Orc4 Spatiotemporally Stabilizes Centromeric Chromatin

Total Page:16

File Type:pdf, Size:1020Kb

Orc4 Spatiotemporally Stabilizes Centromeric Chromatin bioRxiv preprint doi: https://doi.org/10.1101/465880; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Orc4 spatiotemporally stabilizes centromeric chromatin 2 3 4 Lakshmi Sreekumar1, Kiran Kumari2,3,4, Asif Bakshi1, Neha Varshney1, Bhagya C. Thimmappa1, 5 Krishnendu Guin1, Leelavati Narlikar5, Ranjith Padinhateeri2, Rahul Siddharthan6, Kaustuv Sanyal1 6 7 1Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 8 Bangalore, India; 2Department of Biosciences and Bioengineering, Indian Institute of Technology, 9 Bombay, Mumbai, India; 3IITB-Monash Research Academy, Mumbai, India; 4Department of 10 Chemical Engineering, Monash University, Melbourne, Australia 5Department of Chemical 11 Engineering, CSIR-National Chemical Laboratory, Pune, India; 6The Institute of Mathematical 12 Sciences/HBNI, Taramani, Chennai, India 13 14 15 *corresponding author 16 Kaustuv Sanyal 17 Molecular Biology & Genetics Unit 18 Jawaharlal Nehru Centre for Advanced Scientific Research 19 Jakkur, Bangalore - 560064 20 India 21 Email: [email protected] 22 Telephone : +91-80-2208 2878 23 Fax : +91-80-2208 2766 24 Homepage: http://www.jncasr.ac.in/sanyal 25 26 27 Present address: Asif Bakshi, Laboratory of Drosophila Neural Development, Centre for DNA 28 Fingerprinting and Diagnostics, Inner Ring Road, Uppal, Hyderabad 500039, India 29 Bhagya C. Thimmappa, Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics 30 and Genomics, University of Montreal, 2900 Edouard-Montpetit, Montreal, H3T1J4, QC, Canada 31 32 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/465880; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract (150 words) 2 Spatiotemporal regulation in DNA replication maintains kinetochore stability. The epigenetically 3 regulated centromeres (CENs) in the budding yeast Candida albicans have unique DNA sequences, 4 replicate early and are clustered throughout the cell cycle. In this study, the genome-wide occupancy 5 of replication initiation protein Orc4 reveals its abundance at all CENs in C. albicans. Orc4 associates 6 with four different DNA motifs, one of which coincides with tRNA genes. Hi-C combined with 7 genome-wide replication timing analyses identify enriched interactions among early or late replicating 8 Orc4-bound regions. A simulated polymer model of chromosomes reveals that early replicating and 9 strongly enriched Orc4-bound sites localize towards the kinetochores. Orc4 is constitutively localized 10 to CENs, and both Orc4 and Mcm2 stabilize CENPA. CENPA chaperone Scm3 localizes at the 11 kinetochore during anaphase, coinciding with the loading time of CENPA. We propose that this 12 spatiotemporal nuclear localization of Orc4, with Mcm2 and Scm3, recruits CENPA and stabilizes 13 centromeric chromatin. 14 15 16 17 18 19 20 21 22 23 24 25 26 2 bioRxiv preprint doi: https://doi.org/10.1101/465880; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Introduction 2 The timely duplication of the genetic material and faithful chromosome segregation maintains 3 genome stability. In eukaryotes, the origin recognition complex (ORC) comprising of Orc1-6 along 4 with Cdc6, Cdt1 and the minichromosome maintenance complex (Mcm2-7) initiate DNA replication 5 at multiple discrete sites on a chromosome that serve as DNA replication origins (Leonard and 6 Mechali 2013). ORC recognizes its cognate binding sites in a species-specific manner - an AT-rich 7 consensus sequence in the budding yeast Saccharomyces cerevisiae (Wyrick, Aparicio et al. 2001) to 8 AT-rich asymmetric sequences in the fission yeast Schizosaccharomyces pombe (Chuang and Kelly 9 1999) while its binding is non-specific to any DNA sequence in humans (Vashee, Cvetic et al. 2003). 