Block and Graft Copolymers Containing Carboxylate Or Phosphonate Anions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling
University of Mary Washington Eagle Scholar Student Research Submissions Spring 5-7-2018 Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Sunder Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Biochemistry Commons Recommended Citation Sunder, Poornima, "Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling" (2018). Student Research Submissions. 226. https://scholar.umw.edu/student_research/226 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Rachel Sunder Thesis submitted to the faculty of University of Mary Washington in partial fulfillment of the requirements for graduation with Honors in Chemistry (2018) ABSTRACT Click reactions are a highly versatile class of reactions that produce a diverse range of products. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions require an azide and a terminal alkyne and produce a coupled product that is “clicked” through a triazole ring that can have a variety of substituents. In this work, bromo-terminated phosphonate films on copper oxide surfaces were explored as the platform for click coupling, as the terminal azide needed for the reaction can be generated through an in situ SN2 reaction with a terminal bromo group. The reactions were characterized using model reactions in solution before being conducted on modified copper oxide surfaces. -
Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind. -
(12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S. -
US5169929.Pdf
|||||||||||| USOO5169929A United States Patent (19) 11) Patent Number: 5,169,929 Tour et al. 45 Date of Patent: Dec. 8, 1992 (54) LITHIUM/HMPA-PROMOTED SYNTHESIS Noren, et al. Macromolecular Reviews (1971) 5. pp. OF POLY(PHENYLENES) 386-431. Yamamoto, et al. Bulletin Che. Soc. of Japan (1978) 51. 75 Inventors: James M. Tour; Eric B. Stephens, (7) pp. 2091-2097. both of Columbia, S.C. Shacklette, et al. J. Chem. Soc., Chem. Commun. (1982) 73 Assignee: University of South Carolina, pp. 361-362. Columbia, S.C. Ivory, et al. J. Chem. Phys. (1979) 71. (3) pp. 1506-1507. Shacklette, et al. J. Chem. Phys. (1980) 73. (8) pp. 21 Appl. No.: 543,673 4098-4102. 22 Filed: Jun. 25, 1990 Kovacic, et al. J. Org. Chem. (1963) 28. pp. 968-972, 1864-1867. I51) Int. Cl. .............................................. CO8G 61/00 Kovacic, et al. J. Org. Chem. (1964) 29. pp. 100-104, 52 U.S.C. .................................................... 528/397 2416-2420. 58 Field of Search ......................................... 528/397 Kovacic et al. J. Org. Chem. (1966) 31. pp. 2467-2470. (56) References Cited Primary Examiner-John Kight, II U.S. PATENT DOCUMENTS Assistant Examiner-Terressa M. Mosley Attorney, Agent, or Firm-Brumbaugh, Graves, 4,576,688 3/1966 David .................................. 528/397 Donohue & Raymond OTHER PUBLICATIONS 57 ABSTRACT Kovacic, et al. Chem. Rev. (1987) 87, pp. 357-379. Poly(phenylene) that is substantially free of insoluble Elsenbaumer, et al. Handbook of Conducting Polymers material is prepared by the polymerization of a lithi (1986), T. A. Skotheime ed. pp. 213-263. oarylhalide compound in the presence of a polar aprotic Perlstein, Angew. -
Front Matter
Towards the Total Synthesis of 1!,25-dihydroxylumisterol A. Simon Partridge Julia Laboratory, Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom September 2012 A thesis submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy, Imperial College London. Abstract This thesis is divided into three chapters. The first chapter provides a brief review on recent work in the application of cascade cyclisations to the total synthesis of natural products. This is followed by a review of the decarboxylative Claisen rearrangement (dCr), a novel variant of the Ireland-Claisen reaction in which tosylacetic esters of allylic alcohols are transformed into homoallylic sulfones using BSA and potassium acetate, and its applications. The second chapter discusses the results of our studies towards the total synthesis of 1!,25-dihydroxylumisterol via a proposed route containing two key steps; a cascade-inspired, Lewis-acid mediated cyclisation to form the steroid B-ring in I, and the dCr reaction of tosylacetic ester IV to give diene III. Successful syntheses, as well as problems encountered along this route will be discussed, as well as the measures taken to adapt the synthesis to circumvent these problems. OH PGO H O OH H H H H H PGO PGO H H HO Ts Ts 1!,25-dihydroxylumisterol I II OH O H + O H O H HO Ts PGO OPG H Ts Ts OPG VI V IV III The third and final chapter contains experimental procedures and characterisation data for the prepared compounds. Declaration I certify that all work in this thesis is solely my own, except where explicitly stated and appropriately referenced. -
