CFR-Listed Agents and Toxins

Total Page:16

File Type:pdf, Size:1020Kb

CFR-Listed Agents and Toxins SANDIA REPORT SAND2003-3080 Unlimited Release Printed September 2003 Biosecurity Reference: CFR-Listed Agent and Toxin Summaries Compiled and Edited by Natalie Barnett Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 • Sandia is a multiprogram laboratory operated by Sandia Corporation, • a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865)576-8401 Facsimile: (865)576-5728 E-Mail: [email protected] Online ordering: http://www.doe.gov/bridge Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161 Telephone: (800)553-6847 Facsimile: (703)605-6900 E-Mail: [email protected] Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online SAND2003-3080 Unlimited Release Printed September 2003 Biosecurity Reference: CFR-Listed Agent and Toxin Summaries Compiled and Edited by Natalie Barnett Systems Engineering Department Sandia National Laboratories P. O. Box 5800 Albuquerque, NM 87185-0759 Abstract This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, “Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,” and 42 CFR 73, “Possession, Use, and Transfer of Select Agents and Toxins.” Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health. 3 PREFACE This summary guide was compiled verbatim from the referenced sources. Minor differences among the sources in style, approach, diction, and organization do not detract from the accuracy or value of the provided reference material. 5 Contents 1. ANIMAL PATHOGENS........................................................................................................ 9 1.1 African horse sickness virus ........................................................................................... 9 1.2 African swine fever virus.............................................................................................. 14 1.3 Akabane virus ............................................................................................................... 18 1.4 Avian influenza virus.................................................................................................... 21 1.5 Bluetongue virus ........................................................................................................... 25 1.6 Bovine spongiform encephalopathy ............................................................................. 29 1.7 Camel pox virus ............................................................................................................ 35 1.8 Classical swine fever virus............................................................................................ 35 1.9 Cowdria ruminantium (Heartwater) ............................................................................. 39 1.10 Foot-and-mouth disease................................................................................................ 44 1.11 Goat pox virus............................................................................................................... 49 1.12 Japanese encephalitis virus ........................................................................................... 53 1.13 Lumpy skin disease virus.............................................................................................. 56 1.14 Malignant catarrhal fever virus..................................................................................... 59 1.15 Menangle virus.............................................................................................................. 63 1.16 Mycoplasma capricolum/M. F38/M. mycoides capri ................................................... 66 1.17 Mycoplasma mycoides mycoides .................................................................................. 69 1.18 Newcastle disease virus ................................................................................................ 71 1.19 Peste des petits ruminants virus.................................................................................... 76 1.20 Rinderpest virus ............................................................................................................ 79 1.21 Sheep pox virus............................................................................................................. 83 1.22 Swine vesicular disease................................................................................................. 83 1.23 Vesicular stomatitis virus (exotic) ................................................................................ 84 2. PLANT PATHOGENS......................................................................................................... 87 2.1 Liberobacter africanus.................................................................................................. 87 2.2 Liberobacter asiaticus .................................................................................................. 88 2.3 Peronosclerospora philippinensis ................................................................................ 88 2.4 Phakopsora pachyrhizi ................................................................................................. 88 2.5 Plum pox potyvirus....................................................................................................... 89 2.6 Ralstonia solanacearum, race 3, biovar 2..................................................................... 90 2.7 Sclerophthora rayssiae var. zeae .................................................................................. 91 2.8 Synchytrium endobioticum............................................................................................ 91 2.9 Xanthomonas oryzae pv. oryzicola ............................................................................... 92 2.10 Xylella fastidiosa (citrus variegated chlorosis strain) ................................................... 93 3. OVERLAP PATHOGENS AND TOXINS (ANIMAL AND HUMAN/ZOONOTIC)....... 95 3.1 Bacillus anthracis ......................................................................................................... 95 3.2 Botulinum neurotoxins.................................................................................................. 96 3.3 Botulinum neurotoxin producing species of Clostridium............................................. 98 3.4 Brucella abortus............................................................................................................ 98 3.5 Brucella melitensis........................................................................................................ 99 3.6 Brucella suis.................................................................................................................. 99 7 3.7 Burkholderia mallei (formerly Pseudomonas mallei) .................................................. 99 3.8 Burkholderia pseudomallei (formerly Pseudomonas pseudomallei).......................... 103 3.9 Clostridium perfringens epsilon toxin ........................................................................ 104 3.10 Coccidioides immitis................................................................................................... 105 3.11 Coxiella burnetii ......................................................................................................... 106 3.12 Eastern equine encephalitis virus................................................................................ 108 3.13 Francisella tularensis................................................................................................... 109 3.14 Hendra virus...............................................................................................................
