Damage Mapping of April 2015 Nepal Earthquake Using Small

Total Page:16

File Type:pdf, Size:1020Kb

Damage Mapping of April 2015 Nepal Earthquake Using Small J-Rapid Final Workshop 21 June, 2016, Kathmandu Inventory mapping of landslides induced by the Gorkha earthquake 2015 and a proposal for hazard mapping of future landslides for making a plan of better reconstruction "Impact on infrastructure by Gorkha earthquake 2015 induced landslides" Masahiro CHIGIRA Masahiro CHIGIRA Professor, Disaster Prevention Research Institute, Professor, Disaster Prevention Research Institute, Kyoto University Kyoto University Vishnu DANGOL Vishnu DANGOL Professor, Department of Geology, Professor, Department of Geology, Tribhuvan University Tribhuvan University Objective 1. to make an inventory mapping on landslides, cracks, and landslide dams induced by the Nepal earthquake and to investigate their formative mechanisms 2. to detect displaced areas of slope surfaces, of which future susceptibility to landslides would be evaluated on the basis of geology, geomorphology, and groundwater conditions. 3. propose a methodology of hazard mapping for earthquake-induced landslides in Nepal. Members (Japan side) 1. Masahiro CHIGIRA (Kyoto Univ.) PI Applied Geology 2. Daisuke HIGAKI (Hirosaki Univ.) Landslide control 3. Hiroshi YAGI (Yamagata Univ.) Landslide susceptibility mapping 4. Akihiko WAKAI (Gunma Univ.) Geotechnical analysis of landslide 5. Hiroshi, P. SATO (Nihon Univ.) Remote sensing 6. Go, SATO (Teikyo Heisei Univ.) Geomorphology 7. Ching-Ying, TSOU (Hirosaki Univ.) GIS analysis 8. Akiyo YATAGAI (Res. Inst. Humanity and Nature) Meteorology Members (Nepali side) 1. Vishnu DANGOL (Tribhuvan Univ.) PI Applied Geology 2. Smajwal BAJRACHARYA (ICIMOD) Remote sensing 3. Shanmukhesh Chandra AMATYA (DWIDP) Hydrogeology 4. Tuk Lal ADHIKARI (ITECO-Nepal) Geotechnical Field survey • Trishuli River catchment from Trishuli to Syabrubesi (29 October to 1 November, 2015) • Sun Kosi and Bhote Kosi River catchments from Bansaghu to Kodari. (2 to 4 November, 2015) • Budhi Gandaki River catchment from Arughat to Litin (6 and 7 March, 2016) • Dauradi River catchment from Jhulunge Bajar to Barpak (7 and 8 March, 2016) Inventory mapping of landslides Inventory Complied Data Used Note Topographic classification Knickpoint ASTER GDEM Data contributed by METI and NASA Slope break AW3D DEM derived AW3D DEM of JAXA Constant Vertical Exaggeration Stereoscopic Map (CVES Map) Deep-seated landslide Deep-seated landslide Stereo-pair aerial photos Complied by Dr. Go Sato CVES Map Used for the area not covered by stereo-pair aerial photos Slope failure with scar The 2015 newly formed scar Pre-earthquake: Google Complied with the Earthquake- Earth Imagery (Dec. 12, reference inventory of the induced slope enlargement of a pre- 2014) Japan Landslide Society failure existing scar Post-earthquake: Google Earth Imagery (May. Pre-existing slope failure not enlarged by 3, 2015) & Presented as points the earthquake LANDSAT 8 satellite imagery (June 1, 2015/covering the upstream Trishuli River) Geological setting of the affected area Higher Himalaya MCT Lesser Himalaya Kathmandu Mapped landslides 6,527 new landslides 558 enlarged landeslides 5,159 (ICIMOD-NELS) Cumulative landslide frequency and the landslide size Data added to Chigira et al. (2010, Geomorphology) What type of landslides occurred? Shallow disrupted landslides in most cases No gigantic landslides like