US5169929.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US5169929.Pdf |||||||||||| USOO5169929A United States Patent (19) 11) Patent Number: 5,169,929 Tour et al. 45 Date of Patent: Dec. 8, 1992 (54) LITHIUM/HMPA-PROMOTED SYNTHESIS Noren, et al. Macromolecular Reviews (1971) 5. pp. OF POLY(PHENYLENES) 386-431. Yamamoto, et al. Bulletin Che. Soc. of Japan (1978) 51. 75 Inventors: James M. Tour; Eric B. Stephens, (7) pp. 2091-2097. both of Columbia, S.C. Shacklette, et al. J. Chem. Soc., Chem. Commun. (1982) 73 Assignee: University of South Carolina, pp. 361-362. Columbia, S.C. Ivory, et al. J. Chem. Phys. (1979) 71. (3) pp. 1506-1507. Shacklette, et al. J. Chem. Phys. (1980) 73. (8) pp. 21 Appl. No.: 543,673 4098-4102. 22 Filed: Jun. 25, 1990 Kovacic, et al. J. Org. Chem. (1963) 28. pp. 968-972, 1864-1867. I51) Int. Cl. .............................................. CO8G 61/00 Kovacic, et al. J. Org. Chem. (1964) 29. pp. 100-104, 52 U.S.C. .................................................... 528/397 2416-2420. 58 Field of Search ......................................... 528/397 Kovacic et al. J. Org. Chem. (1966) 31. pp. 2467-2470. (56) References Cited Primary Examiner-John Kight, II U.S. PATENT DOCUMENTS Assistant Examiner-Terressa M. Mosley Attorney, Agent, or Firm-Brumbaugh, Graves, 4,576,688 3/1966 David .................................. 528/397 Donohue & Raymond OTHER PUBLICATIONS 57 ABSTRACT Kovacic, et al. Chem. Rev. (1987) 87, pp. 357-379. Poly(phenylene) that is substantially free of insoluble Elsenbaumer, et al. Handbook of Conducting Polymers material is prepared by the polymerization of a lithi (1986), T. A. Skotheime ed. pp. 213-263. oarylhalide compound in the presence of a polar aprotic Perlstein, Angew. Chem. Int. Ed. Engl. (1977) 16, pp. compound such as hexamethylphosphoramide, 519-534. N,N,N',N'-tetramethylethylenediamine or hexamethyl Kovacic, et al. J. Polymer Science (1966) Part A-1 4. phosphorous triamide. The preferred reaction involves pp. 5-28. the polymerization of 1-bromo-4-lithiobenzene in the Kovacic, et al. J. Polymer Science (1966) Part A-1 pp. presence of hexamethylphosphoramide. The 1-bromo 1445-1462, 4-lithiobenzene may be synthesized by reacting 1,4- Encyclopedia of Polymer Science & Technology dibromobenzene with t-butyllithium. These same types (1969), vol. 11 pp. 318-363, 380-389. of reactions can also be used to synthesis other benze Edwards, et al. J. Polymer Science (1955) XVI. pp. noid polymers. 589-598. Goldfinger J. Polymer Science (1949) IV. pp. 93-96. 10 Claims, No Drawings 5,169,929 1 2 Poly(phenylene) has been synthesized via the mono LITHIUM/HMPA-PROMOTED SYNTHESIS OF Grignard reagent of dibromobenzene. Yamamoto, et al., POLY(PHENYLENES) Bull. Chem. Soc. Jpn. 51, 2091, (1978). Coupling to form the polymer was achieved by the addition of a The invention of this application was supported by a 5 nickel(II) catalyst (presumably via reduction of the grant from the Office of Naval Research, Grant No.: nickel to nickel(O), oxidative addition, transmetallation, N00014-89-3062. The U.S. Government has a paid-up and reductive elimination to regenerate nickel(O) as the license in this invention and the right in limited circum active catalytic species). Degrees of polymerization are stances to require the patent owner to license others on estimated to be about 20 units. However, completely reasonable terms. 10 insoluble poly(phenylene) is obtained by this method, though most of it is para by IR analysis. The insolubility BACKGROUND OF THE INVENTION is probably due to extensive cross linking. An analogous This invention relates to unique compositions of solu method by Ullmann using copper metal has been de ble, conductive poly(phenylene) and to synthetic meth scribed for the synthesis of substituted poly(pheny ods useful in the synthesis of these compositions. 