Interpreting the History of Evolutionary Biology Through a Kuhnian Prism: Sense Or Nonsense?

Total Page:16

File Type:pdf, Size:1020Kb

Interpreting the History of Evolutionary Biology Through a Kuhnian Prism: Sense Or Nonsense? Interpreting the History of Evolutionary Biology through a Kuhnian Prism: Sense or Nonsense? Koen B. Tanghe Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Lieven Pauwels Department of Criminology, Criminal Law and Social Law, Universiteit Gent, Belgium Alexis De Tiège Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Johan Braeckman Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Traditionally, Thomas S. Kuhn’s The Structure of Scientific Revolutions (1962) is largely identified with his analysis of the structure of scientific revo- lutions. Here, we contribute to a minority tradition in the Kuhn literature by interpreting the history of evolutionary biology through the prism of the entire historical developmental model of sciences that he elaborates in The Structure. This research not only reveals a certain match between this model and the history of evolutionary biology but, more importantly, also sheds new light on several episodes in that history, and particularly on the publication of Charles Darwin’s On the Origin of Species (1859), the construction of the modern evolutionary synthesis, the chronic discontent with it, and the latest expression of that discon- tent, called the extended evolutionary synthesis. Lastly, we also explain why this kind of analysis hasn’t been done before. We would like to thank two anonymous reviewers for their constructive review, as well as the editor Alex Levine. Perspectives on Science 2021, vol. 29, no. 1 © 2021 by The Massachusetts Institute of Technology https://doi.org/10.1162/posc_a_00359 1 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 2 Evolutionary Biology through a Kuhnian Prism 1. Introduction About a century ago, the American anthropologist Franz Boas (1911) ex- plained that our experiences of the world are infinitely diverse and that, con- sequently, reductive linguistic categorization is necessary in order to be able to think and talk about it. Evidently, our categorization of the world doesn’t end there but is supplemented with second-order, cognitive abstractions and categorizations. Examples are typologies of earthquakes or human diseases and developmental schemes of civilizations or sciences. An example of a developmental scheme of sciences is that of the Canadian sociologist and historian of science Yves Gingras (1991). He distinguishes three steps in the sociological development of scientific disciplines: the emergence of a new prac- tice, its institutionalization, and the shaping of a social identity. Méthot (2016) uses this simple tripartite framework in his analysis of the history and histori- ography of virology. Here, we want to apply the developmental model of sciences that Thomas S. Kuhn elaborated in his The Structure of Scientific Revolutions (1962) to the history of evolutionary biology. Of course, as its title indicates, scientific revolutions form the main part of Kuhn’s book. Or, as he put it himself (Kuhn [1959] 1977, p. 226): the emphasis of Structure is on “the importance to scientific development of ‘revolutions’.” It cannot be denied, though, that it also offers a “schematic description of scientificdevelopment” (Kuhn 1962, p. 160) or of “the essential structure of a science’s continuing evolution” (Kuhn 1962, p. 160) and that his analysis of the structure of scientific revolutions merely forms a part of that broader developmental scheme.1 In a first section (section 2), we argue that this scheme can be discerned in the history of evolutionary biology, albeit only partly: on the one hand, it encompasses a phase that cannot, or not yet, be discerned in the history of evolutionary biology (a Kuhnian revolution), on the other hand, that history started (in earnest) with a very important achievement (the publication of Charles Darwin’s On the Origin of Species in 1859) that, strangely, doesn’t really fit in Kuhn’s original scheme. Our revelation of this imperfect match between Kuhn’s developmental model and the standard historiography of evolutionary biology is, in itself, a not very relevant or maybe even trivial exercise in the philosophy of the history of science.2 Ouranalysisdoesn’t end there, though: as 1. Greene points out that Structure was the first attempt to “construct a generalized pic- ture of the process by which a science is born and undergoes change and development (…)”([1971] 1981, p. 30). 2. The standard historiography of evolutionary biology is also known as ‘Synthesis His- toriography’ since it tells the story of this history in ways that “turn out right for the Modern Synthesis” (Stoltzfus 2017, p. 4). Stoltzfus and Cable (2014) develop an alternative historiog- raphy. They claim that a Mendelian-Mutationist synthesis emerged in the early twentieth cen- tury and that contemporary evolutionary thinking seems closer to this synthesis than to the Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 Perspectives on Science 3 we will show in section 3, a Kuhnian x-ray scan of the history of evolutionary biology yields several new insights in that history. Lastly, section 4 is dedicated to explaining why the history of evolutionary biology hasn’t been interpreted in terms of Kuhn’s developmental scheme before. 