those induced by the 2009 Wenchuan earthquake Bhote Koshi catchment Rockfall 400m fall from a slope break Dadakateri From a river terrace (Kodari) Cracks Mostly have not developed after the quake Cracks on a sharp ridge in Barpak Cracks on debris slopes (Bhote Koshi catchment) Large landslides, which had been continually moving were not reactivated. Dahlan landslide Mica schist Where did they occur? Inner Inner valleys valley (valley in valley) Inner valley Landslides Inner valley development Loosening of the valley wall Rapid River incision River Incision Valley widening Loosened rock masses have been removed by the shaking Failure within a landslide body Trishuli River Steep infacing-slopes Slate, Bhote Koshi catchment Terrace scarps ghat Along a road Before the EQ Landslides & Geology Gneiss (Bhote Koshi catchment) Schist Malekhu Limestone Benighat Slate Roban phyllite Dhading Dolomite 4 km Fagfog Quartzite Pinkish phyllite Kuncha F. phyllite Number of landslides by each geological zone Occupancy ratio of landslides by each geological zone 500 400 300 200 100 0 Landslides are dominating in areas of gneiss, slate, dolomite, quartzite Rare in areas of schist, phyllite Geology & Landslides 100 150 200 250 50 0 1~5° 6~10° 11~15° 16~20° Landslide 21~25° ~ ° 26 30 Landslides 31~35° 36~40° numbers 41~45° 46~50° 51~55° 56~60° 61~65° and 100 % % 10 20 30 40 50 60 70 80 90 0 slope 1~5° 6~10° 11~15° Areal ratios of landslides of ratios Areal angles 16~20° 21~25° 26~30° 31~35° 36~40° 41~45° 46~50° 51~55° 56~60° 61~65° Subsequent rainfalls enlarged some landslide scars Large landslide bodies were not reactivated (Trishuli River) The 2015 Earthquake- induced slope failure newly formed scar enlargement of a pre-existing scar Pre-existing slope failure not enlarged by the earthquake Deep-seated landslide InSAR image to detect small displacements on the order of cm Second (after the EQ) observation Crustal deformation First (before the EQ) observation In the case of LoS shortened, Blue -> Yellow -> Red: The ground was uplifted or close to the satellite 29 http://vldb.gsi.go.jp/sokuchi/sar/index-e.html Comparing before and after the earethquake Mixture of noise and crustal displacement, But the red circle shows local surface displacement. Blue->Red->Yellow, away from the satellite In the red circle Bansaghu “Talus slope” New cracks but no development after the quake Transient adjustment of rock fragments Groundwater level was shallow but the slope was not seriously destabilized. After the quake No change was found in the red circle InSAR is very helpful to monitor displacements after an earthquake Quantitative seismic response analysis with FEM. Input waveform (near the base camp of Mt. Everest, Ev-K2-CNR Association) 7.0km 5.8km Discretized finite element meshes for the analytical area along the Trisuli River. Calculated maximum value of Calculated maximum value of shear horizontal acceleration at ground stress in surficial layer. surface. Landslides occurred on slopes with amplified acceleration and/or mobilized shear stress Annual precipitation and landslides 1000 2000 3000 0 1 for Daily precipitationand accumulated 12 23 2015 mean 34 45 1 Jan 56 67 Pokhara 78 89 100 a Pokhar 111 2015_accum mean_accum 122 – 133 a Simar 30 144 155 Kathmandu 166 177 2015 July, 188 a Okhaldhung 199 210 1000 500 0 1 12 2008 23 2015 mean - 2014 (7years) 34 45 56 67 Kathmandu 1000 200 400 600 800 78 0 89 1 100 mean 12 111 2015_accum mean_accum 