Chapter 5: Valued Environmental Component: Aquatic Habitat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Damage Mapping of April 2015 Nepal Earthquake Using Small
J-Rapid Final Workshop 21 June, 2016, Kathmandu Inventory mapping of landslides induced by the Gorkha earthquake 2015 and a proposal for hazard mapping of future landslides for making a plan of better reconstruction "Impact on infrastructure by Gorkha earthquake 2015 induced landslides" Masahiro CHIGIRA Masahiro CHIGIRA Professor, Disaster Prevention Research Institute, Professor, Disaster Prevention Research Institute, Kyoto University Kyoto University Vishnu DANGOL Vishnu DANGOL Professor, Department of Geology, Professor, Department of Geology, Tribhuvan University Tribhuvan University Objective 1. to make an inventory mapping on landslides, cracks, and landslide dams induced by the Nepal earthquake and to investigate their formative mechanisms 2. to detect displaced areas of slope surfaces, of which future susceptibility to landslides would be evaluated on the basis of geology, geomorphology, and groundwater conditions. 3. propose a methodology of hazard mapping for earthquake-induced landslides in Nepal. Members (Japan side) 1. Masahiro CHIGIRA (Kyoto Univ.) PI Applied Geology 2. Daisuke HIGAKI (Hirosaki Univ.) Landslide control 3. Hiroshi YAGI (Yamagata Univ.) Landslide susceptibility mapping 4. Akihiko WAKAI (Gunma Univ.) Geotechnical analysis of landslide 5. Hiroshi, P. SATO (Nihon Univ.) Remote sensing 6. Go, SATO (Teikyo Heisei Univ.) Geomorphology 7. Ching-Ying, TSOU (Hirosaki Univ.) GIS analysis 8. Akiyo YATAGAI (Res. Inst. Humanity and Nature) Meteorology Members (Nepali side) 1. Vishnu DANGOL (Tribhuvan Univ.) PI Applied Geology 2. Smajwal BAJRACHARYA (ICIMOD) Remote sensing 3. Shanmukhesh Chandra AMATYA (DWIDP) Hydrogeology 4. Tuk Lal ADHIKARI (ITECO-Nepal) Geotechnical Field survey • Trishuli River catchment from Trishuli to Syabrubesi (29 October to 1 November, 2015) • Sun Kosi and Bhote Kosi River catchments from Bansaghu to Kodari. -
Article of a Given In- with Postdepositional Erosion
Earth Surf. Dynam., 8, 769–787, 2020 https://doi.org/10.5194/esurf-8-769-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas Marius L. Huber1,a, Maarten Lupker1, Sean F. Gallen2, Marcus Christl3, and Ananta P. Gajurel4 1Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich 8092, Switzerland 2Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523, USA 3Laboratory of Ion Beam Physics (LIP), Department of Physics, ETH Zurich, Zurich 8093, Switzerland 4Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal acurrent address: Université de Lorraine, CNRS, CRPG, 54000 Nancy, France Correspondence: Marius L. Huber ([email protected]) Received: 28 February 2020 – Discussion started: 20 March 2020 Revised: 21 July 2020 – Accepted: 11 August 2020 – Published: 22 September 2020 Abstract. Large boulders, ca. 10 m in diameter or more, commonly linger in Himalayan river channels. In many cases, their lithology is consistent with source areas located more than 10 km upstream, suggesting long trans- port distances. The mechanisms and timing of “exotic” boulder emplacement are poorly constrained, but their presence hints at processes that are relevant for landscape evolution and geohazard assessments in mountainous regions. We surveyed river reaches of the Trishuli and Sunkoshi, two trans-Himalayan rivers in central Nepal, to improve our understanding of the processes responsible for exotic boulder transport and the timing of em- placement. Boulder size and channel hydraulic geometry were used to constrain paleo-flood discharge assuming turbulent, Newtonian fluid flow conditions, and boulder exposure ages were determined using cosmogenic nu- clide exposure dating. -
The Conservation Action Plan the Ganges River Dolphin
THE CONSERVATION ACTION PLAN FOR THE GANGES RIVER DOLPHIN 2010-2020 National Ganga River Basin Authority Ministry of Environment & Forests Government of India Prepared by R. K. Sinha, S. Behera and B. C. Choudhary 2 MINISTER’S FOREWORD I am pleased to introduce the Conservation Action Plan for the Ganges river dolphin (Platanista gangetica gangetica) in the Ganga river basin. The Gangetic Dolphin is one of the last three surviving river dolphin species and we have declared it India's National Aquatic Animal. Its conservation is crucial to the welfare of the Ganga river ecosystem. Just as the Tiger represents the health of the forest and the Snow Leopard represents the health of the mountainous regions, the presence of the Dolphin in a river system signals its good health and biodiversity. This Plan has several important features that will ensure the existence of healthy populations of the Gangetic dolphin in the Ganga river system. First, this action plan proposes a set of detailed surveys to assess the population of the dolphin and the threats it faces. Second, immediate actions for dolphin conservation, such as the creation of protected areas and the restoration of degraded ecosystems, are detailed. Third, community involvement and the mitigation of human-dolphin conflict are proposed as methods that will ensure the long-term survival of the dolphin in the rivers of India. This Action Plan will aid in their conservation and reduce the threats that the Ganges river dolphin faces today. Finally, I would like to thank Dr. R. K. Sinha , Dr. S. K. Behera and Dr. -
