Status and Distribution Pattern of Native and Endemic Species in Uttarakhand

Total Page:16

File Type:pdf, Size:1020Kb

Status and Distribution Pattern of Native and Endemic Species in Uttarakhand International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 500 ISSN 2229-5518 Status and Distribution Pattern of Native and Endemic Species in Uttarakhand Western Himalayan Region, India Author: Dr. Surbhi Pandey & Soni Pandey Keywords : Indian Western Region, Native, Endemic Abstract Indian western Himalayan Region (IHR) Inhabitants are largely dependent on the biodiversity, which is one of the major source of livelihood. The relationship of the people with their immediate environs and natural resources has evolved over a long period based on necessities and experiences. The present study recorded in 119 species (27 Trees; 34 shrubs; 58 Herbs) were native to the Himalayan region, 30 species (12 Trees; 10 Shrubs; 8 Herbs) were native to the Himalayan region and other biogeographic regions, together whereas 628 species were non- natives representing various biogeographic provinces of the world. Amongst economically important species, 51 species were near endemic. The notable near endemic were Ainsliaea aptera, Bupleurum thompsonii, Begonia picta, Bauhinia retusa, Chaerophyllum villosum, Dipsacus inermis, Euonymus pendulus, Impatiens amphorata, Lonicera quinquelocularis, Osbeckia stellata, Pinus roxburghii, Rhaphidophora glauca, Swertia angustifolia, Tetrastigma bracteolatum, Ulmus wallichiana, Zingiber chrysanthum, etc. and only 2 species i.e, Pimpinella acuminata, and Pittosporum eriocarpum were endemic to the Indian Himalayan Region. Occurrence of 69 % non-native species in the study area itself indicates that non- native species are dominant over the native and endemic species. This may lead the extinction of the native and endemic species from the area and proliferation of more hardy non- native species. Therefore, there is a need to assess the populations of the native and endemic species using standard ecological methods. 1.1. Introduction and management of a particular biogeographic region. High percentage of native and endemic The nativity denotes first record/origin of IJSERspecies indicates the high conservation value of that the species (Anonymous, 1883-1970; Samant et al., particular area. The increasing human population 1998a) and endemism denotes the restricted and decreasing natural resources have created an distribution of a species in a particular imbalance in the natural systems. The habitat biogeographic province or a single Island or degradation and over exploitation of economically mountain top or even in a single rock outcrop important native and endemic species has caused (Huston, 1994). rapid depletion of their population from the wild The naturalness (nativity) and uniqueness habitats and non-native species have been (endemism) of the plant diversity of any proliferating fast due to their hardy nature. This has biogeographic province denotes the high drastically changed the composition of an conservation value of the area. These two attributes ecosystem, habitat and community of a particular help in tracing the evolution. These two attributes biogeographic province. It has been seen that play an important role in assessing the conservation introduction of the non-native species has drastically value of any habitat, community and ecosystem for changed the ecosystem property due to direct making a strategy and action plan for conservation competition with the native and endemic plant IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 501 ISSN 2229-5518 species or directly alternating the ecosystem 2000a&b, 2001c, 2002a, 2006; Samant & Dhar, 1997; properties (Vitousek, 1986). Further, severe exotic Dhar et al., 1998b, and Samant, 1999). The species disturbances dramatically affected succession and restricted to Indian Himalayan Region has been led to exotic annual communities with low native considered as endemic whereas those with extended species richness and species diversity of distribution to neighboring Countries/States communities (MacArthur 1955, Hurlbert 1971, Peet considered as near endemic (Table 3.1). 