23 122 34 133 45 144 mean_accum 155 56 Okhaldhunga 67 166 177 78 89 188 100 199 111 210 2015 122 133 144 155 2015_accum 166 177 188 199 210 Antecedent rainfall amounts Noto Hanto Chuetsu-oki Mid-Niigata 150 Gorkha earthquake 10 days before the quake Proposal of the methodology for the Hazard mapping of earthquake-induced landslides on the basis of Slope angles Inner valleys, infacing slopes, and terrace edges and Geology Mapped landslides 6527 new landslides 558 enlarged landeslides Slope angles Slope (35 – 45deg) Slope (35 – 45deg)+Inner Valley Slope (35 – 45deg)+Inner Valley+Carbonate Slope (35 – 45deg)+Inner Valley+Carbonate +Landslides Other carbonates, sandstone, gneiss, slate, terraces, infacing slopes are not shown Conclusions • Landslides induced by the 2015 Gorkha earthquake were mostly shallow disrupted landslides. • Landslide dams hardly caused serious threats • Landslides occurred mostly on steep slopes in inner valleys, on geologically controlled steep slopes like infacing slopes, and on terrace edges • Earthquake shaking was amplified on convex slope breaks on steep slopes • Most susceptible rocks to landslide were carbonate, sandstone, gneiss and slate, while phyllite may be not • Some earthquake-induced landslides were enlarged by subsequent rainfalls • Earthquake-induced cracks have not always developed by subsequent rainfalls • Deep-seated large landslide bodies were hardly reactivated • The effects of rainfalls before the earthquake were not clearly identified, but landslides would be much more when the earthquake occurred during a rainy season • We propose hazard mapping of earthquake-induced landslides on the basis of topographic features and geology Impact on Infrastructure by Gorkha Earthquake 2015 Induced Landslides D. Pathak1,3, S. R. Bajracharya1,2 and V. Dangol1,3 1 Tribhuvan University; 2 ICIMOD, and 3Nepal Landslide Society Background • The 7.6 (ML) magnitude Gorkha Earthquake of 25 April, 2015 followed by numerous aftershocks has affected 31 affected districts, among which the impact was quite serious in 17 districts. • This presentation describes some damages to infrastructure like road, bridge, hydropower, settlements due to earthquake induced landslides. • The work was carried out through the use of satellite imageries and field visits at selected sites by Nepal Landslide Society for ICIMOD. Study districts Damage to road from earthquake induced landslide in Dhading after earthquake before earthquake The earthquake triggered old landslide Landslide triggered by earthquake at the bend in Pasang Lhamu highway, Rasuwa after earthquake before earthquake Damaged Road Sections due to the EQ induced landslides Road Name Damaged length, m Araniko Highway 11,336.60 Pasang Lhamu Highway 4,944.00 Chanaute-Barpak 3,713.70 Mailung Bazar Road 3,282.40 Chaku to inner village 2,736.60 Chaku Khola HPP Access Road 2,064.80 Lamusangu-Ramechhap Highway 1,741.70 Charikot-Lamabagar Road 1,366.90 Singati-Bigu Road 1,189.80 BP Highway 899.00 Listi Road 894.40 Melamchi-Helmbu Road 744.50 Bhirkot-Hanwa Road 741.00 Besisahar-Chame Road 516.30 Dolalghat-Chautara Road 435.40 Namdu-Jugu Road 329.80 Bhitkot-Jhule Road 200.40 Helambu Road 170.10 Barpak-Gumda Road 157.20 Balephi-Jalbire Road 64.30 Gorkha-Ghyampesal Road 64.20 Busti-Mirge Road 34.70 Sipring HP Access Road 455.60 Mid Bhotekoshi Access Road Camp Area 90.70 Upper Hadi HPP Access Road 26.10 Total road damaged: 38 km Araniko Highway: 11.3 km.
