Block and Graft Copolymers Containing Carboxylate Or Phosphonate Anions

Total Page:16

File Type:pdf, Size:1020Kb

Block and Graft Copolymers Containing Carboxylate Or Phosphonate Anions Block and Graft Copolymers Containing Carboxylate or Phosphonate Anions Nan Hu Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Judy S. Riffle S. Richard Turner Richey M. Davis Kevin J. Edgar September 26, 2014 Blacksburg, VA Keywords: phosphonate, graft copolymers, polyelectrolytes, polyphosphonate, poly(acrylic acid), polyamide, poly(ethylene oxide), radical polymerization, ring-opening polymerization, ATRP Block and Graft Copolymers Containing Carboxylate or Phosphonate Anions Nan Hu Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA Abstract This dissertation focuses on synthesis and characterization of graft and block copolymers containing carboxylate or phosphonate anions that are potential candidates for biomedical applications such as drug delivery and dental adhesives. Ammonium bisdiethylphosphonate (meth)acrylate and acrylamide phosphonate monomers were synthesized based on aza-Michael addition reactions. Free radical copolymerizations of these monomers with an acrylate-functional poly(ethylene oxide) (PEO) macromonomer produced graft copolymers. Quantitative deprotection of the alkylphosphonate groups afforded graft copolymers with zwitterionic ammonium bisphosphonate or anionic phosphonate backbones and PEO grafts. The zwitterionic copolymers spontaneously assembled into aggregates in aqueous media. The anionic copolymers formed aggregates in DMF and DMSO, while only small amounts of aggregates were present in copolymer/methanol or copolymer/water solutions. Binding capabilities of the acrylamide phosphonic acids were investigated through interactions with hydroxyapatite. Previously our group has prepared poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b- PAA) copolymers and used these polymers as carriers for both MRI imaging agents and cationic drugs. To enhance the capabilities of those carriers in tracking and crosslinking, we have designed, synthesized and characterized amine functionalized PEO-b-PAA copolymers. First, heterobifunctional poly(ethylene oxide) (PEO) with three different molecular weights were synthesized. Modification on one of these afforded a PEO macroinitiator with a bromide on one end and a protected amine on the other end. ATRP polymerization of tert-butyl acrylate (tBuA) in the presence of this initiator and a copper (I) bromide (CuBr) catalyst yielded a diblock copolymer. The copolymer was deprotected by reaction with trifluoroacetic acid (TFA) and formed an amine terminated H2N-PEO-b-PAA. Recently our group has utilized the novel ammonium bisdiethylphosphonate (meth)acrylate and acrylamide phosphonate copolymers to incorporate Carboplatin. The resulting complexes exhibited excellent anticancer activity against MCF-7 breast cancer cells which might be related to ligand exchange of the dicarboxylate group of Carboplatin with the phosphonic acid moieties in the copolymer. Hence, complexation of small-molecule phosphonic acids with Carboplatin was investigated. Three compounds, vinylphosphonic acid, 3- hydroxypropyl ammonium bisphosphonic acid and 2-hydroxyethyl ammonium phosphonic acid were complexed with Carboplatin under acidic and neutral conditions. Covalent bonding of these acids to carboplatin was only observed under acidic pH. The covalently bonded percentage was 17%, 37% and 34%, respectively. More in-depth investigation was of great importance to further understand this complexation behavior. iii This work is dedicated to my husband: Chen Qian My parents: Yunpeng Li and Linshan Hu and My parents-in-law: Jianhua Wang and Junhua Qian iv Table of Contents Abstract ........................................................................................................................................... ii Table of Contents ............................................................................................................................ v Acknowledgement ......................................................................................................................... xi Abbreviations ................................................................................................................................ xii List of Figures ............................................................................................................................... xv List of Tables ............................................................................................................................... xxi CHAPTER 1 - Introduction ............................................................................................................ 1 1.1 References ................................................................................................................................. 4 CHAPTER 2 - Literature Review ................................................................................................... 6 2.1 Overview ................................................................................................................................... 6 2.2 Chemistry, Synthesis and Applications of Phosphonate or Phosphonic acid-containing Monomers and Polymers ............................................................................................................. 6 2.2.1 Phosphonate and Phosphonic acid ..................................................................................... 