1974, Pielou 1975; Magurran 1988, 2004; Schiuter and 1.3. Results Ricklefs 1993, Colwell and Coddington 1994; Of the total 774 species, 119 species (27 Kerebs1999, Huston, 1994, Stylinski & Allen, 1999). Trees; 34 shrubs; 58 Herbs) were native to the In the Indian Himalayan Region, in general, a very Himalayan region, 30 species (12 Trees; 10 shrubs; 8 few studies regarding nativity and endemism of the Herbs) were native to the Himalayan region and species are available (Dhar & Samant, 1993; Dhar et other biogeographic regions, together whereas 628 al., 1996, 1998a&b; Samant et al., 1996a, 1998a&b, species were non- natives representing various 2000, 2001a,b,c, 2002a&b,2006 a&b; Samant & Dhar, biogeographic provinces of the world (Appendix & 1997; Samant, 1999; Joshi et al., 1999, 2001; Samant & Fig. 3.1). The altitudinal distribution of the native Palni, 2000; Joshi, 2002; Arya, 2002; Samant & Pant, species within different life forms has been 2003; Samant & Pal, 2003; Samant & Joshi, 2004; Joshi presented (Fig. 3.2 & 3.3). & Samant, 2004; Pant, 2005; Samant & Pant; 2006; etc.), However, in particular, such studies at watershed and catchment levels are not available. Therefore, in thisIJSER chapter, attempt has been made to study the diversity and distribution pattern of the native and endemic species of the Uttarakhand Western Himalayan Region. Fig. 3.1. Distribution pattern of the native and 1.2. Materials and methods non-native species. The nativity of the species has been 200-1800 1801-2610 identified following Anonymous (1883-1970; Samant T & Dhar, 1997; Samant et al., 1998a&b, Samant, 1999; S and Samant et al., 2000a, 2002a). The species H indicating its origin from the Himalayan Region TotalLife forms were considered as natives. 0 50 100 150 200 250 The endemism of the species has been No. of species identified based on the distribution of the species Fig. 3.2. Altitudinal distribution of the Himalayan (Dhar & Samant, 1993; Samant et al., 1996a, 1998a&b, native species. IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 502 ISSN 2229-5518 200-1800 T S H TotalLife forms 0 20 40 60 Fig.3.5. Utilization pattern of the endemic and near No. of Species endemic Plants along an altitudinal gradient. Fig.3.3. Altitudinal distribution of the Himalayan 1.4. Discussion native species together with other biogeographic The decreasing population of the native and regions. endemic species due to invasion of non-natives in Amongst the total economically important species, the tropical, sub-tropical and temperate zones of the 51 species were near endemic. The notable near globe is a great concern which is causing the endemic were Ainsliaea aptera, Bupleurum thompsonii, negative impacts on the entire ecosystems. The past Begonia picta, Bauhinia retusa, Chaerophyllum villosum, studies have proved that non-natives affect the Dipsacus inermis, Euonymus pendulus, Impatiens hydrology and nutrient cycles of entire ecosystems amphorata, Lonicera quinquelocularis, Osbeckia stellata, (Vistousek, 1986). Such impact may lead the Pinus roxburghii, Rhaphidophora glauca, Swertia extinctions of the native and endemic species from angustifolia, Tetrastigma bracteolatum, Ulmus the ecosystem. In general, invasions potentially lead wallichiana, Zingiber chrysanthum, etc. and only 2 to an increase in species richness, as the invading species i.e, Pimpinella acuminata, and Pittosporum IJSERspecies are added to the existing species pool. eriocarpum were endemic to the Indian Himalayan However, they have negative effects on the native Region. The altitudinal distribution and utilization species leading even to the extinctions therefore, pattern of the endemic and near endemic species decreasing net diversity of the area (Huston, 1994). have been presented (Fig.3.4 & 3.5). Presence of non-natives in India and the Himalaya is 200-1800 known (Maheshwari, 1962), which is largely 60 50 attributed to migration over geological time periods 40 30 (Saxena, 1991). 