15 lenes); however, temperatures of 220-270° C. are nec Poly(phenylene)s, also known as polyphenyls, poly essary, and the substituted poly(phenylenes) produced benzenes or oligobenzenes, are linear polymers formed have limited conductivity due to nonplanarity of the from substituted or unsubstituted benzene subunits. Of aryl rings. Claesson, et al., Makromol. Chem 7 46 particular interest among these compounds are parapo (1951). ly(phenylene)s which have been found to have conduc 20 Finally, para-poly(phenylene) has been synthesized tivities following oxidation or reduction by known by (1) bacterial oxidation of benzene and derivatization chemical, electrochemical, electronic or photonic to form 1,2-diacetoxy-3,5-cyclohexadiene, (2) radical means, comparable to metallic materials, i.e. greater polymerization, and (3) pyrolysis at 140-240° C. to than 100 Olcm. This property, combined with form parapoly(phenylene). The intermediate is soluble other physical and mechanical properties give such 25 materials tremendous potential for applications in the and films can be cast. Ballard, et al., J. Chem. Soc. electronics and photonics industry. A few, of numerous Chem. Commun. 954. However, upon pyrolysis, intrac applications are listed. table and insoluble material is formed. (1) New semiconductor materials could be obtained. The present invention solves the problem which was (2) Lightweight batteries could be obtained which 30 recognized by the art and produces a soluble poly(phe are of great importance to the military for naval and nylene) having a high conductivity. aerospace applications, and all mobile electric vehicles SUMMARY OF THE INVENTION which are becoming commercially feasible. (3) For X(3) nonlinear optical materials which will In accordance with the invention, high conductivity make-up the components of future photonic (rather 35 poly(phenylene) that is substantially free of insoluble than electronic) instrumentation. material is prepared by the polymerization of a lithi Known methods for the formation of poly(pheny oarylhalide compound in the presence of a polar aprotic lenes) involve (1) oxidative-cationic polymerization, (2) compound such as hexamethylphosphoramide, dehydrogenation of poly(1,3-cyclohexadiene), (3) metal N,N,N',N'-tetramethylethylenediamine or hexamethyl catalyzed coupling reactions and (4) Diels-Alder poly 40 phosphorous triamide. The preferred reaction involves merizations. In nearly all cases, however, the polymers the polymerization of 1-bromo-4-lithiobenzene in the are insoluble if they contain a majority of the para form presence of hexamethylphosphoramide. The 1-bromo which is required for highly conducting material. This 4-lithiobenzene may be synthesized by reacting 1,4- insoluble material limits the utility of the product poly(- dibromobenzene with t-butyllithium. These same types phenylene) because it cannot be cast into films or other 45 of reactions can also be used to synthesis other benze wise processed, other than by pressing, to form electri noid polymers. cal components. Thus, it would be highly desirable to DETAILED DESCRIPTION OF THE be able to produce a poly(phenylene) which was both INVENTION soluble, and hence processible, and high in conductiv ity. Prior to the present invention, however, no syn 50 Benzenoid polymers such as polyphenylene are syn thetic method could achieve both these goals. thesized in accordance with the invention by polymeri For example, Goldfinger, J. Polymer Sci 4, 93 (1949) zation of a lithioarylhalide in the presence of a polar and Edward et al., J. Polymer Sci 16, 589 (1955) re aprotic compound. As used herein, halo or halide refers ported the production of soluble, high molecular to fluorine, chlorine, bromine or iodine. weight poly(phenylene) by treatment of p-dichloroben 55 Suitable polar aprotic solvents are those which are Zene with liquid potassium-sodium alloy, KNa2, at 110 not decomposed by alkyllithium. Exemplary polar C. in dioxane for 24-48 hours. This material was never aprotic compounds include hexamethylphosphoramide, analyzed by IR or NMR