10 The robust programing of the time of firing of replication origins during S phase is required to ensure 11 the availability of the limiting concentration of replication initiation factors (Aparicio 2013). Genomic 12 regions that replicate early during S phase have a higher propensity to attract ORC and are more 13 efficient in origin firing, whereas late replicating regions appear to be more stochastic contributing to 14 inefficient initiation events (Mesner, Valsakumar et al. 2011). The spatial organization of 15 chromosomes within the nucleus also favors the accessibility of initiation factors to complete DNA 16 replication in a timely manner (Aparicio 2013). Chromosome conformation capture (3C) analysis has 17 revealed higher interaction frequencies between early origins in S. cerevisiae (Duan, Andronescu et 18 al. 2010). Evidently, understanding the topology of the three-dimensional (3D) genome and the 19 factors that spatiotemporally regulate the chromosomal architecture is necessary to explain how the 20 genome is organized into various functional domains. 21 The faithful segregation of the duplicated genome is facilitated by centromeres (CENs) which act as 22 the binding platform for kinetochore proteins. In most eukaryotes, CENs are specified by a CEN- 23 specific histone H3 variant, CENPA through epigenetic mechanisms, where the underlying DNA 24 sequence appears dispensable for CEN establishment (Malik and Henikoff 2009). The epigenetic 25 specification of CENs in most eukaryotes is evident as CEN DNA are the most rapidly evolving loci 26 of the genome (Malik and Henikoff 2009). The targeted loading of CENPA is temporally separated 27 from bulk H3 chromatin assembly in the cell cycle and is mediated by the specific chaperone Holliday 28 junction recognition protein (HJURP) (Kato, Sato et al. 2007) and its analogs in various species. The 29 yeast homolog Scm3 loads CENPA during S phase in S. cerevisiae (Williams, Hayashi et al. 2009), 30 whereas in S. pombe CENPA loading occurs during G2 (Shukla, Tong et al. 2018). The functional 31 homolog of HJURP in Drosophila, CAL1 loads CENPA during late telophase (Dunleavy, Beier et al. 32 2012). In humans, the G1 loading of CENPA by HJURP (Foltz, Jansen et al. 2009) is regulated by the 33 Mis18 complex (Barnhart-Dailey, Trivedi et al. 2017). In S. pombe, RNAi and heterochromatin are 34 required for CEN establishment (Folco, Pidoux et al. 2008). Unlike metazoa, most fungi have early 35 replicating CENs (Raghuraman, Winzeler et al. 2001, Kim, Dubey et al. 2003, Koren, Tsai et al. 3 bioRxiv preprint doi: https://doi.org/10.1101/465880; this version posted September 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2010). Vertebrate CENs replicate between mid-late S phase (Ten Hagen, Gilbert et al. 1990). CENPA 2 nucleosome disruption following DNA replication transiently creates gaps or nucleosome-free regions 3 which have to be reassembled for CEN propagation. The placeholder model proposes that the gaps 4 generated upon parental CENPA eviction are occupied by placeholder molecules like H3 in S. pombe 5 (Shukla, Tong et al. 2018) and H3.3 in Drosophila (Dunleavy, Almouzni et al. 2011). Hence, CENPA 6 replenishment by its replication-independent loading is necessary for its maintenance. 7 Once established, CENPA chromatin can epigenetically self-propagate through multiple cell 8 divisions, best studied in the case of ectopic or neocentromere activation at non-centromeric loci upon 9 native CEN inactivation (Warburton 2004). However, mechanisms contributing to maintenance of 10 centromeric chromatin is relatively unclear. Growing evidence suggests a role of replication initiation 11 proteins in CEN function (Natsume, Muller et al. 2013). Fungal CENs replicate early in S phase 12 (Pohl, Brewer et al. 2012) to maintain kinetochore integrity and pericentromeric cohesion (Kitamura, 13 Tanaka et al. 2007, Natsume, Muller et al. 2013). In humans, Orc2 localizes to CENs (Prasanth, 14 Prasanth et al. 2004), and HJURP along with Mcm2 is required for CENPA inheritance during S 15 phase (Zasadzinska, Huang et al. 2018). In vitro experiments suggest that Mcm2 and Asf1 16 cochaperone dimers of H4 with both the canonical and variant forms of H3 through its histone- 17 binding mode (Huang, Stromme et al. 2015, Richet, Liu et al. 2015). Recently, DNA replication has 18 been implicated to remove ectopically loaded non-centromeric CENPA for the precise reloading of 19 centromeric CENPA during G1 in humans (Nechemia-Arbely, Miga et al. 2019). Also, replication 20 fork termination seen at CEN promotes CEN DNA loop formation which is ultimately required for 21 kinetochore assembly (Cook, Bennett et al. 2018). Hence, there is an implicit crosstalk of replication 22 initiation proteins for CEN function. 23 In yeast, CENs of all chromosomes cluster close to the spindle pole body (SPB) embedded into the 24 nuclear membrane and establish inter-chromosomal