Recommended publications
  • Situation Analysis Nepal Earthquake
    Situation Analysis OSOCC Nepal Earthquake Assessment Cell 05.05.2015 SITUATION OVERVIEW The earthquake from 25 April (7.8 magnitude) was followed by a series of aftershocks up to a magnitude of 6.7, mostly to the east of the original epicentre causing further localised damage. As of 4 May, 7,365 people have been killed and more than 14,300 injured. 39 of Nepal’s 75 districts have been affected. Access to remote areas remains a challenge. Initial reports were that up to 90 per cent of the houses in Gorkha and Sindhupalchok districts have been destroyed. UNDAC has established humanitarian hubs in Gorkha and Sindhupalchok. Most affected districts (4 May 2015) Based on estimates of damaged buildings. Analysis using data from: Multi-National Military and Coordination Centre, Ministry of Home Affairs, National Population Census (2011) Priorities for humanitarian intervention (based on consolidated secondary data): Shelter: tarpaulins, tents, blankets, repair tools and other NFIs Food delivery WASH: water supply, sanitation Health: facilities, medicine Access to remote areas Ensuring equitable distribution of relief items Rubble removal CRISIS IMPACT According to the government, the worst affected districts are Bhaktapur, Dhading, Dolakha, Gorkha, Kathmandu, Lalitpur, Lamjung, Rasuwa, Ramechhap, Nuwakot, Sindhupalchok, Makawanpur, and Sindhuli (LCT 02/05/2015). Currently available information indicates that Sindhupalchok, Gorkha and Dhading are the priority districts for assistance. Although Rasuwa has a relatively small population, it is difficult to access and current information indiactesover 80% of the population are affected. While the relief effort is now reaching beyond Kathmandu, access to remote areas remains a key challenge (LCT 02/05/2015).
    [Show full text]
  • All Change at Rasuwa Garhi Sam Cowan [email protected]
    Himalaya, the Journal of the Association for Nepal and Himalayan Studies Volume 33 | Number 1 Article 14 Fall 2013 All Change at Rasuwa Garhi Sam Cowan [email protected] Follow this and additional works at: http://digitalcommons.macalester.edu/himalaya Recommended Citation Cowan, Sam (2013) "All Change at Rasuwa Garhi," Himalaya, the Journal of the Association for Nepal and Himalayan Studies: Vol. 33: No. 1, Article 14. Available at: http://digitalcommons.macalester.edu/himalaya/vol33/iss1/14 This Research Report is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in Himalaya, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Research Report | All Change at Rasuwa Garhi Sam Cowan From time immemorial, pilgrims, traders, artisans, and Kyirong to aid the transshipment of goods and to carry religious teachers going to Lhasa from Kathmandu had to out major trading on their own account. Jest records that decide between two main routes. One roughly followed as late as 1959 there were forty five Newar households in the line of the present road to Kodari, crossed the border Kyirong and forty in Kuti (Jest 1993). where Friendship Bridge is built and followed a steep trail The two routes were used for the invasion of Tibet in 1788 to Kuti (Tib. Nyalam). Loads were carried by porters up to and 1791 by the forces of the recently formed Gorkha this point but pack animals were used for the rest of the state under the direction of Bahadur Shah, which led to journey.
    [Show full text]
  • Lemthang Tsho Glacial Lake Outburst Flood (GLOF)
    Gurung et al. Geoenvironmental Disasters (2017) 4:17 Geoenvironmental Disasters DOI 10.1186/s40677-017-0080-2 RESEARCH Open Access Lemthang Tsho glacial Lake outburst flood (GLOF) in Bhutan: cause and impact Deo Raj Gurung1*, Narendra Raj Khanal1,2, Samjwal Ratna Bajracharya1, Karma Tsering3, Sharad Joshi1, Phuntsho Tshering3,4, Lalit Kumar Chhetri4, Yeshey Lotay5 and Tashi Penjor6 Abstract Background: The Hindu Kush Himalayan (HKH) region being seismically active and sensitive to climate change is prone to glacial lake outburst flood (GLOF). The Lemthang Tsho GLOF breached in the evening of 28 July 2015 innorth-western Bhutan is reminds of the looming threat, and stresses the need to have good risk management plan. The need to understand the physical processes in generating GLOF to is therefore imperative in order to effectively manage the associated risk. The paper therefore assesses the cause and impact of the Lemthang Tsho GLOF event using field and remote sensing data. Results: The collapse of near vertical wall of supraglacial lake triggered by 2 days of incessant rainfall, opened up the englacial conduit resulting in emptying of interconnected supraglacial lakes into Lemthang Tsho. The5.1 magnitude earthquake epicentered 187 km to southeast in the Indian state of Assam in the morning (7:10 am Bhutan Standard Time) of the same day is unlikely to have played any role in triggering the event. The estimated volume of water unleased is 0.37 million m3, with peak discharge estimated to be ranging from 1253 to 1562 m3/s, and velocity of 7.14–7.57 m/s. The impact was minimal and confined up to 30 km downstream from the lake.