techniques, nor was it ever i.e., (CH3)2N)3P(O), and related compounds such as used in conductivity studies. Later reports indicated N,N,N',N'-tetramethyethylenediamine (TMEDA) and that the severe reaction conditions caused the formation 60 hexamethylphosphorous triamide, ((CH3)2N)3P. Other of many reduced (aliphatic) rings. Because of these compounds will generally have a pKa of greater than 40 aliphatics, the material is not adequate for conductivity and no reactive functionalities. studies. Lithioarylhalides for use in the invention are conve Because of the recognition that aliphatics interfered niently generated in situ by reaction of an aryl dihalide with the desirable conductivity, methods have been 65 with at least one equivalent, and preferably at least two developed for the synthesis of aliphatic-free poly(phe equivalents of an alkyllithium that undergoes lithium/- nylenes). These invariably provided insoluble materials, halogen exchange, e.g., n-butyllithium, ethyllithium or however, and thus had unacceptable processability. t-butyllithium. 5,169,929 3 4 The method of the invention can be used to produce cool it to -78 C., and treat it with t-butyllithium. The para-poly(phenylene) that is substantially free of materi lithiated polymer was then quenched with water. als that are insoluble in solvents such as tetrahydrofuran (THF). Substantially free as used herein means that the level of insoluble materials present is so low that cast 5 films can be readily be prepared. In general this means H H(Br) l i. THF G that the poly(phenylene) contains less than about 5%. insoluble material. An exemplary reaction of a synthesis according to the H(Br) invention is shown in Eq. 1. 10 t-butyl bromide CH3 -BuLi (2 equiv) G B + CH-46 -Bu-Li () equiv remaining) + LiBr -)- Br etherial solvent CH 2 H Namaam1 HMPA H(Br) CH 3 CH3 )=CH, -- CH-H - LiBr PPP CH3 CH3 isobutylene isobutane Numama innocuous by-products In this equation, 1-lithio-4-bromobenzene (1) is formed by treatment of 1,4-dibromobenzene (2) with t-butylli thium. Two equivalents of t-butyllithium are used per anion generation. The first equivalent is for lithium 35 halogen exchange to form 1-lithio-4-bromobenzene, p t-butyl bromide, and lithium bromide.
Recommended publications
  • Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
    Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Front Matter
    Towards the Total Synthesis of 1!,25-dihydroxylumisterol A. Simon Partridge Julia Laboratory, Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom September 2012 A thesis submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy, Imperial College London. Abstract This thesis is divided into three chapters. The first chapter provides a brief review on recent work in the application of cascade cyclisations to the total synthesis of natural products. This is followed by a review of the decarboxylative Claisen rearrangement (dCr), a novel variant of the Ireland-Claisen reaction in which tosylacetic esters of allylic alcohols are transformed into homoallylic sulfones using BSA and potassium acetate, and its applications. The second chapter discusses the results of our studies towards the total synthesis of 1!,25-dihydroxylumisterol via a proposed route containing two key steps; a cascade-inspired, Lewis-acid mediated cyclisation to form the steroid B-ring in I, and the dCr reaction of tosylacetic ester IV to give diene III. Successful syntheses, as well as problems encountered along this route will be discussed, as well as the measures taken to adapt the synthesis to circumvent these problems. OH PGO H O OH H H H H H PGO PGO H H HO Ts Ts 1!,25-dihydroxylumisterol I II OH O H + O H O H HO Ts PGO OPG H Ts Ts OPG VI V IV III The third and final chapter contains experimental procedures and characterisation data for the prepared compounds. Declaration I certify that all work in this thesis is solely my own, except where explicitly stated and appropriately referenced.