Recommended publications
  • How Shelterin Protects Mammalian Telomeres 303 ANRV361-GE42-15 ARI 3 October 2008 10:10 (See 3' 5' TRF2 S Mplex
    ANRV361-GE42-15 ARI 3 October 2008 10:10 ANNUAL How Shelterin Protects REVIEWS Further Click here for quick links to Annual Reviews content online, Mammalian Telomeres including: • Other articles in this volume 1 • Top cited articles Wilhelm Palm and Titia de Lange • Top downloaded articles • Our comprehensive search Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021; email: [email protected] 1Current address: Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Annu. Rev. Genet. 2008. 42:301–34 Key Words First published online as a Review in Advance on ATM, ATR, cancer, NHEJ, HR August 4, 2008 by Rockefeller University on 10/13/09. For personal use only. The Annual Review of Genetics is online at Abstract genet.annualreviews.org The genomes of prokaryotes and eukaryotic organelles are usually cir- This article’s doi: cular as are most plasmids and viral genomes. In contrast, the nuclear Annu. Rev. Genet. 2008.42:301-334. Downloaded from arjournals.annualreviews.org 10.1146/annurev.genet.41.110306.130350 genomes of eukaryotes are organized on linear chromosomes, which Copyright c 2008 by Annual Reviews. require mechanisms to protect and replicate DNA ends. Eukaryotes All rights reserved navigate these problemswith the advent of telomeres, protective nucle- 0066-4197/08/1201-0301$20.00 oprotein complexes at the ends of linear chromosomes, and telomerase, the enzyme that maintains the DNA in these structures. Mammalian telomeres contain a specific protein complex, shelterin, that functions to protect chromosome ends from all aspects of the DNA damage re- sponse and regulates telomere maintenance by telomerase.
    [Show full text]
  • Signature of Progression and Negative Outcome in Colorectal Cancer
    Oncogene (2010) 29, 876–887 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE A ‘DNA replication’ signature of progression and negative outcome in colorectal cancer M-J Pillaire1,7, J Selves2,7, K Gordien2, P-A Gouraud3, C Gentil3, M Danjoux2,CDo3, V Negre4, A Bieth1, R Guimbaud2, D Trouche5, P Pasero6,MMe´chali6, J-S Hoffmann1 and C Cazaux1 1Genetic Instability and Cancer Group, Department Biology of Cancer, Institute of Pharmacology and Structural Biology, UMR5089 CNRS, University of Toulouse, University Paul Sabatier, Toulouse, France; 2INSERM U563, Federation of Digestive Cancerology and Department of Anatomo-pathology, University of Toulouse, University Paul Sabatier, Toulouse, France; 3Service of Epidemiology, INSERM U558, Faculty of Medicine, University of Toulouse, University Paul Sabatier, Alle´es Jules Guesde, Toulouse, France; 4aCGH GSO Canceropole Platform, INSERM U868, Val d’Aurelle, Montpellier, France; 5Laboratory of Cellular and Molecular Biology of Cell Proliferation Control, UMR 5099 CNRS, University of Toulouse, University Paul Sabatier, Toulouse, France and 6Institute of Human Genetics UPR1142 CNRS, Montpellier, France Colorectal cancer is one of the most frequent cancers Introduction worldwide. As the tumor-node-metastasis (TNM) staging classification does not allow to predict the survival of DNA replication in normal cells is regulated by an patients in many cases, additional prognostic factors are ‘origin licensing’ mechanism that ensures that it occurs needed to better forecast their outcome. Genes involved in just once per cycle. Once cells enter the S-phase, the DNA replication may represent an underexplored source stability of DNA replication forks must be preserved to of such prognostic markers.