    [Show full text]
  • Nepal Human Rights Year Book 2021 (ENGLISH EDITION) (This Report Covers the Period - January to December 2020)
    Nepal Human Rights Year Book 2021 (ENGLISH EDITION) (This Report Covers the Period - January to December 2020) Editor-In-Chief Shree Ram Bajagain Editor Aarya Adhikari Editorial Team Govinda Prasad Tripathee Ramesh Prasad Timalsina Data Analyst Anuj KC Cover/Graphic Designer Gita Mali For Human Rights and Social Justice Informal Sector Service Centre (INSEC) Nagarjun Municipality-10, Syuchatar, Kathmandu POBox : 2726, Kathmandu, Nepal Tel: +977-1-5218770 Fax:+977-1-5218251 E-mail: [email protected] Website: www.insec.org.np; www.inseconline.org All materials published in this book may be used with due acknowledgement. First Edition 1000 Copies February 19, 2021 © Informal Sector Service Centre (INSEC) ISBN: 978-9937-9239-5-8 Printed at Dream Graphic Press Kathmandu Contents Acknowledgement Acronyms and Abbreviations Foreword CHAPTERS Chapter 1 Situation of Human Rights in 2020: Overall Assessment Accountability Towards Commitment 1 Review of the Social and Political Issues Raised in the Last 29 Years of Nepal Human Rights Year Book 25 Chapter 2 State and Human Rights Chapter 2.1 Judiciary 37 Chapter 2.2 Executive 47 Chapter 2.3 Legislature 57 Chapter 3 Study Report 3.1 Status of Implementation of the Labor Act at Tea Gardens of Province 1 69 3.2 Witchcraft, an Evil Practice: Continuation of Violence against Women 73 3.3 Natural Disasters in Sindhupalchok and Their Effects on Economic and Social Rights 78 3.4 Problems and Challenges of Sugarcane Farmers 82 3.5 Child Marriage and Violations of Child Rights in Karnali Province 88 36 Socio-economic
    [Show full text]
  • Article of a Given In- with Postdepositional Erosion
    Earth Surf. Dynam., 8, 769–787, 2020 https://doi.org/10.5194/esurf-8-769-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas Marius L. Huber1,a, Maarten Lupker1, Sean F. Gallen2, Marcus Christl3, and Ananta P. Gajurel4 1Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich 8092, Switzerland 2Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523, USA 3Laboratory of Ion Beam Physics (LIP), Department of Physics, ETH Zurich, Zurich 8093, Switzerland 4Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal acurrent address: Université de Lorraine, CNRS, CRPG, 54000 Nancy, France Correspondence: Marius L. Huber ([email protected]) Received: 28 February 2020 – Discussion started: 20 March 2020 Revised: 21 July 2020 – Accepted: 11 August 2020 – Published: 22 September 2020 Abstract. Large boulders, ca. 10 m in diameter or more, commonly linger in Himalayan river channels. In many cases, their lithology is consistent with source areas located more than 10 km upstream, suggesting long trans- port distances. The mechanisms and timing of “exotic” boulder emplacement are poorly constrained, but their presence hints at processes that are relevant for landscape evolution and geohazard assessments in mountainous regions. We surveyed river reaches of the Trishuli and Sunkoshi, two trans-Himalayan rivers in central Nepal, to improve our understanding of the processes responsible for exotic boulder transport and the timing of em- placement. Boulder size and channel hydraulic geometry were used to constrain paleo-flood discharge assuming turbulent, Newtonian fluid flow conditions, and boulder exposure ages were determined using cosmogenic nu- clide exposure dating.