2. An Imperfect Match The broad outline of Kuhn’s scheme is well known: a pre-paradigmatic phase in the historical development of a science is followed by the emergence of a paradigm, a normal science phase and a phase of extraordinary science and rev- olution. The main distinction in The Structure is that between this revolutionary phase and normal science. This is the ‘essential tension’ in scientific research (see, e.g., Marcum 2015, pp. 46–7orBird2000,ch.2).Thepre-paradigmatic phase, by contrast, is only briefly discussed in chapter two, “The Route to Normal Science.”3 It is characterized by the coexistence of a number of com- peting schools which each interpret a natural phenomenon in a different way. The bickering of adherents of these different pre-paradigmatic schools is not entirely fruitless, though. They are genuine scientists, but much of their efforts are devoted to combatting and trying to convince opponents, rather than to cumulative research. A normal science phase starts with the emergence of a paradigm: a new theoretical framework that inspires the work of a majority of the practitioners of a specific discipline because it solves important problems and offers research opportunities and particularly because it provides them with standard exam- ples of good scientific practice. Or, as Kuhn put it himself: [These works were] sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity. Simultaneously, it was sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to resolve. Achievements that share these two characteristics I shall henceforth modern evolutionary synthesis. Consequently, it is the Mendelian-Mutationist synthesis that should be considered as the foundation of modern evolutionary biology. For another example of a criticism of the Synthesis-dominated historiography of evolutionary biology, see Amundson (2005). 3. In this chapter, Kuhn points out that the study of light and of electricity was charac- terized by fundamental disagreements before the publication of the work of, respectively, Isaac Newton and Benjamin Franklin (and his immediate successors). These disagreements also characterize (1) “the study of motion before Aristotle and of statics before Archimedes, the study of heat before Black, of chemistry before Boyle and Boerhaave, and of historical geology before Hutton” (Kuhn 1962, p. 15) and (2) the study of life phenomena before the appearance of unspecified biologists. He is less certain about the social sciences: “it remains an open ques- tion what parts of social science have yet acquired such paradigms at all. History suggests that the road to a firm research consensus is extraordinarily arduous” (Kuhn 1962, p. 15). Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 4 Evolutionary Biology through a Kuhnian Prism refer to as ‘paradigms,’ a term that relates closely to ‘normal science’. By choosing it, I mean to suggest that some accepted examples of actual scientific practice (…) provide models from which spring particular coherent traditions of scientific research (1962, p. 10).4 This paradigm concept was inspired by the fundamental difference between internally divided social scientists and more united practitioners of the natural sciences that Kuhn noticed during a stay in 1958–1959 at the Center of Advanced Studies in the Behavioral Sciences (see Kuhn 1962, p. x). How- ever, by 1974, he had changed this origin story of his central term. It was now not coined to account for the difference between the social sciences and the natural sciences but, more in general, “to account for the consensus necessary among scientists in a specialty in order for them to pursue their research goals effectively” (Wray 2011, p. 49). Also, Kuhn now claimed that it was “the sense of ‘paradigm’ as standard example that led originally to [his] choice of that term” (Kuhn 1977, p. xviii): a group’s unproblematic and common or paradigmatic conduct of research was facilitated by those shared examples of successful practice (i.e., paradigms in the specific meaning of exemplars). They could provide what a paradigmatic group “lacked in rules” (Kuhn [1974] 1977, p. 318).5 In the postscript to the second edition of Structure, he had already claimed that the term paradigm had been inspired by the exemplar component “of a group’s shared commitments” (Kuhn [1962] 1970, p. 187). He introduced this distinction between exemplars and a group’s “shared commitments” (i.e., “the entire constellation of beliefs, values, techniques and so on shared by 4. This is also how he defines paradigms in the preface of Structure: paradigms are “univer- sally recognized scientificachievementsthatforatimeprovidemodelproblemsandsolutionsto a community of practitioners” (p.