A REVIEW of the STATUS and THREATS to WETLANDS in NEPAL Re! on the Occasion Of3 I UCN World Conservation Congress, 2004
A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL re! On the occasion of3 I UCN World Conservation Congress, 2004 A REVIEW OF THE STATUS AND THREATS TO WETLANDS IN NEPAL IUCN Nepal 2004 IUCN The World Conservation Union IUCN The World Conservation Union The support of UNDP-GEF to IUCN Nepal for the studies and design of the national project on Wetland Conservation and Sustainable Use and the publication of this document is gratefully acknowledged. Copyright: © 2004 IUCN Nepal Published June 2004 by IUCN Nepal Country Office Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: IUCN Nepal (2004). A Review o(the Status andThreats to Wetlands in Nepal 78+v pp. ISBN: 99933-760-9-4 Editing: Sameer Karki and Samuel Thomas Cover photo: Sanchit Lamichhane Design & Layout: WordScape, Kathmandu Printed by: Jagadamba Press, Hattiban, Lalitpur Available from: IUCN Nepal, P.O. Box 3923, Kathmandu, Nepal Tel: (977-1) 5528781,5528761,5526391, Fax:(977-I) 5536786 email: [email protected], URL: http://www.iucnnepal.org Foreword This document is the result of a significant project development effort undertaken by the IUCN Nepal Country Office over the last two years, which was to design a national project for conservation and sustainable use of wetlands in the country.This design phase was enabled by a UNDP-GEF PDF grant. -
Species Composition and Invasion Risks of Alien Ornamental Freshwater
www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people. -
Protected Areas in News
Protected Areas in News National Parks in News ................................................................Shoolpaneswar................................ (Dhum- khal)................................ Wildlife Sanctuary .................................... 3 ................................................................... 11 About ................................................................................................Point ................................Calimere Wildlife Sanctuary................................ ...................................... 3 ......................................................................................... 11 Kudremukh National Park ................................................................Tiger Reserves................................ in News................................ ....................................................................... 3 ................................................................... 13 Nagarhole National Park ................................................................About................................ ......................................................................................................................................... 3 .................................................................... 14 Rajaji National Park ................................................................................................Pakke tiger reserve................................................................................. 3 ............................................................................... -
Coldwater Fish Diversity of India and Its Sustainable Development A
Coldwater Fish Diversity of India and Its Sustainable Development A. K. Singh* and M. S. Akhtar ICAR-Directorate of Coldwater Fisheries Research, Bhimtal-263136, Nainital, Uttarakhand *Email: [email protected] Introduction India is one of the mega biodiversity hotspots in the world and occupies the 9th position in terms of freshwater mega biodiversity (Mittermeier et al., 1997). Biodiversity is essential for stabilization of ecosystems, protection of overall environmental quality, for understanding intrinsic worth of all species on the earth (Ehrlich and Wilson, 1991). The country is bestowed with vast and varied coldwater/hill fishery resources which are spread over the Himalayan and peninsular regions as upland rivers, streams, high and low altitude natural lakes and reservoirs. There are around Fig. 1 : Number of species present in the North-East India 8,243 km long streams and rivers, 20,500 ha (Ali, 2010) natural lakes, 50,000 ha of reservoirs, both natural and manmade, and 2500 ha brackish water lakes in central Himalaya and 91 from the Deccan plateau the high altitude (Mahanta & Sarma, 2010). The (Fig. 1). Coldwater rivers and hill streams are known for The commercially important Indian coldwater their high velocity water fall, rapid cascades, deep species are Tor tor, T. putiora, T. mosal, T. pools and substratum comprising bed rock - progeneius, T. khudree, T. mussullah, T. mala- boulder - sand. These vast and varied water baricus, Naziritor chelynoides, Neolissochielus resources in the uplands harbour rich ichthy- wynaadensis, N. hexagonolepis, Schizotho- ofaunal diversity comprising large populations of raichthys progastus, S. esocinus, Schizothorax indigenous and exotic, cultivable and non- richardsonii, S. -