    [Show full text]
  • Outburst Floods from Moraine-Dammed Lakes in the Himalayas
    Outburst floods from moraine-dammed lakes in the Himalayas Detection, frequency, and hazard Georg Veh Cumulative dissertation submitted for obtaining the degree “Doctor of Natural Sciences” (Dr. rer. nat.) in the research discipline Natural Hazards Institute of Environmental Science and Geography Faculty of Science University of Potsdam submitted on March 26, 2019 defended on August 12, 2019 First supervisor: PD Dr. Ariane Walz Second supervisor: Prof. Oliver Korup, PhD First reviewer: PD Dr. Ariane Walz Second reviewer: Prof. Oliver Korup, PhD Independent reviewer: Prof. Dr. Wilfried Haeberli Published online at the Institutional Repository of the University of Potsdam: https://doi.org/10.25932/publishup-43607 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-436071 Declaration of Authorship I, Georg Veh, declare that this thesis entitled “Outburst floods from moraine-dammed lakes in the Himalayas: Detection, frequency, and hazard” and the work presented in it are my own. I confirm that: This work was done completely or mainly while in candidature for a research degree at the University of Potsdam. Where any part of this dissertation has previously been submitted for a degree or any other qualification at the University of Potsdam, or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.
    [Show full text]
  • Study on Kodari Scheme of Rikaze-Kathmandu Railway
    2017 2nd International Conference on Sustainable Energy and Environment Protection (ICSEEP 2017) ISBN: 978-1-60595-464-6 Study on Kodari Scheme of Rikaze-Kathmandu Railway Location Yaoping ZHANG1,a 1Institute of Vacuum Tube Transport, Xijing University, Xi’an 710123, China a [email protected] Keywords: Rikaze, Kathmandu, Railway location, Rack rail, Linear motor, Himalaya tunnel Abstract: Building Rikaze-Kathmandu Railway will change the broken road situation of Lasa-Rikaze Railway, activate the potential of Qingzang Railway, have Tibet as well as Lasa and Rikaze become the node of south Asia channel of “One Belt and One Road”, strengthen commercial trade and bilateral relations between China and Nepal. It is the shortest route for Rikaze-Kathmandu railway to go through Zhangmu port. By primary analysis, the feasible route should extend from the current Rikaze railway station, going through Qumei county, entering into the current G318 highway belt, then going through Jiding, Liuxiang and Resa, arriving Lazi. The route extends from Lazi, then goes through Jiacuola mountain by tunnel with 45km length, going through Jiacuo county and arriving Dingri. After Dingri, the route extends to west along with Pengqu river valley, going through Zhaguo, then arriving Gangga. Extending to southwest from Gangga, the route goes under Labujikang peak by a 42km tunnel, then arriving Yalai, then Nielamu and Zhangmu. The nature gradient between Nielamu and Zhangmu is 110‰, line mileage 20km, thus the rack rail technology or the linear motor driving should be considered for train to climb the steep slope more than 110‰. Another possible scheme is to build an 88km tunnel with a 28‰ gradient between Gangga and Zhangmu for going under Himalaya, so as to avoid the 110‰ steep slope between Nielamu-Zhangmu.