    [Show full text]
  • Hexamethylphosphoramide for Jet Fuels
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Hexamethylphosphoramide for jet fuels. It also can be used as a flame­retarding additive in lith­ ium­ion batteries; however, it reduces the performance of the bat­ CAS No. 680-31-9 tery (Izquierdo­Gonzales et al. 2004). Reasonably anticipated to be a human carcinogen Production First listed in the Fourth Annual Report on Carcinogens (1985) In 2009, hexamethylphosphoramide was produced by one manufac­ Also known as HMPA or hexamethylphosphoric triamide turer worldwide, in the United States (SRI 2009), and was available from 21 suppliers, including 14 U.S. suppliers (ChemSources 2009). H3C CH3 No data on U.S. production, import, or export volumes were found. N H3C CH3 NP N Exposure H C CH 3 O 3 The routes of potential human exposure to hexamethylphosphoramide Carcinogenicity are inhalation, ingestion, and dermal contact (HSDB 2009). The ma­ jor source of exposure is probably occupational; however, the general Hexamethylphosphoramide is reasonably anticipated to be a human population potentially could be exposed through release of hexameth­ carcinogen based on sufficient evidence of carcinogenicity from stud­ ylphosphoramide to the environment. No environmental releases of ies in experimental animals. hexamethylphosphoramide were reported in the U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI 2009). Hexameth­ Cancer Studies in Experimental Animals ylphosphoramide exists in the air solely in the vapor phase and will Exposure of rats to hexamethylphosphoramide by inhalation caused be degraded by photochemically produced hydroxyl radicals, with a nasal tumors, which are rare in this species.
    [Show full text]
  • Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
    Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m.
    [Show full text]
  • Synthesis and Properties of Diorganomagnesium Compounds
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1967 Synthesis and Properties of Diorganomagnesium Compounds Conrad William Kamienski University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Kamienski, Conrad William, "Synthesis and Properties of Diorganomagnesium Compounds. " PhD diss., University of Tennessee, 1967. https://trace.tennessee.edu/utk_graddiss/3077 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Conrad William Kamienski entitled "Synthesis and Properties of Diorganomagnesium Compounds." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jerome F. Eastham, Major Professor We have read this dissertation and recommend its acceptance: Bruce M. Anderson, George K. Schwitzer, David A. Shirley Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Novemb er 27, 1967 To the Graduate Council: I am submitting herewith a dissertation written by Conrad Wiliiam Kamienski entitled "Synthesis and Properties of Diorgano­ magnesium Compounds." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a maj or in Chemistry .
    [Show full text]
  • Chemicals Subject to TSCA Section 12(B) Export Notification Requirements (January 16, 2020)
    Chemicals Subject to TSCA Section 12(b) Export Notification Requirements (January 16, 2020) All of the chemical substances appearing on this list are subject to the Toxic Substances Control Act (TSCA) section 12(b) export notification requirements delineated at 40 CFR part 707, subpart D. The chemicals in the following tables are listed under three (3) sections: Substances to be reported by Notification Name; Substances to be reported by Mixture and Notification Name; and Category Tables. TSCA Regulatory Actions Triggering Section 12(b) Export Notification TSCA section 12(b) requires any person who exports or intends to export a chemical substance or mixture to notify the Environmental Protection Agency (EPA) of such exportation if any of the following actions have been taken under TSCA with respect to that chemical substance or mixture: (1) data are required under section 4 or 5(b), (2) an order has been issued under section 5, (3) a rule has been proposed or promulgated under section 5 or 6, or (4) an action is pending, or relief has been granted under section 5 or 7. Other Section 12(b) Export Notification Considerations The following additional provisions are included in the Agency's regulations implementing section 12(b) of TSCA (i.e. 40 CFR part 707, subpart D): (a) No notice of export will be required for articles, except PCB articles, unless the Agency so requires in the context of individual section 5, 6, or 7 actions. (b) Any person who exports or intends to export polychlorinated biphenyls (PCBs) or PCB articles, for any purpose other than disposal, shall notify EPA of such intent or exportation under section 12(b).