Recommended publications
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Wildlife Ruby Lake Natillntllwildlife Refuge
    I 49. 44/2: R 82/3/993 P RLE Wildlife Ruby lake NatillntllWildlife Refuge ZIMMERMAN LIBRARY UNIV. OF NEW MEXteo FEB 1 0 1994 U.S. Regional Depos1to A Refuge for Nesting and Migrating Waterfowl and Other Wildlife The Habitat Ruby Lake National Wildlife Refuge was established in The refuge, at an elevation of 6,000 feet, consists of an 1938. It encompasses 37,632 acres at the south end of extensive bulrush marsh interspersed with pockets of Ruby Valley. This land was once covered by a 200 foot open water. Fish are abundant. Islands scattered deep, 300,800-acre lake known as Franklin Lake. Today throughout provide good nesting habitat for many bird 12,000 acres of marsh remain on the refuge. Just north of species. the refuge, a 15,000-acre seasonal wetland is now referred to as Franklin Lake. Over 200 springs flow into the marsh along its west border _...)/ creating riparian habitat which is used by many songbirds, To Elko �� and Welle snipe, rail and small mammals. They also provide a water FRANKLIN source for larger mammals. With slight increases in LAKE elevation, wet meadows gradate into grasslands and sagebrush-rabbitbrush habitat. Pinon pines and juniper cover the slopes of the Ruby Mountains that rise to 11,000 feet along the west side of the refuge. Canyons provide habitat for a variety of wildlife. Rock cliffs provide raptors with nesting and perching sites. A mountainside of dead trees, home for ROAD cavity dwelling birds, was the result of a 1979 wildfire. BRESSMAN CABIN LOOP MAIN BOAT LANDING -4,__,,� ·�I! I N � 0 3 Miles 0 2 4 Kilometer� RANCH dead pinon tree General Key BIRDS bam ,wallow � Season 6 The following bird list includes 207 species observed on Sp - Spring (March through May) or near the refuge.
    [Show full text]
  • Influence of Border Disease Virus (BDV) on Serological Surveillance Within the Bovine Virus Diarrhea (BVD) Eradication Program in Switzerland V
    Kaiser et al. BMC Veterinary Research (2017) 13:21 DOI 10.1186/s12917-016-0932-0 RESEARCH ARTICLE Open Access Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland V. Kaiser1, L. Nebel1, G. Schüpbach-Regula2, R. G. Zanoni1* and M. Schweizer1* Abstract Background: In 2008, a program to eradicate bovine virus diarrhea (BVD) in cattle in Switzerland was initiated. After targeted elimination of persistently infected animals that represent the main virus reservoir, the absence of BVD is surveilled serologically since 2012. In view of steadily decreasing pestivirus seroprevalence in the cattle population, the susceptibility for (re-) infection by border disease (BD) virus mainly from small ruminants increases. Due to serological cross-reactivity of pestiviruses, serological surveillance of BVD by ELISA does not distinguish between BVD and BD virus as source of infection. Results: In this work the cross-serum neutralisation test (SNT) procedure was adapted to the epidemiological situation in Switzerland by the use of three pestiviruses, i.e., strains representing the subgenotype BVDV-1a, BVDV-1h and BDSwiss-a, for adequate differentiation between BVDV and BDV. Thereby the BDV-seroprevalence in seropositive cattle in Switzerland was determined for the first time. Out of 1,555 seropositive blood samples taken from cattle in the frame of the surveillance program, a total of 104 samples (6.7%) reacted with significantly higher titers against BDV than BVDV. These samples originated from 65 farms and encompassed 15 different cantons with the highest BDV-seroprevalence found in Central Switzerland. On the base of epidemiological information collected by questionnaire in case- and control farms, common housing of cattle and sheep was identified as the most significant risk factor for BDV infection in cattle by logistic regression.
    [Show full text]
  • A Scoping Review of Viral Diseases in African Ungulates
    veterinary sciences Review A Scoping Review of Viral Diseases in African Ungulates Hendrik Swanepoel 1,2, Jan Crafford 1 and Melvyn Quan 1,* 1 Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; [email protected] (H.S.); [email protected] (J.C.) 2 Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium * Correspondence: [email protected]; Tel.: +27-12-529-8142 Abstract: (1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention.
