Department of Plant Pathology Periodic Program Review October
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downy Mildew Disease of Crucifers: Biology, Ecology and Disease
Govind Singh Saharan · Naresh Mehta Prabhu Dayal Meena Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Govind Singh Saharan • Naresh Mehta Prabhu Dayal Meena Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Govind Singh Saharan Naresh Mehta Department of Plant Pathology Department of Plant Pathology CCS Haryana Agricultural University CCS Haryana Agricultural University Hisar, Haryana, India Hisar, Haryana, India Prabhu Dayal Meena ICAR-Directorate of Rapeseed-Mustard Research Bharatpur, Rajasthan, India ISBN 978-981-10-7499-8 ISBN 978-981-10-7500-1 (eBook) https://doi.org/10.1007/978-981-10-7500-1 Library of Congress Control Number: 2017961551 © Springer Nature Singapore Pte Ltd. 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Economic Cost of Invasive Non-Native Species on Great Britain F
The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat. -
Status of Aphanomyces Root Rot in Wisconsin
STATUS OF APHANOMYCES ROOT ROT IN WISCONSIN C.R. Grau1 Introduction Alfalfa is the primary forage crop in Wisconsin and is a key element in the state’s dairy industry. The yield of new varieties is greater than that of Vernal and other older varieties due to genetic gains made by breeders over the years. Much of the yield advantage of new varieties may be attributed to efforts to breed for resistance to a wide variety of major pathogens of alfalfa such as Verticillium, Phytophthora, and Aphanomyces. Although the yield gap has widened between new varieties and Vernal, yield of all varieties has declined steadily in Wisconsin during the past 30 years (Wiersma et al., 1997). There are several possible explanations for this situation including changing climate and the difficulties inherent in dealing with such a genetically diverse crop such as alfalfa. From a pathologist’s perspective, new disease-causing organisms or new strains of previously described pathogens may also play a role in limiting yield gains for Wisconsin alfalfa growers. At the University of Wisconsin-Madison, we are conducting research on alfalfa diseases, particularly those caused by organisms that have not been studied previously with respect to their presence and influence on the alfalfa crop. Aphanomyces root rot is one relatively new disease of alfalfa that has been studied in this regard. Overview of Aphanomyces Root Rot Although the cause, the fungus Aphanomyces euteiches, was reported to infect alfalfa in the 1930’s, this organism was considered a minor pathogen of alfalfa. In contrast, Phytophthora root rot, caused by Phytophthora medicaginis, was considered the only significant cause of root disease of alfalfa in wet soil situations. -
Minnesota's Top 124 Terrestrial Invasive Plants and Pests
Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings -
Alfalfa Seedling and Root Diseases Gary P
Integrated Crop Management News Agriculture and Natural Resources 4-8-2002 Alfalfa seedling and root diseases Gary P. Munkvold Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/cropnews Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons Recommended Citation Munkvold, Gary P., "Alfalfa seedling and root diseases" (2002). Integrated Crop Management News. 1703. http://lib.dr.iastate.edu/cropnews/1703 The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/. Alfalfa seedling and root diseases Abstract Soil conditions so far this spring are drier than normal, which means fewer problems with seedling disease in early alfalfa plantings. But things can change quickly, because the fungi causing these diseases are sensitive to surface soil moisture. With rain events around the time of planting, seedling diseases can appear rapidly. The most important fungi attacking alfalfa seedlings are Aphanomyces euteiches,Phytophthora medicaginis, and several species of Pythium. Keywords Plant Pathology Disciplines Agricultural Science | Agriculture | Plant Pathology This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/1703 10/26/2015 Alfalfa seedling and root diseases Alfalfa seedling and root diseases Soil conditions so far this spring are drier than normal, which means fewer problems with seedling disease in early alfalfa plantings. -
Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics
plants Review Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics Andres F. Salcedo 1 , Savithri Purayannur 1 , Jeffrey R. Standish 1 , Timothy Miles 2, Lindsey Thiessen 1 and Lina M. Quesada-Ocampo 1,* 1 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA; [email protected] (A.F.S.); [email protected] (S.P.); [email protected] (J.R.S.); [email protected] (L.T.) 2 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the Citation: Salcedo, A.F.; Purayannur, development and application of diagnostic assays based on standard and promising technologies, S.; Standish, J.R.; Miles, T.; Thiessen, including high-throughput sequencing and genomics, are revolutionizing the development of species- L.; Quesada-Ocampo, L.M. Fantastic specific assays suitable for in-field diagnosis. -
Impatiens Downy Mildew: Guidelines for Growers