    [Show full text]
  • The Action of Tetramethylurea and Hexamethylphosphoramide
    The action of tetramethylurea and hexamethylphosphoramide blended with other solvents on the dissolution of coal by Timothy Lee Ward A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering Montana State University © Copyright by Timothy Lee Ward (1984) Abstract: Tetramethylurea (TMU) and hexamethylphosphoramide (HMPA) were blended with a number of other solvents to determine the solvent action and effectiveness of the blends on extraction of coal as compared with that of unblended TMU/HMPA (TMU and HMPA In a 50/50 mixture). Dissolution to more than 41% was observed using 33% tetralin blended with 67% TMU/HMPA on Kittaning coal at 320°F, compared to a maximum of 40.7% dissolution observed with unblended TMU/HMPA. It was found that aromatic/hydroaromatic solvents such as tetralin, napthalene, and l-me-napthaIene, which are relatively inert toward coal at temperatures below 350°F, could be blended up to 80% by volume with TMU/HMPA without significantly reducing the ultimate dissolving power below that of unblended TMU/HMPA. Use of 80% decalin and 80% limonene blended with TMU/HMPA resulted in substantially lower extraction than unblended TMU/HMPA. Isopropyl alcohol, when blended with TMU/HMPA in amounts greater than 10%, was found to result in a substantial decrease in dissolving ability. The apparent dissolution rate for a blend of 80% tetralin and 20% TMU/HMPA is lower than for unblended TMU/HMPA, however the ultimate dissolution attained is approximately equal. At 320°F much of the ultimately attainable dissolution with TMU/HMPA and 80% tetralin blended with TMU/HMPA occurs within 5 minutes, with slow or even retrogressive dissolution after that.
    [Show full text]
  • Oxides Affording Phosphines(III) and Their Metal Catalysts
    pubs.acs.org/Organometallics Article A Mild One-Pot Reduction of Phosphine(V) Oxides Affording Phosphines(III) and Their Metal Catalysts Łukasz Kapusniak,́ Philipp N. Plessow, Damian Trzybinski,́ Krzysztof Wozniak,́ Peter Hofmann, and Phillip Iain Jolly* Cite This: Organometallics 2021, 40, 693−701 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The metal-free reduction of a range of phosphine(V) oxides employing oxalyl chloride as an activating agent and hexachlorodisilane as reducing reagent has been achieved under mild reaction conditions. The method was successfully applied to the reduction of industrial waste byproduct triphenylphosphine(V) oxide, closing the phosphorus cycle to cleanly regenerate triphenylphosphine(III). Mechanistic studies and quantum chemical calculations support the attack of the dissociated chloride anion of intermediated phosphonium salt at the silicon of the disilane as the rate-limiting step for deprotection. The exquisite purity of the resultant phosphine(III) ligands after the simple removal of volatiles under reduced pressure circumvents laborious purification prior to metalation and has permitted the facile formation of important transition metal catalysts. ■ INTRODUCTION Scheme 1. Phosphine Synthesis: Background and This a Applications of Phosphine(III) Ligands and Synthesis. Work Phosphines and their derivatives are of significant importance to both academic and industrial chemistry. In particular, within organic chemistry phosphine(III) compounds have a distin- guished history, mediating classical transformations such as the Appel,1 Mitsunobu,2 and Wittig3,4 reactions. Additionally, the ready modulation of electronic and steric properties of phosphine(III) has made them excellent ligands for the formation of well-defined transition metal complexes,5 although recalcitrant phosphine(V) oxides arise, when 6 Downloaded via KIT BIBLIOTHEK on April 16, 2021 at 16:05:05 (UTC).