20 10 Although, the non-natives are relatively 0No. of Species hardy species compared to natives and capable of Total Herbs Shrubs Trees Life Form spreading far beyond their native places yet, there Fig. 3.4. Altitudinal distribution of the Endemic are some limitations, which restrict the invasion of and Near Endemic Plants. non-natives particularly in the mountainous regions and Islands. Topography and climate are the major barriers to restrict the gene flow and thus, allow IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 503 ISSN 2229-5518 speciation to occur (Samant et al., 2002, Joshi, 2002). The altitude, longitude and latitude play an important role in the speciation of the species Table 3.1. Distribution pattern of the native and (Khoshoo, 1992). In the Uttarakhand Western endemic species in the Uttarakhand Western Himalayan Region, the human habitations are Himalayan Region located mostly in the sub-tropical and temperate Family/Taxa Local Altitu LF Nativity Ende Name dinal mism zones. The forests of these regions are facing high range pressures due to heavy lopping, felling, causing (m) habitat degradation and over exploitation of the Apiaceae species, and the native species are decreasing at an Buplerum Jangali- 1500- H Reg NE accelerating rate due the invasion of non-native thompsonii Cl. Jeera 2500
Recommended publications
  • 1. EUONYMUS Linnaeus, Sp. Pl. 1: 197
    Fl. China 11: 440–463. 2008. 1. EUONYMUS Linnaeus, Sp. Pl. 1: 197. 1753 [“Evonymus”], nom. cons. 卫矛属 wei mao shu Ma Jinshuang (马金双); A. Michele Funston Shrubs, sometimes small trees, ascending or clambering, evergreen or deciduous, glabrous, rarely pubescent. Leaves opposite, rarely also alternate or whorled, entire, serrulate, or crenate, stipulate. Inflorescences axillary, occasionally terminal, cymose. Flowers bisexual, 4(or 5)-merous; petals light yellow to dark purple. Disk fleshy, annular, 4- or 5-lobed, intrastaminal or stamens on disk; anthers longitudinally or obliquely dehiscent, introrse. Ovary 4- or 5-locular; ovules erect to pendulous, 2(–12) per locule. Capsule globose, rugose, prickly, laterally winged or deeply lobed, occasionally only 1–3 lobes developing, loculicidally dehiscent. Seeds 1 to several, typically 2 developing, ellipsoid; aril basal to enveloping seed. Two subgenera and ca. 130 species: Asia, Australasia, Europe, Madagascar, North America; 90 species (50 endemic, one introduced) in China. Euonymus omeiensis W. P. Fang (J. Sichuan Univ., Nat. Sci. Ed. 1: 38. 1955) was described from Sichuan (Emei Shan, Shishungou, ca. 1300 m). This putative species was misdiagnosed; it is a synonym of Reevesia pubescens Masters in the Sterculiaceae (see Fl. China 12: 317. 2007). The protologue describes the fruit as having bracts. The placement of Euonymus tibeticus W. W. Smith (Rec. Bot. Surv. India 4: 264. 1911), described from Xizang (3000–3100 m) and also occurring in Bhutan (Lhakhang) and India (Sikkim), is unclear, as only a specimen with flower buds is available. Euonymus cinereus M. A. Lawson (in J. D. Hooker, Fl. Brit. India 1: 611. 1875) was described from India.
    [Show full text]
  • MELASTOMATACEAE 野牡丹科 Ye Mu Dan Ke Chen Jie (陈介 Chen Cheih)1; Susanne S
    MELASTOMATACEAE 野牡丹科 ye mu dan ke Chen Jie (陈介 Chen Cheih)1; Susanne S. Renner2 Herbs, shrubs, or trees (to 20 m tall), erect, climbing, or rarely epiphytic. Stipules lacking. Leaves simple, commonly opposite and decussate with one of a pair slightly smaller than other, rarely verticillate or alternate by abortion of one of a pair, usually 1–4(or 5) secondary veins on each side of midvein, originating at or near base and anastomosing apically, tertiary veins numerous, parallel, and connecting secondary veins and midvein but in Memecylon secondary veins pinnate and tertiary veins reticulate. Inflorescences cymose, umbellate, corymbose, in paniculate clusters, or a cincinnus, rarely flowers single, fascicled, or born on a spike; bracts sometimes conspicuous and persistent. Flowers bisexual, actinomorphic but androecium often slightly zygomorphic, usually (3 or)4- or 5(or 6)-merous, perianth biseriate, perigynous; bracteoles opposite, usually caducous. Hypanthium funnel-shaped, campanulate, cyathiform, or urceolate. Calyx lobes (3–)5(or 6), valvate (rarely connate, but not in Chinese species). Petals (3–)5(or 6), equal to number of sepals, distinct, imbricate. Stamens usually twice as many as petals and in 2 whorls, rarely as many as petals by loss of 1 whorl, isomorphic or dimorphic; filaments distinct, often geniculate, inflexed in bud; anthers typically 2-celled, introrse, basifixed, dehiscent by 1 or 2 apical pores or by short longitudinal slits (Astronia, Memecylon); connective often variously appendaged. Pistil and style 1; stigma minute, capitate or truncate. Ovary commonly inferior or semi-inferior, locules usually (3 or)4 or 5(or 6) with numerous anatropous ovules, rarely 1-loculed and ovules ca.