Impatiens Downy Mildew: Guidelines for Growers Quick Facts Quick Tips Common Name Impatiens downy mildew Train your staff to recognize early symptoms of downy mildew Scientific Name Plasmopara obducens Inspect liners and plugs on delivery Plants affected Impatiens walleriana Apply fungicides preventively Primary symptoms: light-green yellowing or stippling of leaves, leaves Scout frequently, turning leaves over to look for white sporulation curl downward at the margins, white downy-like growth on underside Minimize greenhouse humidity and limit leaf wetness <4-5 hr, of leaves, stunting, leaf and flower drop especially at night Background Overwintering Impatiens downy mildew is a destructive foliar disease of Impatiens Oospores (overwintering structures) can be produced in infected, collapsing walleriana that is capable of causing complete defoliation or plant collapse, stem and leaves. There is still limited evidence that the oospores especially in landscape plantings under moist conditions and cool nights. overwinter in landscape beds and infect impatiens the following year. Research is continuing to understand the role that the oospores may play in Regional outbreaks of this disease were seen for the first time in landscape year-to-year survival and spread. However, the pathogen can survive beds and container plantings in North America in summer 2011. In early during the winter months on living impatiens plants growing in warmer January 2012, outbreaks of impatiens downy mildew were observed in regions of the country (Florida). The aerial spores can then potentially landscape beds and greenhouses in south Florida. By the end of the 2012 move north during the following growing season infecting impatiens along season, impatiens downy mildew had been confirmed in 34 states. -
Chickpea Package
chickpea INTEGRATED PEST MANAGEMENT INNOVATION LAB ICRISAT chickpea package Chickpea (Cicer arietinum L.) (Fabaceae) is an annual legume (pulse crop) of the family Fabaceae. It is commonly known as garbanzo bean, Egyptian WHAT IS IPM? pea, and gram, or Bengal gram. Based on seed color, chickpea is also Integrated pest management classified as ‘Desi’ or ‘Kabuli’ types. Desi chickpea has a pigmented (tan to (IPM), an environmentally-sound black) seed coat and small seed size (greater than 100 seeds/oz), whereas and economical approach to pest Kabuli or garbanzo bean has white to cream-colored seed coats and size control, was developed in response ranges from small to large (50–100 seeds/oz). Chickpea originated in the to pesticide misuse in the 1960s. Middle East and got domesticated in Southeast Asia. Currently, chickpea is Pesticide misuse has led to pesticide grown in about 57 countries in Asia, Australia, Middle East, North America, resistance among prevailing pests, a South America, Africa, and Europe. Major producers of Chickpea are India, resurgence of non-target pests, loss Australia, Myanmar, Ethiopia, Turkey, Russia, Pakistan, Iran, Canada, USA, of biodiversity, and environmental Mexico, Malawi, Morocco, and Syria. In 2019, India shared 70% of global and human health hazards. Lab (IPM IL) Management Innovation Pest Integrated chickpea production. The chickpea plant is a self-pollinating, small bush with a height ranging from 30 to 60 cm. Chickpea crop performs best with the long, warm growing season and is usually grown as a rainfed, cool- WHAT ARE season crop in semiarid regions. Well-draining, sandy loam soils with a pH IPM PACKAGES? 5.0–7.0, and annual rainfall of 600–1000 mm are best for this crop. -
Species of Phytophthora Associated with a Native Ecosystem in Gauteng
Species of Phytophthora associated with a native ecosystem in Gauteng by Jan Hendrik Nagel BSc Genetics (Hons) Submitted in partial fulfilment of the requirements for the degree Magister Scientiae In the Faculty of Natural & Agricultural Sciences, Department of Genetics, University of Pretoria, Pretoria September 2012 Supervisor: Dr. Marieka Gryzenhout Co-supervisors: Prof. Bernard Slippers Prof. Michael J. Wingfield i Declaration I, Jan Hendrik Nagel, declare that the thesis/dissertation, which I hereby submit for the degree Magister Scientiae at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. SIGNATURE: ___________________________ DATE: ________________________________ ii TABLE OF CONTENTS ACKNOWLEDGEMENTS 1 PREFACE 2 CHAPTER 1 4 DIVERSITY , SPECIES RECOGNITION AND ENVIRONMENTAL DETECTION OF Phytophthora spp. 1. INTRODUCTION 6 2. THE OOMYCETES 7 2.1. OOMYCETES VERSUS FUNGI 7 2.2. TAXONOMY OF OOMYCETES 7 2.3. DIVERSITY AND IMPACT OF OOMYCETES 9 2.4. IMPACT OF Phytophthora 11 3. SPECIES RECOGNITION IN Phytophthora 13 3.1. MORPHOLOGICAL SPECIES CONCEPT 14 3.2. BIOLOGICAL SPECIES CONCEPT 14 3.3. PHYLOGENETIC SPECIES CONCEPT 15 4. STUDYING Phytophthora IN NATIVE ECOSYSTEMS 17 4.1. ISOLATION AND CULTURE OF Phytophthora 17 4.2. MOLECULAR DETECTION AND IDENTIFICATION TECHNIQUES FOR Phytophthora 19 4.3. RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) 19 4.4. SINGLE -STRAND CONFORMATION POLYMORPHISM (SSCP) 20 4.5. PCR DETECTION WITH SPECIES -SPECIFIC PRIMERS 21 4.6. QUANTATIVE PCR 22 4.7. DNA HYBRIDIZATION BASED TECHNIQUES 23 4.8. SEROLOGICAL TECHNIQUES 24 4.9. PCR AMPLIFICATION WITH GENUS SPECIFIC PRIMERS 25 5. -
Single Plant Selection for Improving Root Rot Disease (Phytophthora Medicaginis) Resistance in Chickpeas (Cicer Arietinum L.)