    [Show full text]
  • United States Patent Office Patented Aug
    3,524,846 United States Patent Office Patented Aug. 18, 1970 2. phosphonate esters under essentially neutral conditions 3,524,846 which is especially useful for sensitive molecules such as PROCESS FOR THE DIDEALKYLATION OF PHOSPHONATE ESTERS lipids, steroids, sugars, and nucleosides. Other objects and John G. Moffatt, Los Altos, and Gordon H. Jones, Palo advantages of the present invention will become apparent Alto, Calif.; said Moffatt assignor to Syntex Corpora as the invention is described hereinafter in detail and tion, Panama, Panama, a corporation of Panama from the appended claims. No Drawing. Filed June 2, 1967, Ser. No. 643,078 The term "lower alkyl,' as used herein, refers to a Int, C. C07f 9/40 straight or branched chain hydrocarbon group containing U.S. C. 260-211.5 22 Claims up to six carbon atoms inclusive and thus includes methyl, O ethyl, isopropyl, n-butyl, and the like. The term “alkoxy,' as used herein, means the group --OR wherein R is ABSTRACT OF THE DISCLOSURE lower alkyl as defined hereinabove. The term "dialkoxy Didealkylation of phosphonate esters is effected by phosphinyl' means the heating them with a soluble bromide or iodide salt in an aprotic dipolar solvent at a temperature in excess of 5 100° C. -P(OR) monumanomam group wherein R is lower alkyl as defined hereinabove. This invention relates to a novel process for the di Included in the term "monovalent cation' are lithium, dealkylation of phosphonate ester compounds. More par sodium, potassium, ammonium, tetramethylammonium, ticularly, this invention relates to a process for the di 20 tetraethylammonium, tetra-n-propylammonium, tetra-n- dealkylation of a dialkyl phosphonate ester by heating butylammonium, and the like.
    [Show full text]
  • 1 Draft Chemicals (Management and Safety)
    Draft Chemicals (Management and Safety) Rules, 20xx In exercise of the powers conferred by Sections 3, 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), and in supersession of the Manufacture, Storage and Import of Hazardous Chemical Rules, 1989 and the Chemical Accidents (Emergency Planning. Preparedness and Response) Rules, 1996, except things done or omitted to be done before such supersession, the Central Government hereby makes the following Rules relating to the management and safety of chemicals, namely: 1. Short Title and Commencement (1) These Rules may be called the Chemicals (Management and Safety) Rules, 20xx. (2) These Rules shall come into force on the date of their publication in the Official Gazette. Chapter I Definitions, Objectives and Scope 2. Definitions (1) In these Rules, unless the context otherwise requires (a) “Act” means the Environment (Protection) Act, 1986 (29 of 1986) as amended from time to time; (b) “Article” means any object whose function is determined by its shape, surface or design to a greater degree than its chemical composition; (c) “Authorised Representative” means a natural or juristic person in India who is authorised by a foreign Manufacturer under Rule 6(2); (d) “Chemical Accident” means an accident involving a sudden or unintended occurrence while handling any Hazardous Chemical, resulting in exposure (continuous, intermittent or repeated) to the Hazardous Chemical causing death or injury to any person or damage to any property, but does not include an accident by reason only
    [Show full text]
  • ACS Style Guide
    ➤ ➤ ➤ ➤ ➤ The ACS Style Guide ➤ ➤ ➤ ➤ ➤ THIRD EDITION The ACS Style Guide Effective Communication of Scientific Information Anne M. Coghill Lorrin R. Garson Editors AMERICAN CHEMICAL SOCIETY Washington, DC OXFORD UNIVERSITY PRESS New York Oxford 2006 Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Idaban Copyright © 2006 by the American Chemical Society, Washington, DC Developed and distributed in partnership by the American Chemical Society and Oxford University Press Published by Oxford University Press, Inc. 198 Madison Avenue, New York, NY 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the American Chemical Society. Library of Congress Cataloging-in-Publication Data The ACS style guide : effective communication of scientific information.—3rd ed. / Anne M. Coghill [and] Lorrin R. Garson, editors. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8412-3999-9 (cloth : alk. paper) 1. Chemical literature—Authorship—Handbooks, manuals, etc. 2. Scientific literature— Authorship—Handbooks, manuals, etc. 3. English language—Style—Handbooks, manuals, etc. 4. Authorship—Style manuals. I. Coghill, Anne M. II. Garson, Lorrin R. III. American Chemical Society QD8.5.A25 2006 808'.06654—dc22 2006040668 1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper ➤ ➤ ➤ ➤ ➤ Contents Foreword.
    [Show full text]