Hexamethylphosphoramide for Jet Fuels
Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Hexamethylphosphoramide for jet fuels. It also can be used as a flameretarding additive in lith iumion batteries; however, it reduces the performance of the bat CAS No. 680-31-9 tery (IzquierdoGonzales et al. 2004). Reasonably anticipated to be a human carcinogen Production First listed in the Fourth Annual Report on Carcinogens (1985) In 2009, hexamethylphosphoramide was produced by one manufac Also known as HMPA or hexamethylphosphoric triamide turer worldwide, in the United States (SRI 2009), and was available from 21 suppliers, including 14 U.S. suppliers (ChemSources 2009). H3C CH3 No data on U.S. production, import, or export volumes were found. N H3C CH3 NP N Exposure H C CH 3 O 3 The routes of potential human exposure to hexamethylphosphoramide Carcinogenicity are inhalation, ingestion, and dermal contact (HSDB 2009). The ma jor source of exposure is probably occupational; however, the general Hexamethylphosphoramide is reasonably anticipated to be a human population potentially could be exposed through release of hexameth carcinogen based on sufficient evidence of carcinogenicity from stud ylphosphoramide to the environment. No environmental releases of ies in experimental animals. hexamethylphosphoramide were reported in the U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI 2009). Hexameth Cancer Studies in Experimental Animals ylphosphoramide exists in the air solely in the vapor phase and will Exposure of rats to hexamethylphosphoramide by inhalation caused be degraded by photochemically produced hydroxyl radicals, with a nasal tumors, which are rare in this species. -
H-Phosphonates: Versatile Synthetic Precursors to Biologically Active Phosphorus Compounds*
Pure Appl. Chem., Vol. 79, No. 12, pp. 2217–2227, 2007. doi:10.1351/pac200779122217 © 2007 IUPAC H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds* Adam Kraszewski1,‡ and Jacek Stawinski1,2,‡ 1Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; 2Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden Abstract: In this review, a short account of H-phosphonate chemistry and its application to the synthesis of biologically important phosphates and their analogs is given. Keywords: H-phosphonates; phosphate analogs; biological activity; nucleic acids; drugs. INTRODUCTION Located at the crossroad of various bioinformation exchange pathways, phosphorus-containing com- pounds play a key role in living organisms as carriers of genetic information and important signalling, regulatory, energy transfer, and structural compounds [1]. Due to this pivotal role, biologically impor- tant phosphorus compounds have become therapeutic targets in various modern medicinal techniques, such as antisense [2] and antigene [3] approaches to modulation gene expression, or a gene silencing technique using short interfering RNA (siRNA) [4]. To maximize the desired biological effect and to minimize cytotoxicity, a biologically active com- pound has to have very precisely adjusted chemical and pharmacokinetic properties. This can be achieved by, e.g., changing pKa values of the ionizeable functions, changing electronegativity of the substituents, their size, hydrophobicity, etc. These features can also influence transport of a drug across cell membranes, its preferential degradation in normal or activation in the neoplastic or virus-infected cells, and can contribute to the overall efficiency of the drug. A prominent example here are antiviral pronucleotides in which the phosphate moiety is masked with alkyl or aryl groups that are removed chemically and enzymatically in cells to produce an active antiviral nucleotide [5]. -
The Hydrolysis of Phosphinates and Phosphonates: a Review
molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840. -
Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m. -
Synthesis and Properties of Diorganomagnesium Compounds