    [Show full text]
  • Crosstalk Between Repair Pathways Elicits Double-Strand Breaks In
    RESEARCH ARTICLE Crosstalk between repair pathways elicits double-strand breaks in alkylated DNA and implications for the action of temozolomide Robert P Fuchs1†*, Asako Isogawa2, Joao A Paulo3, Kazumitsu Onizuka4, Tatsuro Takahashi5, Ravindra Amunugama1, Julien P Duxin1‡, Shingo Fujii2 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States; 2Cancer Research Center of Marseille, UMR7258, CNRS, Marseille, France; 3Department of Cell Biology, Harvard Medical School, Boston, United States; 4Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan; 5Faculty of Science, Kyushu University, Fukuoka, Japan Abstract Temozolomide (TMZ), a DNA methylating agent, is the primary chemotherapeutic drug used in glioblastoma treatment. TMZ induces mostly N-alkylation adducts (N7-methylguanine and N3-methyladenine) and some O6-methylguanine (O6mG) adducts. Current models propose that *For correspondence: during DNA replication, thymine is incorporated across from O6mG, promoting a futile cycle of [email protected] mismatch repair (MMR) that leads to DNA double-strand breaks (DSBs). To revisit the mechanism † Present address: Marseille of O6mG processing, we reacted plasmid DNA with N-methyl-N-nitrosourea (MNU), a Medical Genetics, UMR1251, temozolomide mimic, and incubated it in Xenopus egg-derived extracts. We have shown that in this ‡ Marseille, France; The Novo system, MMR proteins are enriched on MNU-treated DNA and we observed robust, MMR- Nordisk Foundation Center for dependent, repair synthesis. Our evidence also suggests that MMR, initiated at O6mG:C sites, is Protein Research, University of strongly stimulated in cis by repair processing of other lesions, such as N-alkylation adducts. Copenhagen, Copenhagen, Denmark Importantly, MNU-treated plasmids display DSBs in extracts, the frequency of which increases linearly with the square of alkylation dose.
    [Show full text]
  • The Licensing Protein Orc4 Is Required for Polar Body Extrusion During Murine Meiosis
    THE LICENSING PROTEIN ORC4 IS REQUIRED FOR POLAR BODY EXTRUSION DURING MURINE MEIOSIS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTORAL OF PHILOSOPHY IN DEVELOPMENTAL AND REPRODUCTIVE BIOLOGY DECEMBER 2017 By Hieu Thi Nguyen Dissertation Committee: David M. Jameson, Ph.D., University Representative W. Steven Ward, Ph.D., Chairperson Monika Ward, Ph.D. Yusuke Marikawa, Ph.D. Yukiko Yamazaki, Ph.D. Keywords: DNA replication, chromosomes, embryo development, ORC4, Polar body extrusion DEDICATION I dedicate this dissertation to my mom (My Thu), my dad (Nguyen Van Ngu), Tu, Lam, Gieng, Thao, Van, Hanh and to the rest of the members of the Nguyen family past and future, and especially to my husband (Nick James) whom provided me with guidance through the hardest times of graduate school. ii ACKNOWLEDGEMENTS I would firstly like to express my sincere gratitude to my advisor Dr. W. Steven Ward who has provided strong support of my dissertation and helped me through this process with patience, intellectual support, motivating me to take questions further, and his caring nature. There was never a time that I could not ask Dr. Ward for his assistance, whether for research or life questions, and for that I will forever be grateful. I could not image having a better advisor for my Ph.D. research. I would also like to thank my dissertation committee: Dr. Monika Ward, Dr. Yusuke Marikawa, Dr. Yukiko Yamazaki, and Dr. David Jameson for their time, effort, insightful comments, and encouragement during my Ph.D.
    [Show full text]
  • Drosophila Melanogaster Marat Sabirov1,2†, Olga Kyrchanova1,2†, Galina V
    Sabirov et al. Epigenetics & Chromatin (2021) 14:16 https://doi.org/10.1186/s13072-021-00391-x Epigenetics & Chromatin RESEARCH Open Access Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster Marat Sabirov1,2†, Olga Kyrchanova1,2†, Galina V. Pokholkova3†, Artem Bonchuk1,2†, Natalia Klimenko2, Elena Belova1,2, Igor F. Zhimulev3, Oksana Maksimenko2* and Pavel Georgiev1* Abstract Background: Pita is required for Drosophila development and binds specifcally to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-fnger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. In particular, Pita is involved in the formation of several boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Results: Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity in BX-C. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein.