Volume II Detail Project Report
TRISHULI JAL VIDHYUT COMPANY LIMITED UPPER TRISHULI 3B HYDROELECTRIC PROJECT (42 MW) Powerhouse Site Volume II Detail Project Report Prepared by: Trishuli Jal Vidhyut Company Limited Sohrakhutte, Kathmandu Ph : 4363681, Fax No. 4363681, P.O Box 6464 Date: October 2013 Detail Project Report of UT3B HEP Content of Reports, Drawings and Appendix Volume 1: Executive Summary Volume 2: Detail Project Report Volume 3: Drawings ( Detail Project Report) Volume 4: Drawing of Structural Design Appendix A: Topographic Survey and Cadastral Mapping Appendix B: Hydrology Appendix C: Geological Study Appendix D: Hydraulic Design Appendix E: Rate Analysis Appendix F: Cost Estimate Appendix G: Structure Design Report Engineering Study and Design Team: S.N Name and Designation Signature 1 Er. Damodar Bhakta Shrestha (CEO) 2 Er. Bishow Kumar Shrestha (Structural Engineer) 3 Er. Sunil Basnet (Hydropower Engineer) 4 Er. Deepak Pandey (Contract Engineer) 5 Er. Rajesh Sharma (Civil Engineer) 6 Er. Kalyan Khanal (Civil Engineer) Trishuli Jal Vidhyut Company Limited Detail Project Report of UT3B HEP Table of Content Chapter 1 Introduction 1.1 Study Background ........................................................................................................................... 1-1 1.2 Previous Studies ............................................................................................................................... 1-2 1.3 Objectives and Scope of Work ..................................................................................................... -
Integrated Assessment of Extreme Events and Hydrological Responses of Indo‑Nepal Gandak River Basin
Environment, Development and Sustainability https://doi.org/10.1007/s10668-020-00986-6 Integrated assessment of extreme events and hydrological responses of Indo‑Nepal Gandak River Basin Pawan K. Chaubey1 · Prashant K. Srivastava1 · Akhilesh Gupta2 · R. K. Mall1 Received: 15 November 2019 / Accepted: 15 September 2020 © Springer Nature B.V. 2020 Abstract Changes in climate cause signifcant alterations in morphometric parameters and may lead to hydro-meteorological hazards. In this study, an attempt has been made to identify drain- age morphometric characteristics through topographic, geologic and hydrological infor- mation to assess the extreme weather events (food) over the Gandak River Basin (GRB). The standardized precipitation index (SPI) and rainfall anomaly index (RAI) were used for deducing extreme rainfall incidences derived from the Tropical Rainfall Measuring Mis- sion precipitation datasets. An assembled frequency distribution as well as trends in RAI and SPI was calculated to understand the hydro-climatological behaviour of the basin. Dur- ing the monsoon season, the years 1998, 2007, 2011, 2013 and 2017 witnessed the extreme food events. The variations in heavy and intense rainfall in short time can be linked to extreme food events, which leads to channel shifting and modifcations, can be deduced from provided asymmetric factors and sinuosity index. The results illustrated that both the monsoonal rainfall and the frequency of extreme rainfall over the basin are increasing, which could be a reason for a high severity and frequency of food events in the GRB. Keywords Flood · Standardized precipitation index (SPI) · Rainfall anomaly index (RAI) · Morphometric · Gandak basin (Indo-Nepal region) 1 Introduction The Indo-Gangetic Basin (IGB) comprises several river streams and act as an important source for freshwater resources in the Indian region. -
Learning More About the Ganga River Basin's Golden Mahseer Fish To