6 2.2.2 Synthesis and Applications of Phosphonate Monomers and Polymers ........................... 12 2.2.2.1 Synthesis of (Meth)acrylate Phosphonate Monomers and Polymers .................... 13 2.2.2.1.1 (Meth)acrylates with Phosphonate Linked to the Vinyl Bond ........................ 13 2.2.2.1.2 (Meth)acrylates with Phosphonate Linked to the Ester .................................. 16 2.2.2.2 Synthesis of (Meth)acrylamide Phosphonate Monomers and Polymers ............... 26 2.2.2.3 Applications of (Meth)acrylate and (Meth)acrylamide Phosphonate Monomers and Polymers ............................................................................................................................ 34 2.3 Properties, Synthesis and PEO-containing Ionomers for Biomedical Applications ............... 35 2.3.1 Properties of PEO ............................................................................................................. 35 2.3.2 Synthesis of PEO .............................................................................................................. 36 2.3.2.1 Synthesis and Applications of mPEO-(meth)acrylate ........................................... 37 v 2.3.2.2 Synthesis and Applications of NH2-PEO-OH ....................................................... 38 2.3.2.2.1 Synthesis of NH2-PEO-OH via a Schiff Base-containing Initiator ................. 39 2.3.2.2.2 Synthesis of NH2-PEO-OH via Silyl or Sila Protected Amino Initiators ....... 40 2.3.2.2.3 Synthesis of NH2-PEO-OH via an Allyl Initiator ........................................... 41 2.3.2.2.4 Synthesis of NH2-PEO-OH via Cyano-based Initiators .................................. 42 2.3.3 Block and Graft Polyion Complexes ................................................................................ 43 2.3.4 PEO-containing Ionomers as Therapeutic Agent Carriers ............................................... 47 2.3.4.1 PEO-PAA or PEO-PMAA copolymers ................................................................. 47 2.3.4.2 PEO-PAsp copolymers .......................................................................................... 50 2.3.4.3 PEO-Poly(amino aspartamide) copolymers ........................................................... 53 2.3.4.4 PEO-PLL copolymers ............................................................................................ 56 2.4 References ............................................................................................................................... 58 CHAPTER 3 - Synthesis of Ammonium Bisphosphonate Monomers and Polymers .................. 73 3.1 Abstract ................................................................................................................................... 73 3.2 Introduction ............................................................................................................................. 74 3.3 Experimental ........................................................................................................................... 75 3.3.1 Materials ........................................................................................................................... 75 3.3.2 Synthesis ........................................................................................................................... 76 3.3.2.1 Synthesis of Hydroxypropyl Ammonium Bisdiethylphosphonate ........................ 76 3.3.2.2 Synthesis of an Ammonium Bisdiethylphosphonate Acrylate Monomer ............. 76 3.3.2.3 Synthesis of an Ammonium Bisdiethylphosphonate Methacrylate Monomer ...... 77 3.3.2.4 Synthesis of Acrylate-functional PEO ................................................................... 77 3.3.2.5 Synthesis of a 67:33 wt:wt Poly(ammonium bisdiethylphosphonate methacrylate)- g-PEO Copolymer .............................................................................................................. 77 vi 3.3.2.6 Deprotection of the 67:33 poly(ammonium bisdiethylphosphonate
Recommended publications
  • Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling
    University of Mary Washington Eagle Scholar Student Research Submissions Spring 5-7-2018 Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Sunder Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Biochemistry Commons Recommended Citation Sunder, Poornima, "Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling" (2018). Student Research Submissions. 226. https://scholar.umw.edu/student_research/226 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Rachel Sunder Thesis submitted to the faculty of University of Mary Washington in partial fulfillment of the requirements for graduation with Honors in Chemistry (2018) ABSTRACT Click reactions are a highly versatile class of reactions that produce a diverse range of products. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions require an azide and a terminal alkyne and produce a coupled product that is “clicked” through a triazole ring that can have a variety of substituents. In this work, bromo-terminated phosphonate films on copper oxide surfaces were explored as the platform for click coupling, as the terminal azide needed for the reaction can be generated through an in situ SN2 reaction with a terminal bromo group. The reactions were characterized using model reactions in solution before being conducted on modified copper oxide surfaces.