Recommended publications
  • Aristotle's Essentialism Revisited
    University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 4-15-2013 Accommodating Species Evolution: Aristotle’s Essentialism Revisited Yin Zhang University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Zhang, Yin, "Accommodating Species Evolution: Aristotle’s Essentialism Revisited" (2013). Theses. 192. http://irl.umsl.edu/thesis/192 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Accommodating Species Evolution: Aristotle’s Essentialism Revisited by Yin Zhang B.A., Philosophy, Peking University, 2010 A Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Arts in Philosophy May 2013 Advisory Committee Jon D. McGinnis, Ph.D. Chairperson Andrew G. Black, Ph.D. Berit O. Brogaard, Ph.D. Zhang, Yin, UMSL, 2013, p. i PREFACE In the fall of 2008 when I was a junior at Peking University, I attended a lecture series directed by Dr. Melville Y. Stewart on science and religion. Guest lecturers Dr. Alvin Plantinga, Dr. William L. Craig and Dr. Bruce Reichenbach have influenced my thinking on the relation between evolution and faith. In the fall of 2010 when I became a one-year visiting student at Calvin College in Michigan, I took a seminar directed by Dr. Kelly J. Clark on evolution and ethics. Having thought about evolution/faith and evolution/ethics, I signed up for Dr.
    [Show full text]
  • Natural Necessity Natural Selection
    NATURAL SELECTION NATURAL NECESSITY See Laws of Nature NATURAL SELECTION In modern evolutionary biology, a set of objects is Adaptationism said to experience a selection process precisely when At the close of his introduction to those objects vary in/itness (see Fitness). For exam­ On the Origin oj' ple, if zebras that run fast are fitter than zehras that Species, Darwin [1859] 1964, 6 says that natural selection is "the main but not the exclusive" cause run slow (perhaps because faster zebras are better ofevolution. In reaction to misinterpretations ofhis able to avoid lion predation), a selection process is theory, Darwin felt compelled to reemphasize, in the set in motion. If the trait that exhibits variation hook's last edition, that there was more to evolution in fit~ess is heritable-meaning, in our example, that faster parents tend to have faster offspring than natural selection. It remains a matter of con­ troversy in evolutionary biology how important and slower parents tend to have slower offspring­ then the selection process is apt to chancre trait natural selection has been in the history of life. frequencies in the population, leading fitte';. traits This is the poinl of biological substance that pres­ to increase in frequency and less fit traits to decline ently divides adaptationists and anti-adaptationists. The debate over adaptationism also has a separate (Lewontin 1970). This change is the one that selec­ tion is "apt" to engender, rather than the one that methodological dimension, with critics insisting that adaptive hypotheses be tested more rigorously must occur, because evolutionary theory describes <Gould and Lewontin 1979; Sober 1993).
    [Show full text]
  • Revisiting the Eclipse of Darwinism
    Journal of the History of Biology (2005) 38: 19–32 Ó Springer 2005 DOI: 10.1007/s10739-004-6507-0 Revisiting the Eclipse of Darwinism PETER J. BOWLER School of Anthropological Studies Queen’s University Belfast BT7 1NN Northern Ireland UK E-mail: [email protected] Abstract. The article sums up a number of points made by the author concerning the response to Darwinism in the late nineteenth and early twentieth centuries, and repeats the claim that a proper understanding of the theory’s impact must take account of the extent to which what are now regarded as the key aspects of Darwin’s thinking were evaded by his immediate followers. Potential challenges to this position are described and responded to. Keywords: anti-Darwinism, Darwinism, eclipse of Darwinism Having written books with titles such as The Eclipse of Darwinism and The Non-Darwinian Revolution, I could hardly resist the offer to produce an overview of my current thinking on the status of the Darwinian revolution. My ideas have certainly developed over the years, but in a reasonably consistent manner. Each book has, in a sense, created the question that had to be answered in the next. The initial purpose was only to document the temporary explosion of interest in non-Darwinian ideas of evolutionism in the late nineteenth century. But once it became apparent that even some ostensible supporters of Darwinism adopted positions that would never be included under that name today, it be- came necessary to rethink the relationship between early and modern Darwinism, and to reassess why Darwin’s work was taken so seriously when it was first published.