    [Show full text]
  • Inhibition of MRN Activity by a Telomere Protein Motif
    ARTICLE https://doi.org/10.1038/s41467-021-24047-2 OPEN Inhibition of MRN activity by a telomere protein motif Freddy Khayat1,6, Elda Cannavo2,6, Majedh Alshmery1, William R. Foster1, Charly Chahwan 1,4, Martino Maddalena1,5, Christopher Smith 1, Antony W. Oliver 1, Adam T. Watson1, Antony M. Carr 1, ✉ Petr Cejka2,3 & Alessandro Bianchi 1 The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) 1234567890():,; initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N- terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end- resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles’ heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well. 1 Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK. 2 Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universitàdella Svizzera italiana (USI), Bellinzona, Switzerland. 3 Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
    [Show full text]
  • Identification of Proteins Involved in the Maintenance of Genome Stability
    Identification of Proteins Involved in the Maintenance of Genome Stability by Edith Hang Yu Cheng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto ©Copyright by Edith Cheng2015 Identification of Proteins Involved in the Maintenance of Genome Stability Edith Cheng Doctor of Philosophy Department of Biochemistry University of Toronto 2015 Abstract Aberrant changes to the genome structure underlie numerous human diseases such as cancers. The functional characterization ofgenesand proteins that maintain chromosome stability will be important in understanding disease etiology and developing therapeutics. I took a multi-faceted approach to identify and characterize genes involved in the maintenance of genome stability. As biological pathways involved in genome maintenance are highly conserved in evolution, results from model organisms can greatly facilitate functional discovery in humans. In S. cerevisiae, I identified 47 essential gene depletions with elevated levels of spontaneous DNA damage foci and 92 depletions that caused elevated levels of chromosome rearrangements. Of these, a core subset of 15 DNA replication genes demonstrated both phenotypes when depleted. Analysis of rearrangement breakpoints revealed enrichment at yeast fragile sites, Ty retrotransposons, early origins of replication and replication termination sites. Together, thishighlighted the integral role of DNA replicationin genome maintenance. In light of my findings in S. cerevisiae, I identified a list of 153 human proteins that interact with the nascentDNA at replication forks, using a DNA pull down strategy (iPOND) in human cell lines. As a complementary approach for identifying human proteins involved in genome ii maintenance, I usedthe BioID techniqueto discernin vivo proteins proximal to the human BLM- TOP3A-RMI1-RMI2 genome stability complex, which has an emerging role in DNA replication progression.
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • The Role of Ubiquitination and Sumoylation in DNA Replication
    The Role of Ubiquitination and SUMOylation in DNA Replication Tarek Abbas1,2,3* 1Department of Radiation Oncology, University of Virginia, Charlotesville, VA, USA. 2Department of Biochemistry and Molecular Genetics, University of Virginia, Charlotesville, VA, USA. 3Center for Cell Signaling, University of Virginia, Charlotesville, VA, USA. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.040.189 Abstract Regulation of eukaryotic DNA DNA replication is a tightly regulated conserved replication process that ensures the faithful transmission of genetic material to defne heritable phenotypic Initiation of DNA replication traits. Perturbations in this process result in Eukaryotic DNA replication is tightly regulated genomic instability, mutagenesis, and diseases, such that cells replicate their entire genome once including malignancy. Proteins involved in the and only once in a given cell cycle (Machida et initiation, progression, and termination of DNA al., 2005). For mammalian cells, this is no easy replication are subject to a plethora of revers- task since each proliferative somatic cell must ef- ible post-translational modifcations (PTMs) to ciently replicate approximately 6 billion base pairs provide a proper temporal and spatial control (in male cells) from roughly 250,000 replication of replication. Among these, modifcations origins scatered throughout the genome with involving the covalent atachment of the small each division cycle (Cadoret et al., 2008; Sequeira- protein ubiquitin or the small ubiquitin-like Mendes et al., 2009; Karnani et al., 2010). With modifer (SUMO) to replication and replication- roughly 600 million new blood cells born in the associated proteins are particularly important for bone marrow of an adult human (Doulatov et al., the proper regulation of DNA replication as well 2012), one cannot grasp the magnitude of the as for optimal cellular responses to replication task the replication machinery has to accomplish.