    [Show full text]
  • Hans Renata – Strategic Redox Relay Enables a Scalable Synthesis Of
    Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide A thesis presented by Hans Renata to The Scripps Research Institute Graduate Program in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry for The Scripps Research Institute La Jolla, California February 2013 UMI Number: 3569793 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3569793 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 © 2013 by Hans Renata All rights reserved ! ii! ACKNOWLEDGEMENTS To Phil, thank you for taking me under your wing, the past five years have been a wonderful learning experience. You truly are a fantastic teacher, both in and out of the fumehood and your unbridled enthusiasm, fearlessness and passion for chemistry are second to none. In the words of Kurt Cobain, I am “forever indebted to your priceless advice.” To the members of the Baran lab, in the words of Kurt Cobain, “Our little (?) group has always been and always will until the end.” See what I did there? Oh well, whatever, nevermind.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • US5169929.Pdf
    |||||||||||| USOO5169929A United States Patent (19) 11) Patent Number: 5,169,929 Tour et al. 45 Date of Patent: Dec. 8, 1992 (54) LITHIUM/HMPA-PROMOTED SYNTHESIS Noren, et al. Macromolecular Reviews (1971) 5. pp. OF POLY(PHENYLENES) 386-431. Yamamoto, et al. Bulletin Che. Soc. of Japan (1978) 51. 75 Inventors: James M. Tour; Eric B. Stephens, (7) pp. 2091-2097. both of Columbia, S.C. Shacklette, et al. J. Chem. Soc., Chem. Commun. (1982) 73 Assignee: University of South Carolina, pp. 361-362. Columbia, S.C. Ivory, et al. J. Chem. Phys. (1979) 71. (3) pp. 1506-1507. Shacklette, et al. J. Chem. Phys. (1980) 73. (8) pp. 21 Appl. No.: 543,673 4098-4102. 22 Filed: Jun. 25, 1990 Kovacic, et al. J. Org. Chem. (1963) 28. pp. 968-972, 1864-1867. I51) Int. Cl. .............................................. CO8G 61/00 Kovacic, et al. J. Org. Chem. (1964) 29. pp. 100-104, 52 U.S.C. .................................................... 528/397 2416-2420. 58 Field of Search ......................................... 528/397 Kovacic et al. J. Org. Chem. (1966) 31. pp. 2467-2470. (56) References Cited Primary Examiner-John Kight, II U.S. PATENT DOCUMENTS Assistant Examiner-Terressa M. Mosley Attorney, Agent, or Firm-Brumbaugh, Graves, 4,576,688 3/1966 David .................................. 528/397 Donohue & Raymond OTHER PUBLICATIONS 57 ABSTRACT Kovacic, et al. Chem. Rev. (1987) 87, pp. 357-379. Poly(phenylene) that is substantially free of insoluble Elsenbaumer, et al. Handbook of Conducting Polymers material is prepared by the polymerization of a lithi (1986), T. A. Skotheime ed. pp. 213-263. oarylhalide compound in the presence of a polar aprotic Perlstein, Angew.
    [Show full text]
  • Front Matter
    Towards the Total Synthesis of 1!,25-dihydroxylumisterol A. Simon Partridge Julia Laboratory, Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom September 2012 A thesis submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy, Imperial College London. Abstract This thesis is divided into three chapters. The first chapter provides a brief review on recent work in the application of cascade cyclisations to the total synthesis of natural products. This is followed by a review of the decarboxylative Claisen rearrangement (dCr), a novel variant of the Ireland-Claisen reaction in which tosylacetic esters of allylic alcohols are transformed into homoallylic sulfones using BSA and potassium acetate, and its applications. The second chapter discusses the results of our studies towards the total synthesis of 1!,25-dihydroxylumisterol via a proposed route containing two key steps; a cascade-inspired, Lewis-acid mediated cyclisation to form the steroid B-ring in I, and the dCr reaction of tosylacetic ester IV to give diene III. Successful syntheses, as well as problems encountered along this route will be discussed, as well as the measures taken to adapt the synthesis to circumvent these problems. OH PGO H O OH H H H H H PGO PGO H H HO Ts Ts 1!,25-dihydroxylumisterol I II OH O H + O H O H HO Ts PGO OPG H Ts Ts OPG VI V IV III The third and final chapter contains experimental procedures and characterisation data for the prepared compounds. Declaration I certify that all work in this thesis is solely my own, except where explicitly stated and appropriately referenced.