    [Show full text]
  • Quiet Debut'' of the Double Helix: a Bibliometric and Methodological
    Journal of the History of Biology Ó Springer 2009 DOI 10.1007/s10739-009-9183-2 Revisiting the ‘‘Quiet Debut’’ of the Double Helix: A Bibliometric and Methodological note on the ‘‘Impact’’ of Scientific Publications YVES GINGRAS De´partement d’histoire Universite´ du Que´bec a` Montre´al C.P. 8888, Suc. Centre-Ville Montreal, QC H3C-3P8 Canada E-mail: [email protected] Abstract. The object of this paper is two-fold: first, to show that contrary to what seem to have become a widely accepted view among historians of biology, the famous 1953 first Nature paper of Watson and Crick on the structure of DNA was widely cited – as compared to the average paper of the time – on a continuous basis from the very year of its publication and over the period 1953–1970 and that the citations came from a wide array of scientific journals. A systematic analysis of the bibliometric data thus shows that Watson’s and Crick’s paper did in fact have immediate and long term impact if we define ‘‘impact’’ in terms of comparative citations with other papers of the time. In this precise sense it did not fall into ‘‘relative oblivion’’ in the scientific community. The second aim of this paper is to show, using the case of the reception of the Watson–Crick and Jacob–Monod papers as concrete examples, how large scale bibliometric data can be used in a sophisticated manner to provide information about the dynamic of the scientific field as a whole instead of limiting the analysis to a few major actors and generalizing the result to the whole community without further ado.
    [Show full text]
  • Mendelism, Plant Breeding and Experimental Cultures: Agriculture and the Development of Genetics in France Christophe Bonneuil
    Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil To cite this version: Christophe Bonneuil. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France. Journal of the History of Biology, Springer Verlag, 2006, vol. 39 (n° 2 (juill. 2006)), pp.281-308. hal-00175990 HAL Id: hal-00175990 https://hal.archives-ouvertes.fr/hal-00175990 Submitted on 3 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil Centre Koyré d’Histoire des Sciences et des Techniques, CNRS, Paris and INRA-TSV 57 rue Cuvier. MNHN. 75005 Paris. France Journal of the History of Biology, vol. 39, no. 2 (juill. 2006), 281-308. This is an early version; please refer to the original publication for quotations, photos, and original pagination Abstract The article reevaluates the reception of Mendelism in France, and more generally considers the complex relationship between Mendelism and plant breeding in the first half on the twentieth century. It shows on the one side that agricultural research and higher education institutions have played a key role in the development and institutionalization of genetics in France, whereas university biologists remained reluctant to accept this approach on heredity.
    [Show full text]
  • A Short History of Botany in the United States</Article
    would have extended the value of the classes (the chapter on plant ecology book to the layman, the high school to my environmental biology class, for ScienceFilmstrips biology student, and even the elemen- example) in order to give students a tary-school child. fine historical overview of the particu- R. E. Barthelemy lar discipline's development in this BIOLOGY CHEMISTRY University of Minnesota country. Meanwhile I read the book PHYSICS MICROBIOLOGY Minneapolis piecemeal myself for biohistorical ap- ATOMICENERGY preciation and background; it shouldn't at one sit- ATOMICCONCEPT be read from cover to cover HISTORYAND PHILOSOPHY ting! HOWTO STUDY Never before has such a fund of di- on American botani- GENERALSCIENCE A SHORT HISTORY OF BOTANY IN THE UNITED verse information in FIGURE DRAWING STATES, ed. by Joseph Ewan. 1969. cal endeavor been brought together LABORATORYSAFETY Hafner Publishing Co., N.Y. 174 pp. one handy volume. We might hope that American zoologists, undaunted by HEALTHAND SAFETY(Campers) Price not given. Engelmann of St. having been upstaged, can shortly man- SAFETYIN AN ATOMICATTACK In 1846 George Louis, after finally receiving some fi- age to compile a comparable volume SCHOOLBUS SAFETY nancial encouragement for the pursuit for their discipline. BICYCLESAFETY of botany in the American West, opti- Richard G. Beidleman Colorado College mistically wrote that he could "hope a Downloaded from http://online.ucpress.edu/abt/article-pdf/32/3/178/339753/4442993.pdf by guest on 28 September 2021 WATERCONSERVATION Springs little more from this country for sci- Colorado ence." Today, Engelmann would be de- CARL LINNAEUS, Alvin and Virginia Ask for free folder and information lighted and amazed by what his adopted by Silverstein.