© John Brown Learning more about the Ganga river basin’s golden mahseer fish to better protect it India is home to 15 of the world’s approximately 47 species of mahseer, freshwater fish from the Cyprinidae family, which Read this case study also includes carp and tench.1 The name mahseer roughly Contact the WWF-India team translates as ‘mahi’ (fish) and ‘sher’ (tiger), hence it being known as the tiger of the river.2 The golden mahseer (Tor putitora) is listed as ‘endangered’ on the IUCN Red List.3 The golden mahseer is the mahseer species on which WWF-India is primarily focusing its conservation efforts, due to the species’ conservation status as well as its declining population trends. Golden mahseer typically live in fast-moving, relatively cold waters, inhabiting hill streams with a rocky and stony substrate, although they’ve also successfully adapted to Map of the Ganga river basin introduction in lakes and reservoirs. The golden mahseer is found in the Himalayan foothills, the Indus, Ganga and Brahmaputra basins as well as in the south of India. Most of India’s golden mahseer are found in Uttarakhand state, where it is the official state fish. The mahseer can grow to a large size, 1 A tiger among fish: the Ganga’s golden mahseer up to 275cm and 54kg, and can live over 17 years; due to its size, appearance and behaviour, the mahseer is particularly prized by sports fishers, and has been since the time of British rule.4 The golden mahseer’s lifecycle is intimately connected with the river’s flow: adult fish inhabit foothill rivers and migrate upstream in monsoon conditions to reach suitable spawning grounds; as such, the fish’s survival is dependent on the A view of the Kolu river near preservation of habitat connectivity and adequate flows. -
Tor Putitora) in Pakistan: a RAPD Based Study
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 16–290/2016/18–6–1181–1187 DOI: 10.17957/IJAB/15.0224 http://www.fspublishers.org Full Length Article Genetic Diversity in Different Populations of Mahseer (Tor putitora) in Pakistan: A RAPD Based Study Nuzhat Shafi1*, Javaid Ayub1, Nasra Ashraf1, Afsar Mian2 and Inayat ullah Malik3 1Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 2Bioresource Research Center, Islamabad, Pakistan 3Government College University, Faisalabad, Pakistan *For correspondence: [email protected] Abstract Random Amplified Polymorphic DNA (RAPD) based PCR amplification of nuclear DNA was carried out from collected samples of Golden mahseer (Tor putitora: Hamilton, 1822) from Rivers Poonch, Jhelum and Mangla Reservoir of Azad Jammu and Kashmir, Rivers Swat, Indus (Khyber Pukhtunkhwa) and Hingol (Baluchistan) of Pakistan. A total of 197 bands were generated by 16 RAPD primers with 87.73% polymorphic and 43.75% unique bands. Swat River’s population exhibited the highest level of polymorphism and held the highest genetic diversity (73%) followed by population of Mangla reservoir (57%), River Indus (54.31%), River Jhelum (44.67%), River Poonch (37.06%) and River Hingol (2.03%). Heterogeneity (Ht, 0.19), genetic diversity within population (Hs, 0.13), between populations (Dst, 0.05) and genetic differentiation constant (Gst, 0.022) were low. Gene flow between populations (3.22) was high. Analysis of Molecular Variance (AMOVA) ascribed higher variability (79%) within population factors. UPGMA dendrogram based on Nei’s genetic similarities and distances separated two main clusters of populations; cluster one subdivided into two; 1) were identified the populations of Poonch River, Jhelum River and Mangla Reservoir, and 2) swat River and Indus River. -
Landslide Susceptibility in Rasuwa District of Central Nepal After the 2015 Gorkha Earthquake
Journal of Nepal Geological Society, 2019, vol. 59, pp. 79–88 DOI: https://doi.org/103126/jngs.v59i0.24992 Landslide susceptibility in Rasuwa District of central Nepal after the 2015 Gorkha Earthquake *Badal Pokharel1,2 and Prem Bahadur Thapa1 1Department of Geology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal 2Himalayan Risk Research Institute, Bhaktapur, Nepal *Corresponding author: [email protected] ABSTRACT The 2015 Gorkha Earthquake (7.8 Mw) triggered several landslides in central Nepal with major damages in 14 districts. Among them, the Rasuwa district at the north of Kathmandu Valley faced severe landslides due to rugged topography, complex geology and improper landuse development. The landslides had blocked the Pasang Lhamu Highway and dammed the Trishuli River at many places. A total of 1416 landslide locations were detected in the district from high resolution satellite images in Google Earth. In this study, landslide susceptibility was modeled in the Rasuwa District by considering slope, aspect, elevation, geology, peak ground acceleration (PGA), landuse, drainage proximity and thrust proximity as the predictive factors for landslide occurrences. The landslide inventory was split into 70% and 30% portions as the training dataset and testing dataset respectively. The results from modified frequency ratio (FR) suggest that effect of geology with prediction rate 2.52 is the highest among all factors and is followed by elevation (2.38) and drainage proximity (2.12). The results were verified using area under curve (AUC) and the prediction rate was found to be 79.14%. The computed landslide susceptibility map is helpful for landuse planning and landslide risk reduction measure in the Rasuwa District.