    [Show full text]
  • 2.3 Nepal Road Network
    2.3 Nepal Road Network Overview Primary Roads in Nepal Major Road Construction Projects Distance Matrix Road Security Weighbridges and Axle Load Limits Road Class and Surface Conditions Province 1 Province 2 Bagmati Province Gandaki Province Province 5 Karnali Province Sudurpashchim Province Overview Roads are the predominant mode of transport in Nepal. Road network of Nepal is categorized into the strategic road network (SRN), which comprises of highways and feeder roads, and the local road network (LRN), comprising of district roads and Urban roads. Nepal’s road network consists of about 64,500 km of roads. Of these, about 13,500 km belong to the SRN, the core network of national highways and feeder roads connecting district headquarters. (Picture : Nepal Road Standard 2070) The network density is low, at 14 kms per 100 km2 and 0.9 km per 1,000 people. 60% of the road network is concentrated in the lowland (Terai) areas. A Department of Roads (DoR’s) survey shows that 50% of the population of the hill areas still must walk two hours to reach an SRN road. Two of the 77 district headquarters, namely Humla, and Dolpa are yet to be connected to the SRN. Page 1 (Source: Sector Assessment [Summary]: Road Transport) Primary Roads in Nepal S. Rd. Name of Highway Length Node Feature Remarks N. Ref. (km) No. Start Point End Point 1 H01 Mahendra Highway 1027.67 Mechi Bridge, Jhapa Gadda chowki Border, East to West of Country Border Kanchanpur 2 H02 Tribhuvan Highway 159.66 Tribhuvan Statue, Sirsiya Bridge, Birgunj Connects biggest Customs to Capital Tripureshwor Border 3 H03 Arniko Highway 112.83 Maitighar Junction, KTM Friendship Bridge, Connects Chinese border to Capital Kodari Border 4 H04 Prithvi Highway 173.43 Naubise (TRP) Prithvi Chowk, Pokhara Connects Province 3 to Province 4 5 H05 Narayanghat - Mugling 36.16 Pulchowk, Naryanghat Mugling Naryanghat to Mugling Highway (PRM) 6 H06 Dhulikhel Sindhuli 198 Bhittamod border, Dhulikhel (ARM) 135.94 Km.
    [Show full text]
  • 49215-001: Earthquake Emergency Assistance Project
    Environmental Assessment Document Initial Environmental Examination Loan: 3260 July 2017 Earthquake Emergency Assistance Project: Panchkhal-Melamchi Road Project Main report-I Prepared by the Government of Nepal The Environmental Assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Government of Nepal Ministry of Physical Infrastructure and Transport Department of Roads Project Directorate (ADB) Earthquake Emergency Assistance Project (EEAP) (ADB LOAN No. 3260-NEP) INITIAL ENVIRONMENTAL EXAMINATION OF PANCHKHAL - MELAMCHI ROAD JUNE 2017 Prepared by MMM Group Limited Canada in association with ITECO Nepal (P) Ltd, Total Management Services Nepal and Material Test Pvt Ltd. for Department of Roads, Ministry of Physical Infrastructure and Transport for the Asian Development Bank. Earthquake Emergency Assistance Project (EEAP) ABBREVIATIONS AADT Average Annual Daily Traffic AC Asphalt Concrete ADB Asian Development Bank ADT Average Daily Traffic AP Affected People BOD Biological Oxygen Demand CBOs Community Based Organization CBS Central Bureau of Statistics CFUG Community Forest User Group CITIES Convention on International Trade in Endangered Species CO Carbon Monoxide COI Corridor of Impact DBST Double Bituminous Surface Treatment DDC District Development Committee DFID Department for International Development, UK DG Diesel Generating DHM Department of Hydrology and Metrology DNPWC Department of National
    [Show full text]
  • The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey
    ORIGINAL RESEARCH published: 22 June 2015 doi: 10.3389/fbuil.2015.00008 The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey Katsuichiro Goda1*, Takashi Kiyota2, Rama Mohan Pokhrel2, Gabriele Chiaro2, Toshihiko Katagiri 2, Keshab Sharma3 and Sean Wilkinson4 1 Department of Civil Engineering, University of Bristol, Bristol, UK, 2 Institute of Industrial Science, University of Tokyo, Tokyo, Japan, 3 Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, 4 School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6–11 days after the mainshock. To gain deeper understanding of the observed earthquake damage Edited by: in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal Solomon Tesfamariam, The University of British Columbia, and analyzes available aftershock data and ground motion data. The earthquake damage Canada observations indicate that the majority of the damaged buildings were stone/brick masonry Reviewed by: structures with no seismic detailing, whereas the most of RC buildings were undamaged. Vladimir Sokolov, Karlsruhe Institute of Technology, This indicates that adequate structural design is the key to reduce the earthquake risk in Germany Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged Takeshi Koike, photos and observation comments) are organized using Google Earth and the kmz file Kyoto University, Japan is made publicly available.