    [Show full text]
  • DICTIONARY of the HISTORY of SCIENCE Subject Editors
    DICTIONARY OF THE HISTORY OF SCIENCE Subject Editors Astronomy Michael A. Hoskin, Churchill College, Cambridge. Biology Richard W. Burkhardt, Jr, Department of History, University of Illinois at Urbana-Champaign. Chemistry William H. Brock, Victorian Studies Centre, University of Leicester. Earth sciences Roy Porter, W ellcome Institute for the History of Medicine, London. Historiography Steven Shapin, & sociology Science Studies Unit, of science University of Edinburgh. Human Roger Smith, sciences Department of History, University of Lancaster. Mathematics Eric J. Aiton, Mathematics Faculty, Manchester Polytechnic. Medicine William F. Bynum, W ellcome Institute for the History of Medicine, London. Philosophy Roy Bhaskar, of science School of Social Sciences, University of Sussex. Physics John L. Heilbron, Office for History of Science & Technology, University of California, Berkeley. DICTIONARY OF THE HISTORY OF SCIENCE edited by W.EBynum E.J.Browne Roy Porter M © The Macmillan Press Ltd 1981 Softcover reprint of the hardcover 1st edition 1981 978-0-333-29316-4 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1981 by THE MACMILLAN PRESS LTD London and Basingstoke Associated Companies throughout the world. ISBN 978-1-349-05551-7 ISBN 978-1-349-05549-4 (eBook) DOI 10.1007/978-1-349-05549-4 Typeset by Computacomp (UK) Ltd, Fort William, Scotland Macmillan Consultant Editor Klaus Boehm Contents Introduction vii Acknowledgements viii Contributors X Analytical table of contents xiii Bibliography xxiii Abbreviations xxxiv Dictionary Bibliographical index 452 Introduction How is the historical dimension of science relevant to understanding its place in our lives? It is widely agreed that our present attitudes and ideas about religion, art, or morals are oriented the way they are, and thus related to other beliefs, because of their history.
    [Show full text]
  • The Role of Mutation Bias in Adaptive Molecular Evolution: Insights from 2 Convergent Changes in Protein Function 3
    bioRxiv preprint doi: https://doi.org/10.1101/580175; this version posted March 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 1 The role of mutation bias in adaptive molecular evolution: insights from 2 convergent changes in protein function 3 4 5 Jay F. Storz1*, Chandrasekhar Natarajan1, Anthony V. Signore1, Christopher C. Witt2,3, David M. 6 McCandlish4, Arlin Stoltzfus5* 7 8 1School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 9 2Department of Biology, University of New Mexico, Albuquerque, NM 87131 10 3Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131 11 4Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724 12 5Office of Data and Informatics, Material Measurement Laboratory, NIST, and Institute for Bioscience 13 and Biotechnology Research, Rockville, MD 20850 14 15 *Corresponding authors: Jay F. Storz ([email protected]), Arlin Stoltzfus ([email protected]) 16 17 18 Abstract 19 An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the 20 production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the 21 genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG 22 dinucleotides: If the DNA nucleotide cytosine (C) is immediately 5’ to guanine (G) on the same coding 23 strand, then – depending on methylation status – point mutations at both sites occur at an elevated rate 24 relative to mutations at non-CpG sites.
    [Show full text]
  • Brian O'meara EEB464 Fall 2018
    Stephen Jay Gould Brian O’Meara EEB464 Fall 2018 Learning objectives: Who was Gould? Punctuated equilbrium Adaptationism How we argue in macroevolution Pair or single presentation. Imagine you are trying to get money to study a macroevolutionary question. You have to make a compelling case to a potential funder (i.e., the NSF will give you $15K to study it, or a professor might offer you a place in her lab to work on this). You should include 1) why that question is interesting (this should include what is known about it), 2) how you plan to address it, 3) what potential outcomes of your work may be, and 4) the implications of these. 10 minute talk (PowerPoint, Keynote, PDF, etc.). Be sure to include references in your slides. Popularization Punctuated equilibrium Arguments against panselectionism 7 8 “We talk about the ‘march from monad to man’ (old-style language again) as though evolution followed continuous pathways of progress along unbroken lineages. Nothing could be further from reality. I do not deny that, through time, the most ‘advanced’ organism has tended to increase in complexity. But the sequence from protozoan to jellyfish to trilobite to nautiloid to armored fish to dinosaur to monkey to human is no lineage at all, but a chronological set of termini on unrelated darwiniana trunks. Moreover life shows no trend to complexity in the usual sense— only an asymmetrical expansion of diversity around a starting point constrained to be simple.” — "Tires to Sandals," Eight Little Piggies, New York: W. W. Norton, 1993, p. 322. 9 “Well evolution is a theory.