    [Show full text]
  • Traditional Phytotherapy of Some Medicinal Plants Used by Tharu and Magar Communities of Western Nepal, Against Dermatological D
    TRADITIONAL PHYTOTHERAPY OF SOME MEDICINAL PLANTS USED BY THARU AND MAGAR COMMUNITIES OF WESTERN NEPAL, AGAINST DERMATOLOGICAL DISORDERS Anant Gopal Singh* and Jaya Prakash Hamal** *'HSDUWPHQWRI%RWDQ\%XWZDO0XOWLSOH&DPSXV%XWZDO7ULEKXYDQ8QLYHUVLW\1HSDO ** 'HSDUWPHQWRI%RWDQ\$PULW6FLHQFH&DPSXV7ULEKXYDQ8QLYHUVLW\.DWKPDQGX1HSDO Abstract: (WKQRERWDQ\VXUYH\ZDVXQGHUWDNHQWRFROOHFWLQIRUPDWLRQIURPWUDGLWLRQDOKHDOHUVRQWKHXVHRIPHGLFLQDO SODQWVLQWKHWUHDWPHQWRIGLIIHUHQWVNLQGLVHDVHVVXFKDVFXWVDQGZRXQGVHF]HPDERLOVDEVFHVVHVVFDELHVGRJ DQGLQVHFWELWHULQJZRUPOHSURV\EXUQVEOLVWHUVDOOHUJ\LWFKLQJSLPSOHVOHXFRGHUPDSULFNO\KHDWZDUWVVHSWLF XOFHUVDQGRWKHUVNLQGLVHDVHVLQZHVWHUQ1HSDOGXULQJGLIIHUHQWVHDVRQRI0DUFKWR0D\7KHLQGLJHQRXV NQRZOHGJH RI ORFDO WUDGLWLRQDO KHDOHUV KDYLQJ SUDFWLFDO NQRZOHGJH RI SODQWV LQ PHGLFLQH ZHUH LQWHUYLHZHG LQ YLOODJHVRI5XSDQGHKLGLVWULFWRIZHVWHUQ1HSDODQGQDWLYHSODQWVXVHGIRUPHGLFLQDOSXUSRVHVZHUHFROOHFWHGWKURXJK TXHVWLRQQDLUHDQGSHUVRQDOLQWHUYLHZVGXULQJ¿HOGWULSV$WRWDORISODQWVSHFLHVRIIDPLOLHVDUHGRFXPHQWHGLQ WKLVVWXG\7KHPHGLFLQDOSODQWVXVHGLQWKHWUHDWPHQWRIVNLQGLVHDVHVE\WULEDO¶VDUHOLVWHGZLWKERWDQLFDOQDPH LQ ELQRPLDOIRUP IDPLO\ORFDOQDPHVKDELWDYDLODELOLW\SDUWVXVHGDQGPRGHRISUHSDUDWLRQ7KLVVWXG\VKRZHGWKDW PDQ\SHRSOHLQWKHVWXGLHGSDUWVRI5XSDQGHKLGLVWULFWFRQWLQXHWRGHSHQGRQWKHPHGLFLQDOSODQWVDWOHDVWIRUWKH WUHDWPHQWRISULPDU\KHDOWKFDUH Keywords 7KDUX DQG 0DJDU WULEHV7UDGLWLRQDO NQRZOHGJH 'HUPDWRORJLFDO GLVRUGHUV 0HGLFLQDO SODQWV:HVWHUQ 1HSDO INTRODUCTION fast disappearing due to modernization and the tendency to discard their traditional life style and gradual 7KH NQRZOHGJH
    [Show full text]
  • Vol: Ii (1938) of “Flora of Assam”
    Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works.