Euphytica (2019) 215:91 https://doi.org/10.1007/s10681-019-2389-2 (0123456789().,-volV)(0123456789().,-volV) Single plant selection for improving root rot disease (Phytophthora medicaginis) resistance in Chickpeas (Cicer arietinum L.) John Hubert Miranda Received: 19 December 2017 / Accepted: 1 March 2019 Ó The Author(s) 2019 Abstract The root rot caused by Phytophthora results also indicated certain level of heterozygosity- medicaginis is a major disease of chickpea in induced heterogeneity, which could cause higher Australia. Grain yield loss of 50 to 70% due to the levels of susceptibility, if the selected single plants disease was noted in the farmers’ fields and in the were not screened further for the disease resistance in experimental plots, respectively. To overcome the advanced generation/s. The genetics of resistance to problem, resistant single plants were selected from the PRR disease was confirmed as quantitative in nature. National Chickpea Multi Environment Trials (NCMET)—Stage 3 (S3) of NCMET-S1 to S3, which Keywords Polygenic Á Back cross Á Disease were conducted in an artificially infected phytoph- management Á Interspecific crosses Á Disease thora screening field nursery in the Hermitage resistance Á Breeding method Á Selection technique Á Research Station, Queensland. The inheritance of Heterozygosity Á Heterogeneity resistance of these selected resistant single plants were tested in the next generation in three different trials, (1) at seedling stage in a shade house during the off- season, (2) as bulked single plants and (3) as individual Introduction single plants in the disease screening filed nursery during the next season. The results of the tests showed Chickpea is an important cash crop of Australia, that many of the selected single plants had higher level grown during winter for its grain and agronomic value. -
Molecular Detection of Phytophthora Sojae in Glycine Max Through Conventional and Real-Time PCR J
Molecular detection of Phytophthora sojae in Glycine max through conventional and real-time PCR J. C. Bienapfl, J. A. Percich, and D. K. Malvick Department of Plant Pathology, University of Minnesota, St. Paul 55108 INTRODUCTION Table 1. Isolates of Phytophthora sojae and other pathogens used to test specific primers PSOJF1- A B C PSOJR1 and results from the testing with conventional PCR (sPCR) and real-time PCR (qPCR) Phytophthora rot, caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most damaging diseases of soybean (Glycine max) in the U.S. (4). In 2005, P. sojae caused Genus and species Number of isolates sPCRa qPCRb,c an estimated yield loss of 1.1 million tons in the U.S. (7). Field diagnosis of Phytophthora Aphanomyces euteiches 1 - ND rot may be difficult due to symptoms resembling those caused by other pathogens such as Pythium or Diaporthe species. Symptoms include root rot and stem rot (Fig. 1). Methods to Diaporthe phaseolorum var. caulivora 2 - ND identify P. sojae involve direct isolation on semi-selective media. The development of a Fusarium acuminatum 2 - ND PCR-based assay for the rapid and sensitive detection of P. sojae could facilitate pathogen Fusarium equiseti 2 - ND identification and lead to more effective disease management. Fusarium graminearum 2 - ND PCR assays for rapid and specific detection of P. sojae using two sets of primers have been reported by other researchers, but they have limitations or have not been validated. PS1- Fusarium oxysporum 4 - ND PS2 were developed in China and PSOJF1-PSOJR1 were developed at Michigan State Fusarium proliferatum 2 - ND Fig. -
I. Albuginaceae and Peronosporaceae) !• 2
ANNOTATED LIST OF THE PERONOSPORALES OF OHIO (I. ALBUGINACEAE AND PERONOSPORACEAE) !• 2 C. WAYNE ELLETT Department of Plant Pathology and Faculty of Botany, The Ohio State University, Columbus ABSTRACT The known Ohio species of the Albuginaceae and of the Peronosporaceae, and of the host species on which they have been collected are listed. Five species of Albugo on 35 hosts are recorded from Ohio. Nine of the hosts are first reports from the state. Thirty- four species of Peronosporaceae are recorded on 100 hosts. The species in this family re- ported from Ohio for the first time are: Basidiophora entospora, Peronospora calotheca, P. grisea, P. lamii, P. rubi, Plasmopara viburni, Pseudoperonospora humuli, and Sclerospora macrospora. New Ohio hosts reported for this family are 42. The Peronosporales are an order of fungi containing the families Albuginaceae, Peronosporaceae, and Pythiaceae, which represent the highest development of the class Oomycetes (Alexopoulous, 1962). The family Albuginaceae consists of the single genus, Albugo. There are seven genera in the Peronosporaceae and four commonly recognized genera of Pythiaceae. Most of the species of the Pythiaceae are aquatic or soil-inhabitants, and are either saprophytes or facultative parasites. Their occurrence and distribution in Ohio will be reported in another paper. The Albuginaceae include fungi which are all obligate parasites of vascular plants, causing diseases known as white blisters or white rusts. These white blisters are due to the development of numerous conidia, sometimes called sporangia, in chains under the epidermis of the host. None of the five Ohio species of Albugo cause serious diseases of cultivated plants in the state.