drops of bromobenzene should you add? 2) How many drops of ether will you add to flask 2? 3) 100 µL is approximately how many drops? 4) What are the four signs of a chemical reaction? (Think back to Chem. 110) 5) How do the signs of a chemical reaction apply to this lab? The Grignard reaction is a useful synthetic procedure for forming new carbon- carbon bonds. This organometallic chemical reaction involves alkyl- or aryl-magnesium halides, known as Grignard 1 reagents. Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal. -
(12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S. -
US5169929.Pdf
|||||||||||| USOO5169929A United States Patent (19) 11) Patent Number: 5,169,929 Tour et al. 45 Date of Patent: Dec. 8, 1992 (54) LITHIUM/HMPA-PROMOTED SYNTHESIS Noren, et al. Macromolecular Reviews (1971) 5. pp. OF POLY(PHENYLENES) 386-431. Yamamoto, et al. Bulletin Che. Soc. of Japan (1978) 51. 75 Inventors: James M. Tour; Eric B. Stephens, (7) pp. 2091-2097. both of Columbia, S.C. Shacklette, et al. J. Chem. Soc., Chem. Commun. (1982) 73 Assignee: University of South Carolina, pp. 361-362. Columbia, S.C. Ivory, et al. J. Chem. Phys. (1979) 71. (3) pp. 1506-1507. Shacklette, et al. J. Chem. Phys. (1980) 73. (8) pp. 21 Appl. No.: 543,673 4098-4102. 22 Filed: Jun. 25, 1990 Kovacic, et al. J. Org. Chem. (1963) 28. pp. 968-972, 1864-1867. I51) Int. Cl. .............................................. CO8G 61/00 Kovacic, et al. J. Org. Chem. (1964) 29. pp. 100-104, 52 U.S.C. .................................................... 528/397 2416-2420. 58 Field of Search ......................................... 528/397 Kovacic et al. J. Org. Chem. (1966) 31. pp. 2467-2470. (56) References Cited Primary Examiner-John Kight, II U.S. PATENT DOCUMENTS Assistant Examiner-Terressa M. Mosley Attorney, Agent, or Firm-Brumbaugh, Graves, 4,576,688 3/1966 David .................................. 528/397 Donohue & Raymond OTHER PUBLICATIONS 57 ABSTRACT Kovacic, et al. Chem. Rev. (1987) 87, pp. 357-379. Poly(phenylene) that is substantially free of insoluble Elsenbaumer, et al. Handbook of Conducting Polymers material is prepared by the polymerization of a lithi (1986), T. A. Skotheime ed. pp. 213-263. oarylhalide compound in the presence of a polar aprotic Perlstein, Angew. -
Front Matter
Towards the Total Synthesis of 1!,25-dihydroxylumisterol A. Simon Partridge Julia Laboratory, Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom September 2012 A thesis submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy, Imperial College London. Abstract This thesis is divided into three chapters. The first chapter provides a brief review on recent work in the application of cascade cyclisations to the total synthesis of natural products. This is followed by a review of the decarboxylative Claisen rearrangement (dCr), a novel variant of the Ireland-Claisen reaction in which tosylacetic esters of allylic alcohols are transformed into homoallylic sulfones using BSA and potassium acetate, and its applications. The second chapter discusses the results of our studies towards the total synthesis of 1!,25-dihydroxylumisterol via a proposed route containing two key steps; a cascade-inspired, Lewis-acid mediated cyclisation to form the steroid B-ring in I, and the dCr reaction of tosylacetic ester IV to give diene III. Successful syntheses, as well as problems encountered along this route will be discussed, as well as the measures taken to adapt the synthesis to circumvent these problems. OH PGO H O OH H H H H H PGO PGO H H HO Ts Ts 1!,25-dihydroxylumisterol I II OH O H + O H O H HO Ts PGO OPG H Ts Ts OPG VI V IV III The third and final chapter contains experimental procedures and characterisation data for the prepared compounds. Declaration I certify that all work in this thesis is solely my own, except where explicitly stated and appropriately referenced. -
A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory
sensors Article A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory Niraj Verma 1,† , Yunwen Tao 1,†, Wenli Zou 2, Xia Chen 3, Xin Chen 4, Marek Freindorf 1 and Elfi Kraka 1,* 1 Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; [email protected] (N.V.); [email protected] (Y.T.); [email protected] (M.F.) 2 Institute of Modern Physics, Northwest University, Xi’an 710127, China; [email protected] 3 Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; [email protected] 4 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 20 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. -
Proceedings of the Indiana Academy of Science
The Solubility of Magnesium Bromide in Di-n-Butyl Ether John A. Ricketts and Paul Brown, DePauw University Rowley (1) has extensively investigated the solubility of magnesium bromide in diethyl ether, Et2 0, and has found that magnesium bromide forms a solid mono-, di-, and tri-etherate with transition temperatures of 12° C. (tri-etherate to di-etherate) and 22.6° C. (di-etherate to mono- etherate). This investigation measures the solubility of magnesium bro- 5° mide in di-n-butyl ether, Bu 2 0, in the temperature range of C. to 56° C. and also determines the chemical nature of the solid phase in equilibrium with the saturated solution of magnesium bromide in Bu 2 0. Experimental Solubility measurements were taken at approximately 5° C. inter- vals. Any of the fixed temperature points that were used were controlled to ± 0.02°C. Excess solid was added to 50 ml. of pure Bu 2 contained in a 100 ml. round-bottomed flask. All Bu 2 used in the experiments was purified by fractional distillation from sodium on to sodium and only the fraction which distilled in the temperature range 141-2° C. was used. The refractive index of the Bu>0 was measured as 1.3990 at 20° C. (lit. 1.3992). The vapor phase chromatogram of the liquid contained only a single peak. The flask was mounted in the constant temperature bath and the closed system stirred mechanically for a period of time ranging from 4 to 12 hours. Samples of the liquid phase were withdrawn, weighed, and analyzed, one sample for magnesium ion using EDTA with Erichrome Black T as indicator and another sample from the same flask for bromide ion by the Vohlhard method. -
Hexamethylphosphoramide for Jet Fuels
Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Hexamethylphosphoramide for jet fuels. It also can be used as a flameretarding additive in lith iumion batteries; however, it reduces the performance of the bat CAS No. 680-31-9 tery (IzquierdoGonzales et al. 2004). Reasonably anticipated to be a human carcinogen Production First listed in the Fourth Annual Report on Carcinogens (1985) In 2009, hexamethylphosphoramide was produced by one manufac Also known as HMPA or hexamethylphosphoric triamide turer worldwide, in the United States (SRI 2009), and was available from 21 suppliers, including 14 U.S. suppliers (ChemSources 2009). H3C CH3 No data on U.S. production, import, or export volumes were found. N H3C CH3 NP N Exposure H C CH 3 O 3 The routes of potential human exposure to hexamethylphosphoramide Carcinogenicity are inhalation, ingestion, and dermal contact (HSDB 2009). The ma jor source of exposure is probably occupational; however, the general Hexamethylphosphoramide is reasonably anticipated to be a human population potentially could be exposed through release of hexameth carcinogen based on sufficient evidence of carcinogenicity from stud ylphosphoramide to the environment. No environmental releases of ies in experimental animals. hexamethylphosphoramide were reported in the U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI 2009). Hexameth Cancer Studies in Experimental Animals ylphosphoramide exists in the air solely in the vapor phase and will Exposure of rats to hexamethylphosphoramide by inhalation caused be degraded by photochemically produced hydroxyl radicals, with a nasal tumors, which are rare in this species.