    [Show full text]
  • 82838415.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector PERSPECTIVE published: 17 June 2016 doi: 10.3389/fmicb.2016.00921 Challenges in Identifying and Determining the Impacts of Infection with Pestiviruses on the Herd Health of Free Ranging Cervid Populations Julia F. Ridpath * and John D. Neill Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa Although most commonly associated with the infection of domestic livestock, the replication of pestiviruses, in particular the two species of bovine viral diarrhea virus (BVDV), occurs in a wide range of free ranging cervids including white-tailed deer, mule deer, fallow deer, elk, red deer, roe deer, eland and mousedeer. While virus isolation and serologic analyses indicate that pestiviruses are circulating in these populations, little is known regarding their impact. The lack of regular surveillance programs, challenges in sampling wild populations, and scarcity of tests and vaccines compound the difficulties in detecting and controlling pestivirus infections in wild cervids. Improved detection rests Edited by: upon the development and validation of tests specific for use with cervid samples and Slobodan Paessler, development and validation of tests that reliably detect emerging pestiviruses. Estimation University of Texas Medical Branch, of impact of pestivirus infections on herd health will require the integration of several USA disciplines including epidemiology, cervid natural history, veterinary medicine, pathology Reviewed by: Matthias Schweizer, and microbiology. Vetsuisse Faculty - University of Bern, Switzerland Keywords: pestivirus, cervids, wildlife diseases, surveillance, sampling James Frederick Evermann, Washington State University, USA *Correspondence: INTRODUCTION Julia F.
    [Show full text]
  • Approximately 220 Species of Wild Mammals Occur in California And
    Mammals pproximately 220 species of wild mammals occur in California and the surrounding waters (including introduced species, but not domestic species Asuch as house cats). Amazingly, the state of California has about half of the total number of species that occur on the North American continent (about 440). In part, this diversity reflects the sheer number of different habitats available throughout the state, including alpine, desert, coniferous forest, grassland, oak woodland, and chaparral habitat types, among others (Bakker 1984, Schoenherr 1992, Alden et al. 1998). About 17 mammal species are endemic to California; most of these are kangaroo rats, chipmunks, and squirrels. Nearly 25% of California’s mammal species are either known or suspected to occur at Quail Ridge (Appendix 9). Species found at Quail Ridge are typical of both the Northwestern California and Great Central Valley mammalian faunas. Two California endemics, the Sonoma chipmunk (see Species Accounts for scientific names) and the San Joaquin pocket mouse, are known to occur at Quail Ridge. None of the mammals at Quail Ridge are listed as threatened or endangered by either the state or federal governments, although Townsend’s big-eared bat, which is suspected to occur at Quail Ridge, is a state-listed species of special concern. Many mammal species are nocturnal, fossorial, fly, or are otherwise difficult to observe. However, it is still possible to detect the presence of mammals at Quail Ridge, both visually and by observation of their tracks, scat, and other sign. The mammals most often seen during the day are mule deer and western gray squirrels.
    [Show full text]
  • Prevalence and Risk Factors for BVDV in Goats and Cattle in and Around Gaborone, Botswana
    Faculty of Veterinary Medicine and Animal Science Department of Biomedical Sciences and Veterinary Public Health Prevalence and Risk Factors for BVDV in Goats and Cattle in and around Gaborone, Botswana Sara Lysholm Uppsala 2016 Degree Project 30 credits within the Veterinary Medicine Programme ISSN 1652-8697 Examensarbete 2017:56 2 Prevalence and Risk Factors for BVDV in Goats and Cattle in and around Gaborone, Botswana Prevalens och riskfaktorer avseende BVDV infektion hos getter och nötkreatur i Gaborone, Botswana Sara Lysholm Supervisor: Mikael Berg, Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU) Assisting supervisors: Jonas Johansson Wensman, Department of Clinical Siences (KV), Swedish University of Agricultural Sciences (SLU) Solomon Stephen Ramabu, Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources (BUAN). Examiner: Maja Malmberg, Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU) Degree project in Veterinary Medicine Credits: 30 hp Level:Second cycle, A2E Course code: EX0751 Place of publication: Uppsala Year of publication: 20xx Number of part of series: Examensarbete 2017:56 ISSN: 1652-8697 Online publication: http://stud.epsilon.slu.se Keywords: BVDV, Bovine Viral Diarrhoea Virus, seroprevalence, risk factors, Botswana, goats, cattle, livestock Nyckelord: BVDV, Bovint Virus Diarré Virus, seroprevalens, riskfaktorer, Botswana, getter, nötkreatur, boskap Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Department of Biomedical Sciences and Veterinary Public Health 3 4 SUMMARY Bovine Viral Diarrhoea Virus (BVDV) is a cause of severe deterioration in animal health as well as grave economic losses globally.