    [Show full text]
  • Nepal Earthquake Situation Update (12 May 2015)
    Nepal Earthquake Situation Update (12 May 2015) LOCATION: Kathmandu, Nepal DATE: 12 May 2015 Situation Update An earthquake registering 7.3 magnitude struck today (12 May) at 12:50 local time (UTC +5:45). The epicentre was southeast of Kodari (Sindhupalchowk District), 76 km northeast of Kathmandu – an area already affected by the 25 April quake. Additional aftershocks ranging from 5.0-7.3 magnitude have occurred afterwards within 35 km of Kodari and a 6.3 magnitude one with the epicentre in Ramechhap District. Landslides were reported in Langtang Region in the Himalayas. The area affected by the earthquake is prone to landslides which may further blocking roads and making transport difficult. Kathmandu International Airport (KTM) suspended operations immediately after the earthquake to assess the status of the tarmac. At 15:05 Nepal local time air operations resumed as normal. As soon as KTM airport re-opened, a UNHAS helicopter took off to the affected area with an assessment team to evaluate the impact of the earthquake. Phone lines in Kathmandu are congested but functioning. Road access constraints In Sindhupalchok, the road from Chautara to Dolalghat (and onwards to Kathmandu) has been reported open. Blockages were reported between Dolalghat to Charikot. Assessments are on-going. The DfID/ GIZ Risk Management Office provided an update on the three road access constraints below: o The Banepa Bardibas (B.P.) Koirala Highway, connecting Bardibas, Mahottari to Banepa, Kavre district – Kathmandu. The road is reported to be fractured in the Sindhuli-Nepalthok section of the road (54 km). Debris is also reported from landslide in different places of the road section.
    [Show full text]
  • Volume II Detail Project Report
    TRISHULI JAL VIDHYUT COMPANY LIMITED UPPER TRISHULI 3B HYDROELECTRIC PROJECT (42 MW) Powerhouse Site Volume II Detail Project Report Prepared by: Trishuli Jal Vidhyut Company Limited Sohrakhutte, Kathmandu Ph : 4363681, Fax No. 4363681, P.O Box 6464 Date: October 2013 Detail Project Report of UT3B HEP Content of Reports, Drawings and Appendix Volume 1: Executive Summary Volume 2: Detail Project Report Volume 3: Drawings ( Detail Project Report) Volume 4: Drawing of Structural Design Appendix A: Topographic Survey and Cadastral Mapping Appendix B: Hydrology Appendix C: Geological Study Appendix D: Hydraulic Design Appendix E: Rate Analysis Appendix F: Cost Estimate Appendix G: Structure Design Report Engineering Study and Design Team: S.N Name and Designation Signature 1 Er. Damodar Bhakta Shrestha (CEO) 2 Er. Bishow Kumar Shrestha (Structural Engineer) 3 Er. Sunil Basnet (Hydropower Engineer) 4 Er. Deepak Pandey (Contract Engineer) 5 Er. Rajesh Sharma (Civil Engineer) 6 Er. Kalyan Khanal (Civil Engineer) Trishuli Jal Vidhyut Company Limited Detail Project Report of UT3B HEP Table of Content Chapter 1 Introduction 1.1 Study Background ........................................................................................................................... 1-1 1.2 Previous Studies ............................................................................................................................... 1-2 1.3 Objectives and Scope of Work .....................................................................................................
    [Show full text]