    [Show full text]
  • Hexamethylphosphoramide for Jet Fuels
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Hexamethylphosphoramide for jet fuels. It also can be used as a flame­retarding additive in lith­ ium­ion batteries; however, it reduces the performance of the bat­ CAS No. 680-31-9 tery (Izquierdo­Gonzales et al. 2004). Reasonably anticipated to be a human carcinogen Production First listed in the Fourth Annual Report on Carcinogens (1985) In 2009, hexamethylphosphoramide was produced by one manufac­ Also known as HMPA or hexamethylphosphoric triamide turer worldwide, in the United States (SRI 2009), and was available from 21 suppliers, including 14 U.S. suppliers (ChemSources 2009). H3C CH3 No data on U.S. production, import, or export volumes were found. N H3C CH3 NP N Exposure H C CH 3 O 3 The routes of potential human exposure to hexamethylphosphoramide Carcinogenicity are inhalation, ingestion, and dermal contact (HSDB 2009). The ma­ jor source of exposure is probably occupational; however, the general Hexamethylphosphoramide is reasonably anticipated to be a human population potentially could be exposed through release of hexameth­ carcinogen based on sufficient evidence of carcinogenicity from stud­ ylphosphoramide to the environment. No environmental releases of ies in experimental animals. hexamethylphosphoramide were reported in the U.S. Environmental Protection Agency’s Toxics Release Inventory (TRI 2009). Hexameth­ Cancer Studies in Experimental Animals ylphosphoramide exists in the air solely in the vapor phase and will Exposure of rats to hexamethylphosphoramide by inhalation caused be degraded by photochemically produced hydroxyl radicals, with a nasal tumors, which are rare in this species.
    [Show full text]
  • H-Phosphonates: Versatile Synthetic Precursors to Biologically Active Phosphorus Compounds*
    Pure Appl. Chem., Vol. 79, No. 12, pp. 2217–2227, 2007. doi:10.1351/pac200779122217 © 2007 IUPAC H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds* Adam Kraszewski1,‡ and Jacek Stawinski1,2,‡ 1Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; 2Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden Abstract: In this review, a short account of H-phosphonate chemistry and its application to the synthesis of biologically important phosphates and their analogs is given. Keywords: H-phosphonates; phosphate analogs; biological activity; nucleic acids; drugs. INTRODUCTION Located at the crossroad of various bioinformation exchange pathways, phosphorus-containing com- pounds play a key role in living organisms as carriers of genetic information and important signalling, regulatory, energy transfer, and structural compounds [1]. Due to this pivotal role, biologically impor- tant phosphorus compounds have become therapeutic targets in various modern medicinal techniques, such as antisense [2] and antigene [3] approaches to modulation gene expression, or a gene silencing technique using short interfering RNA (siRNA) [4]. To maximize the desired biological effect and to minimize cytotoxicity, a biologically active com- pound has to have very precisely adjusted chemical and pharmacokinetic properties. This can be achieved by, e.g., changing pKa values of the ionizeable functions, changing electronegativity of the substituents, their size, hydrophobicity, etc. These features can also influence transport of a drug across cell membranes, its preferential degradation in normal or activation in the neoplastic or virus-infected cells, and can contribute to the overall efficiency of the drug. A prominent example here are antiviral pronucleotides in which the phosphate moiety is masked with alkyl or aryl groups that are removed chemically and enzymatically in cells to produce an active antiviral nucleotide [5].
    [Show full text]
  • The Hydrolysis of Phosphinates and Phosphonates: a Review
    molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840.
    [Show full text]
  • Federal Register/Vol. 84, No. 230/Friday, November 29, 2019
    Federal Register / Vol. 84, No. 230 / Friday, November 29, 2019 / Proposed Rules 65739 are operated by a government LIBRARY OF CONGRESS 49966 (Sept. 24, 2019). The Office overseeing a population below 50,000. solicited public comments on a broad Of the impacts we estimate accruing U.S. Copyright Office range of subjects concerning the to grantees or eligible entities, all are administration of the new blanket voluntary and related mostly to an 37 CFR Part 210 compulsory license for digital uses of increase in the number of applications [Docket No. 2019–5] musical works that was created by the prepared and submitted annually for MMA, including regulations regarding competitive grant competitions. Music Modernization Act Implementing notices of license, notices of nonblanket Therefore, we do not believe that the Regulations for the Blanket License for activity, usage reports and adjustments, proposed priorities would significantly Digital Uses and Mechanical Licensing information to be included in the impact small entities beyond the Collective: Extension of Comment mechanical licensing collective’s potential for increasing the likelihood of Period database, database usability, their applying for, and receiving, interoperability, and usage restrictions, competitive grants from the Department. AGENCY: U.S. Copyright Office, Library and the handling of confidential of Congress. information. Paperwork Reduction Act ACTION: Notification of inquiry; To ensure that members of the public The proposed priorities do not extension of comment period. have sufficient time to respond, and to contain any information collection ensure that the Office has the benefit of SUMMARY: The U.S. Copyright Office is requirements. a complete record, the Office is extending the deadline for the extending the deadline for the Intergovernmental Review: This submission of written reply comments program is subject to Executive Order submission of written reply comments in response to its September 24, 2019 to no later than 5:00 p.m.