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1967 Synthesis and Properties of Diorganomagnesium Compounds Conrad William Kamienski University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Kamienski, Conrad William, "Synthesis and Properties of Diorganomagnesium Compounds. " PhD diss., University of Tennessee, 1967. https://trace.tennessee.edu/utk_graddiss/3077 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Conrad William Kamienski entitled "Synthesis and Properties of Diorganomagnesium Compounds." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jerome F. Eastham, Major Professor We have read this dissertation and recommend its acceptance: Bruce M. Anderson, George K. Schwitzer, David A. Shirley Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Novemb er 27, 1967 To the Graduate Council: I am submitting herewith a dissertation written by Conrad Wiliiam Kamienski entitled "Synthesis and Properties of Diorgano magnesium Compounds." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a maj or in Chemistry . -
Discovery of Phosphonic Acid Natural Products by Mining the Genomes of 10,000 Actinomycetes
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes Kou-San Jua, Jiangtao Gaoa, James R. Doroghazia, Kwo-Kwang A. Wanga, Christopher J. Thibodeauxa, Steven Lia, Emily Metzgera, John Fudalaa, Joleen Sua, Jun Kai Zhanga,b, Jaeheon Leea, Joel P. Cionia,b, Bradley S. Evansa, Ryuichi Hirotaa,c, David P. Labedad, Wilfred A. van der Donka,e,1, and William W. Metcalfa,b,1 aCarl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801; bDepartment of Microbiology, University of Illinois, Urbana, IL 61801; cDepartment of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; dBacterial Foodborne Pathogens and Mycology Research, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604; and eDepartment of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61081 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 31, 2015 (received for review January 14, 2015) Although natural products have been a particularly rich source of generally adopted. If we hope to revitalize the use of natural human medicines, activity-based screening results in a very high products in the pharmaceutical industry, genome mining must be rate of rediscovery of known molecules. Based on the large number shown to be a high-throughput discovery process complementary of natural product biosynthetic genes in microbial genomes, many or superior to existing methods (13, 14). Here, we demonstrate the have proposed “genome mining” as an alternative approach for feasibility of this approach in a campaign to identify the full ge- discovery efforts; however, this idea has yet to be performed ex- netic repertoire of phosphonic acid natural products encoded by a perimentally on a large scale. -
Chemicals Subject to TSCA Section 12(B) Export Notification Requirements (January 16, 2020)
Chemicals Subject to TSCA Section 12(b) Export Notification Requirements (January 16, 2020) All of the chemical substances appearing on this list are subject to the Toxic Substances Control Act (TSCA) section 12(b) export notification requirements delineated at 40 CFR part 707, subpart D. The chemicals in the following tables are listed under three (3) sections: Substances to be reported by Notification Name; Substances to be reported by Mixture and Notification Name; and Category Tables. TSCA Regulatory Actions Triggering Section 12(b) Export Notification TSCA section 12(b) requires any person who exports or intends to export a chemical substance or mixture to notify the Environmental Protection Agency (EPA) of such exportation if any of the following actions have been taken under TSCA with respect to that chemical substance or mixture: (1) data are required under section 4 or 5(b), (2) an order has been issued under section 5, (3) a rule has been proposed or promulgated under section 5 or 6, or (4) an action is pending, or relief has been granted under section 5 or 7. Other Section 12(b) Export Notification Considerations The following additional provisions are included in the Agency's regulations implementing section 12(b) of TSCA (i.e. 40 CFR part 707, subpart D): (a) No notice of export will be required for articles, except PCB articles, unless the Agency so requires in the context of individual section 5, 6, or 7 actions. (b) Any person who exports or intends to export polychlorinated biphenyls (PCBs) or PCB articles, for any purpose other than disposal, shall notify EPA of such intent or exportation under section 12(b).