    [Show full text]
  • Cshperspect-REP-A015727 Table3 1..10
    Table 3. Nomenclature for proteins and protein complexes in different organisms Mammals Budding yeast Fission yeast Flies Plants Archaea Bacteria Prereplication complex assembly H. sapiens S. cerevisiae S. pombe D. melanogaster A. thaliana S. solfataricus E. coli Hs Sc Sp Dm At Sso Eco ORC ORC ORC ORC ORC [Orc1/Cdc6]-1, 2, 3 DnaA Orc1/p97 Orc1/p104 Orc1/Orp1/p81 Orc1/p103 Orc1a, Orc1b Orc2/p82 Orc2/p71 Orc2/Orp2/p61 Orc2/p69 Orc2 Orc3/p66 Orc3/p72 Orc3/Orp3/p80 Orc3/Lat/p82 Orc3 Orc4/p50 Orc4/p61 Orc4/Orp4/p109 Orc4/p52 Orc4 Orc5L/p50 Orc5/p55 Orc5/Orp5/p52 Orc5/p52 Orc5 Orc6/p28 Orc6/p50 Orc6/Orp6/p31 Orc6/p29 Orc6 Cdc6 Cdc6 Cdc18 Cdc6 Cdc6a, Cdc6b [Orc1/Cdc6]-1, 2, 3 DnaC Cdt1/Rlf-B Tah11/Sid2/Cdt1 Cdt1 Dup/Cdt1 Cdt1a, Cdt1b Whip g MCM helicase MCM helicase MCM helicase MCM helicase MCM helicase Mcm DnaB Mcm2 Mcm2 Mcm2/Nda1/Cdc19 Mcm2 Mcm2 Mcm3 Mcm3 Mcm3 Mcm3 Mcm3 Mcm4 Mcm4/Cdc54 Mcm4/Cdc21 Mcm4/Dpa Mcm4 Mcm5 Mcm5/Cdc46/Bob1 Mcm5/Nda4 Mcm5 Mcm5 Mcm6 Mcm6 Mcm6/Mis5 Mcm6 Mcm6 Mcm7 Mcm7/Cdc47 Mcm7 Mcm7 Mcm7/Prolifera Gmnn/Geminin Geminin Mcm9 Mcm9 Hbo1 Chm/Hat1 Ham1 Ham2 DiaA Ihfa Ihfb Fis SeqA Replication fork assembly Hs Sc Sp Dm At Sso Eco Mcm8 Rec/Mcm8 Mcm8 Mcm10 Mcm10/Dna43 Mcm10/Cdc23 Mcm10 Mcm10 DDK complex DDK complex DDK complex DDK complex Cdc7 Cdc7 Hsk1 l(1)G0148 Hsk1-like 1 Dbf4/Ask Dbf4 Dfp1/Him1/Rad35 Chif/chiffon Drf1 Continued 2 Replication fork assembly (Continued ) Hs Sc Sp Dm At Sso Eco CDK complex CDK complex CDK complex CDK complex CDK complex Cdk1 Cdc28/Cdk1 Cdc2/Cdk1 Cdc2 CdkA Cdk2 Cdc2c CcnA1, A2 CycA CycA1, A2,
    [Show full text]
  • Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms
    International Journal of Molecular Sciences Review Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms Megan Schmit and Anja-Katrin Bielinsky * Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected] Abstract: Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner. Keywords: Meier-Gorlin syndrome; natural killer cell deficiency; X-linked pigmentary reticulate disorder; Van Esch-O’Driscoll disease; IMAGe syndrome; FILS syndrome; Rothmund-Thomson syndrome; Baller-Gerold syndrome; RAPADILINO Citation: Schmit, M.; Bielinsky, A.-K. Congenital Diseases of DNA Replication: Clinical Phenotypes and 1. Introduction Molecular Mechanisms. Int. J. Mol. 1.1. Replication Initiation Sci.
    [Show full text]
  • Cdc6 on an Origin DNA Reveals the Mechanism of ORC
    ARTICLE https://doi.org/10.1038/s41467-021-24199-1 OPEN The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6 ✉ ✉ Xiang Feng 1, Yasunori Noguchi2,3, Marta Barbon2,3, Bruce Stillman 4 , Christian Speck 2,3 & ✉ Huilin Li 1 1234567890():,; The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. 1 Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA. 2 DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
    [Show full text]