    [Show full text]
  • Synthesis and Properties of Diorganomagnesium Compounds
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1967 Synthesis and Properties of Diorganomagnesium Compounds Conrad William Kamienski University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Kamienski, Conrad William, "Synthesis and Properties of Diorganomagnesium Compounds. " PhD diss., University of Tennessee, 1967. https://trace.tennessee.edu/utk_graddiss/3077 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Conrad William Kamienski entitled "Synthesis and Properties of Diorganomagnesium Compounds." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jerome F. Eastham, Major Professor We have read this dissertation and recommend its acceptance: Bruce M. Anderson, George K. Schwitzer, David A. Shirley Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Novemb er 27, 1967 To the Graduate Council: I am submitting herewith a dissertation written by Conrad Wiliiam Kamienski entitled "Synthesis and Properties of Diorgano­ magnesium Compounds." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a maj or in Chemistry .
    [Show full text]
  • Discovery of Phosphonic Acid Natural Products by Mining the Genomes of 10,000 Actinomycetes
    Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes Kou-San Jua, Jiangtao Gaoa, James R. Doroghazia, Kwo-Kwang A. Wanga, Christopher J. Thibodeauxa, Steven Lia, Emily Metzgera, John Fudalaa, Joleen Sua, Jun Kai Zhanga,b, Jaeheon Leea, Joel P. Cionia,b, Bradley S. Evansa, Ryuichi Hirotaa,c, David P. Labedad, Wilfred A. van der Donka,e,1, and William W. Metcalfa,b,1 aCarl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801; bDepartment of Microbiology, University of Illinois, Urbana, IL 61801; cDepartment of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; dBacterial Foodborne Pathogens and Mycology Research, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604; and eDepartment of Chemistry and Howard Hughes Medical Institute, University of Illinois, Urbana, IL 61081 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 31, 2015 (received for review January 14, 2015) Although natural products have been a particularly rich source of generally adopted. If we hope to revitalize the use of natural human medicines, activity-based screening results in a very high products in the pharmaceutical industry, genome mining must be rate of rediscovery of known molecules. Based on the large number shown to be a high-throughput discovery process complementary of natural product biosynthetic genes in microbial genomes, many or superior to existing methods (13, 14). Here, we demonstrate the have proposed “genome mining” as an alternative approach for feasibility of this approach in a campaign to identify the full ge- discovery efforts; however, this idea has yet to be performed ex- netic repertoire of phosphonic acid natural products encoded by a perimentally on a large scale.
    [Show full text]
  • Chemicals Subject to TSCA Section 12(B) Export Notification Requirements (January 16, 2020)
    Chemicals Subject to TSCA Section 12(b) Export Notification Requirements (January 16, 2020) All of the chemical substances appearing on this list are subject to the Toxic Substances Control Act (TSCA) section 12(b) export notification requirements delineated at 40 CFR part 707, subpart D. The chemicals in the following tables are listed under three (3) sections: Substances to be reported by Notification Name; Substances to be reported by Mixture and Notification Name; and Category Tables. TSCA Regulatory Actions Triggering Section 12(b) Export Notification TSCA section 12(b) requires any person who exports or intends to export a chemical substance or mixture to notify the Environmental Protection Agency (EPA) of such exportation if any of the following actions have been taken under TSCA with respect to that chemical substance or mixture: (1) data are required under section 4 or 5(b), (2) an order has been issued under section 5, (3) a rule has been proposed or promulgated under section 5 or 6, or (4) an action is pending, or relief has been granted under section 5 or 7. Other Section 12(b) Export Notification Considerations The following additional provisions are included in the Agency's regulations implementing section 12(b) of TSCA (i.e. 40 CFR part 707, subpart D): (a) No notice of export will be required for articles, except PCB articles, unless the Agency so requires in the context of individual section 5, 6, or 7 actions. (b) Any person who exports or intends to export polychlorinated biphenyls (PCBs) or PCB articles, for any purpose other than disposal, shall notify EPA of such intent or exportation under section 12(b).
    [Show full text]