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]
  • INDIGENOUS KNOWLEDGE on USE of LOCAL FODDER TREES in MID HILLS of WEST NEPAL Mohan P
    INDIGENOUS KNOWLEDGE ON USE OF LOCAL FODDER TREES IN MID HILLS OF WEST NEPAL Mohan P. Panthi ABSTRACT Fodder shortage (quality as well as quantity) has been found throughout mid hills of Nepal. The tree fodder is particularly important as a green, nitrogen supplement to poor quality crop residues during the dry season when feeds are scarce. The nutritional values of fodders differ according to species and season therefore farmers prefer different species for different seasons to feed their livestock. The choice or preference of fodder species by farmers reflects their traditional knowledge on nutritional values, palatability, cultivation easiness and seasonal variability of tree fodder in local environment. The paper highlights an indigenous knowledge system that relates to the quality of tree fodder used by farmers in mid hills of Nepal. In total 69 plant species have been recorded as tree fodder and out of them ten best tree fodders have been listed on the basis of preferences and priority by farmers. Information was gathered through a semi structured open questionnaire by interviewing 85 respondents of different age groups of Arghakhanchi district. Though Ficus species was the most abundant among tree fodder, Grewia optiva (locally known as 'phorso') was found the most preferable tree fodder species in the study area. Key words: Tree fodder, folk classification, indigenous knowledge, mid hills. INTRODUCTION Fodder shortage has been a serious problem for livestock holders throughout mid hills of Nepal. It becomes acute during the dry period and winter when livestock is generally under fed by one-third of the required amount (Sherchan and Pradhan, 1997).
    [Show full text]
  • Medicinal Plant Research
    Journal of Medicinal Plant Research Volume 8 Number 2, 10 January, 2014 ISSN 2009-9723 ABOUT JMPR The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals. The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peerreviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font). Submission of Manuscript Submit manuscripts as e-mail attachment to the Editorial Office at: [email protected]. A manuscript number will be mailed to the corresponding author shortly after submission. The Journal of Medicinal Plant Research will only accept manuscripts submitted as e-mail attachments. Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author. Editors Prof. Akah Peter Achunike Prof. Parveen Bansal Editor-in-chief Department of Biochemistry Department of Pharmacology & Toxicology Postgraduate Institute of Medical Education and University of Nigeria, Nsukka Research Nigeria Chandigarh India. Associate Editors Dr. Ravichandran Veerasamy AIMST University Dr. Ugur Cakilcioglu Faculty of Pharmacy, AIMST University, Semeling - Elazıg Directorate of National Education 08100, Turkey. Kedah, Malaysia. Dr. Jianxin Chen Dr. Sayeed Ahmad Information Center, Herbal Medicine Laboratory, Department of Beijing University of Chinese Medicine, Pharmacognosy and Phytochemistry, Beijing, China Faculty of Pharmacy, Jamia Hamdard (Hamdard 100029, University), Hamdard Nagar, New Delhi, 110062, China.