    [Show full text]
  • Explanatory Unification and the Early Synthesis 597
    Brit. J. Phil. Sci. 56 (2005), 595–609 Explanatory Unification and the Early Synthesis Anya Plutynski ABSTRACT The object of this paper is to reply to Morrison’s ([2000]) claim that while ‘structural unity’ was achieved at the level of the mathematical models of population genetics in the early synthesis, there was explanatory disunity. I argue to the contrary, that the early synthesis effected by the founders of theoretical population genetics was unifying and explanatory both. Defending this requires a reconsideration of Morrison’s notion of explanation. In Morrison’s view, all and only answers to ‘why’ questions which include the ‘cause or mechanism’ for some phenomenon count as explanatory. In my view, mathematical demonstrations that answer ‘how possibly’ and ‘why necessarily’ ques- tions may also count as explanatory. The authors of the synthesis explained how evolution was possible on a Mendelian system of inheritance, answered skepticism about the sufficiency of selection, and thus explained why and how a Darwinian research program was warranted. While today we take many of these claims as obvious, they required argument, and part of the explanatory work of the formal sciences is providing such arguments. Surely, Fisher and Wright had competing views as to the optimal means of generating adaptation. Nevertheless, they had common opponents and a common unifying and explanatory goal that their mathematical demonstrations served. 1 Introduction: Morrison’s challenge 2 Fisher v. Wright revisited 3 The early synthesis 4 Conclusion: unification and explanation reconciled 1 Introduction: Morrison’s challenge Morrison ([2000]) has recently argued that unification and explanation are often at odds in science.
    [Show full text]
  • Macroevolutionary Diversification Rates Show Time Dependency
    Macroevolutionary diversification rates show time dependency L. Francisco Henao Diaza,b, Luke J. Harmonc, Mauro T. C. Sugawaraa,b, Eliot T. Millerd, and Matthew W. Pennella,b,1 aDepartment of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bBiodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; cDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844; and dCornell Lab of Ornithology, Cornell University, Ithaca, NY 14850 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved February 28, 2019 (received for review October 22, 2018) For centuries, biologists have been captivated by the vast disparity time dependence, with the fastest rates estimated over the shortest in species richness between different groups of organisms. time scales. This time scale dependence is apparent in rates of Variation in diversity is widely attributed to differences between molecular (12) and trait evolution (13, 14) and has even been groups in how fast they speciate or go extinct. Such macroevolu- observed when estimating long-term rates of sedimentation (15). tionary rates have been estimated for thousands of groups and The prevalence of time scaling of rate estimates in other types of have been correlated with an incredible variety of organismal data, along with previous hints of a possible similar pattern in traits. Here we analyze a large collection of phylogenetic trees and speciation rates (16–20), suggest that a broader comparison is fossil time series and describe a hidden generality among these needed. Here we explore the time scaling of diversification rates seemingly idiosyncratic results: speciation and extinction rates using both phylogenetic data from the tree of life and paleobio- follow a scaling law in which both depend on the age of the group logical data from the fossil record and find evidence that there are in which they are measured, with the fastest rates in the youngest indeed general scaling laws that govern macroevolutionary dy- clades.
    [Show full text]
  • Chapter 2: Why Would We Call for a New Evolutionary Synthesis? the Variation Issue and the Explanatory Alternatives
    Chapter 2: Why would we call for a new evolutionary synthesis? The variation issue and the explanatory alternatives. Philippe Huneman It is pervasively claimed that the framework of evolutionary theory, the Modern Synthesis (MS), which has been built between the 1930s and the 1950s through the synthesis of Mendelian genetics and Darwinian theory, has to be deeply revised, changed, “extended” (Pigliucci and Muller 2011, Odling-Smee Laland and Feldman 2003, Danchin et al 2011) or “expanded” (Gould 2002). Empirical and conceptual reasons are supposedly converging to support such a move. Supporters of a new Synthesis (e.g. Gilbert, Opitz and Raff 1996, Pigliucci and Muller 2011, Odling-Smee Laland and Feldman 2003, Danchin et al 2011, Jablonka and Lamb 2005, Oyama, Griffiths and Gray 2001 etc.) may disagree on many things but they generally think that the Modern Synthesis, as a scientific theory through which explanations for biological phylogeny, adaptation and diversity should be sought, gave too much importance to natural selection or that its focus on genes, exemplified by the textbook definition of evolution as a change in genotypic frequencies, was exaggerate. In this paper I pose the question what kind of empirical findings would be likely to force a dramatic theoretical change, meaning that the core claims of MS regarding natural selection and genetics. I will focus on one strain of critiques, that targeted the explanatory weight of natural selection as selection for the fittest traits (provided that variant traits arise by mutation and recombination). I will distinguish several critiques, according to their content and to the strength of the challenge: whereas some challenges necessitate a complete rethinking of the core concepts of evolutionary theory, others are solved by adding or amending the main concepts or modeling assumptions.
    [Show full text]