    [Show full text]
  • 12. Sasinath Herbarium
    Nepalese Journal of Biosciences 1: 83-95 (2011) Vascular plant specimens in Tribhuvan University Herbarium (TUH), Biratnagar, Nepal Sasinath Jha, Shiva Kumar Rai, Umesh Koirala, Bhabindra Niroula, Indramani Bhagat, Min Raj Dhakal and Tej Narayan Mandal Department of Botany, Post Graduate Campus, Tribhuvan University, Biratnagar, Nepal E-mail: [email protected] This report comprises the first list of 1019 specimens of vascular plants (Pteridophytes: 25 families and 106 species; Gymnosperms: 9 families and 19 species; Angiosperms: 136 families and 894 species) reposited in the “Tribhuvan University Herbarium (TUH)”, Department of Botany, Post Graduate Campus, Tribhuvan University, Biratnagar, Nepal. These specimens have been collected by students and teachers of the Department of Botany, Post Graduate Campus from various locations of eastern Nepal (tropical to temperate climates; 60 to 3000 m, msl altitudes) since the year 1992 onwards. For the purpose of easy access to the specimens, families within a taxon, genera within a family, and species within a genus are arranged alphabetically. Scientific names provided by Hara et al . (1978, 1979, 1982), Iwatsuki (1988), Koba et al . (1994), Siwakoti (1995), Press et al. (2000), Jha and Jha (2000), and Thapa (2002) have been adopted for the nomenclature of the reposited specimens. Pteridophytes Cyrtomium caryotideum (Wall. ex 1. Aspidiaceae Hook. et Grev.) Presl Dryopteris carolihopei Fras.-Jenk. Tectaria coadunata (Wall. ex J. Sm.) Dryopteris cochleata (Ham. ex D. C. Chr. Don) C. Chr. Tectaria polymorpha (Wall. ex Hook.) Dryopteris sparsa (Ham. ex D. Don) Kuntze Copel. Peramena cyatheoides D. Don 2. Aspleniaceae Polystichum lentum (D. Don) T. Moore Asplenium ensiforme Wall. ex Hook.
    [Show full text]
  • Gymnosporia Montana, a Potential Hepatoprotective and Anticancer Drug
    Academic Sciences Asian Journal of Pharmaceutical and Clinical Research Vol 5, Issue 3, 2012 ISSN - 0974-2441 Review Article Vol. 4, Issue 3, 2011 GYMNOSPORIA MONTANA, A POTENTIALISSN - 0974-2441 HEPATOPROTECTIVE AND ANTICANCER DRUG – AN OVERVIEW SUBRATA DE* AND SUPARNA DE1 * R.M.D. Research and Development Center, Waghaldhara, Dist:Valsad-396375, India. 1Sinhgad College of Pharmacy, Vadgaon (Bk), Pune- 411 041, India , E-mail: [email protected] Received: 22 April 2012, Revised and Accepted: 21 June 2012 ABSTRACT Gymnosporia montana (known as Vikro), occurring throughout the arid, dry areas of India, is traditionally claimed to be useful in various ailments. In the present communication the details of the plant like taxonomic position, distribution, ecology, traditional uses, folklore claims,pharmacognosy, chemistry and pharmacology has been reviewed. It has great potential as hepatoprotective and anticancer drug. Keywords: Gymnosporia, Vikro, Pharmacognosy, Chemistry, Hepatoprotective, Anticancer INTRODUCTION Padarohina, Pindara, Prithubija, In Indian floras, the genus Maytenus molina (family : Celastraceae) Putakinkani, Ravana, Sragdaru, goes under the name of Gymnosporia (Wt. & Arn.) Benth. & Hook. F. Sruvadrum, Sruvavriksha, Two hundred species have been reported of which about 15 are Sudhavriksha, Svadukanta, 1 2 available in India . Flora of British India mentions 16 species of Vaikankata, Vikankata, Gymnosporia- G. acuminate, Hook. F., G . neglecta, Wall. Cat., G. Vritinkar, Vyaghrapada, salicifolia, Laws., G. oblanceolata, Laws., G. puberula, Laws., G. Yadnavriksha, Yadniya. fruticosa, Thwaites Enum., G.ovata, Wall. Cat., G.rothina, W & A., G. Tamil : Kattanji regulosa, Laws., G. heyneana, W&A., G. falconeri, Laws., G. rufa, Wall., Telugu : Dantausi, Danti, Gajasinni, G. royleana, Wall. Cat. G. wallichiana, Sprenz, Syst., G.
    [Show full text]
  • Systematics and Relationships of Tryssophyton (Melastomataceae
    A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated.
    [Show full text]
  • Quarterly Changes
    Plant Names Database: Quarterly changes 30 November 2015 © Landcare Research New Zealand Limited 2015 This copyright work is licensed under the Creative Commons Attribution 3.0 New Zealand license. Attribution if redistributing to the public without adaptation: "Source: Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Landcare Research" http://dx.doi.org/doi:10.7931/P1Z598 CATALOGUING IN PUBLICATION Plant names database: quarterly changes [electronic resource]. – [Lincoln, Canterbury, New Zealand] : Landcare Research Manaaki Whenua, 2014- . Online resource Quarterly November 2014- ISSN 2382-2341 I.Manaaki Whenua-Landcare Research New Zealand Ltd. II. Allan Herbarium. Citation and Authorship Wilton, A.D.; Schönberger, I.; Gibb, E.S.; Boardman, K.F.; Breitwieser, I.; Cochrane, M.; Dawson, M.I.; de Pauw, B.; Fife, A.J.; Ford, K.A.; Glenny, D.S.; Heenan, P.B.; Korver, M.A.; Novis, P.M.; Redmond, D.N.; Smissen, R.D. Tawiri, K. (2015) Plant Names Database: Quarterly changes. November 2015. Lincoln, Manaaki Whenua Press. This report is generated using an automated system and is therefore authored by the staff at the Allan Herbarium who currently contribute directly to the development and maintenance of the Plant Names Database. Authors are listed alphabetically after the third author. Authors have contributed as follows: Leadership: Wilton, Heenan, Breitwieser Database editors: Wilton, Schönberger, Gibb Taxonomic and nomenclature research and review: Schönberger, Gibb, Wilton, Breitwieser, Dawson, Ford, Fife, Glenny, Heenan, Novis, Redmond, Smissen Information System development: Wilton, De Pauw, Cochrane Technical support: Boardman, Korver, Redmond, Tawiri Disclaimer The Plant Names Database is being updated every working day. We welcome suggestions for improvements, concerns, or any data errors you may find.
    [Show full text]
  • Annual Scientific Meet 3Rd & 4Th May 2021
    dddsds BOTANIC GARDEN OF INDIAN REPUBLIC, Noida BOTANICAL SURVEY OF INDIA (Dr Sandeep K Chauhan) Annual Scientific Work Contents 2020-21 1. Plant collection from various parts of India and their introduction and conservation in BGIR 2. Plantation of endemic plants in Forest arboretum as per forest types being developed in BGIR . 3. Studies on phenological aspects of endemic trees of BGIR. 4. Studies on seed germination of endemic trees & difficult to root sps., 5. Threatened plants collection and conservation in BGIR as per the RET sps., being conserved in Botanic Gardens funded under ABG Scheme 6. Garden maintenance and development . 7. NMHS project . 8. Preparation of Database for endemic trees and medicinal Plants of BGIR . Plant Collection and Conservation Summary of the Plants Collected during 2020-21 During the period 12 tree species of about 1809 plants and 20 species of about 980 plants were collected from BSI-ARC, Jodhpur, Rajasthan and BSI, NRC, Dehradun respectively. Besides above, about 15000 plants of 60 species of trees, shrubs, herbs as well ornamental plants were collected from local Forest Nurseries of NCR, U.P. About 25 species (8 species of grasses) from wild and 40 species (including 5 bamboo species of grasses ) from various forest nurseries of Uttarakhand were procured during field visit in Uttarakhand. • Total Plant spp. collected from BSI Regional Centers: Sps (35 ) Plants (2700) • Total Plant spp. collected from Local Forest Dept Nurseries: Sps ( 50) Plants ( 1505) • Total Plant spp. collected from Seed Bank Nursery
    [Show full text]