    [Show full text]
  • Over 40% of All Mammal Species in the Next 2 Labs
    Rodents Class Rodentia 5 (depends) Suborders 33 (maybe more) Families about 481 genera, 2277+ species Over 40% of all mammal species in the next 2 labs Sciuromorpha: squirrels, dormice, mountain beaver, and relatives Castorimorpha: beavers, gophers, kangaroo rats, pocket mice, and relatives Myomorpha: mice, rats, gerbils, jerboas, and relatives Anomaluromorpha: scaly-tailed squirrels and springhares Hystricomorpha: hystricognath rodents...lots of South American and African species, mostly Because rodents are such a Why rodents are evil... diverse and speciose group, their higher-level taxonomy keeps being revised. Hard to keep up! In recent decades, there have been 2, 3, 4 or 5 Suborders, depending on the revision, and Families keep getting pooled and split. We’ll just focus on some of the important Families and leave their relationships to future generations. They are a diverse and Why rodents are fun... speciose group, occur in just about every kind of habitat and climate, and show the broadest ecological diversity of any group of mammals. There are terrestrial, arboreal, scansorial, subterranean, and semiaquatic rodents. There are solitary, pair-forming, and social rodents. There are plantigrade, cursorial, You could spend your whole fossorial, bipedal, swimming life studying this group! and gliding rodents. (Some do.) General characteristics of rodents •Specialized ever-growing, self-sharpening incisors (2 upper, 2 lower) separated from cheek teeth by diastema; no canines •Cheek teeth may be ever-growing or rooted, but show a variety of cusp patterns, often with complex loops and folds of enamel and dentine reflecting the diet; cusp patterns also often useful taxonomically •Mostly small, average range of body size is 20-100 g, but some can get pretty large (capybara is largest extant species, may reach 50 kg) •Mostly herbivorous (including some specialized as folivores and granivores) or omnivorous •Females with duplex uterus, baculum present in males •Worldwide distribution, wide range of habitats and ecologies And now, on to a few Families..
    [Show full text]
  • Natural History of Oregon Coast Mammals Chris Maser Bruce R
    Forest Servile United States Depa~ment of the interior Bureau of Land Management General Technical Report PNW-133 September 1981 ser is a ~ildiife biologist, U.S. ~epa~rn e Interior, Bureau of La gement (stationed at Sciences Laboratory, Corvallis, Oregon. Science Center, ~ewpo Sciences Laborato~, Corvallis, Oregon. T. se is a soil scientist, U.S. wa t of culture, Forest Service, Pacific rthwest Forest and ange ~xperim Station, lnst~tute of orthern Forestry, Fairbanks, Alaska. Natural History of Oregon Coast Mammals Chris Maser Bruce R. Mate Jerry F. Franklin C. T. Dyrness Pacific Northwest Forest and Range Experiment Station U.S. Department of Agriculture Forest Service General Technical Report PNW-133 September 1981 Published in cooperation with the Bureau of Land Management U.S. Department of the Interior Abstract Maser, Chris, Bruce R. Mate, Jerry F. Franklin, and C. T. Dyrness. 1981. Natural history of Oregon coast mammals. USDA For. Serv. Gen. Tech. Rep. PNW-133, 496 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg. The book presents detailed information on the biology, habitats, and life histories of the 96 species of mammals of the Oregon coast. Soils, geology, and vegetation are described and related to wildlife habitats for the 65 terrestrial and 31 marine species. The book is not simply an identification guide to the Oregon coast mammals but is a dynamic portrayal of their habits and habitats. Life histories are based on fieldwork and available literature. An extensive bibliography is included. Personal anecdotes of the authors provide entertaining reading. The book should be of use to students, educators, land-use planners, resource managers, wildlife biologists, and naturalists.
    [Show full text]
  • Proquest Dissertations
    The Neotropical rodent genus Rhipidom ys (Cricetidae: Sigmodontinae) - a taxonomic revision Christopher James Tribe Thesis submitted for the degree of Doctor of Philosophy University College London 1996 ProQuest Number: 10106759 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10106759 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT South American climbing mice and rats, Rhipidomys, occur in forests, plantations and rural dwellings throughout tropical South America. The genus belongs to the thomasomyine group, an informal assemblage of plesiomorphous Sigmodontinae. Over 1700 museum specimens were examined, with the aim of providing a coherent taxonomic framework for future work. A shortage of discrete and consistent characters prevented the use of strict cladistic methodology; instead, morphological assessments were supported by multivariate (especially principal components) analyses. The morphometric data were first assessed for measurement error, ontogenetic variation and sexual dimorphism; measurements with most variation from these sources were excluded from subsequent analyses. The genus is characterized by a combination of reddish-brown colour, long tufted tail, broad feet with long toes, long vibrissae and large eyes; the skull has a small zygomatic notch, squared or ridged supraorbital edges, large oval braincase and short palate.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Vaccination of Sheep with Bovine Viral Diarrhea Vaccines Does Not Protect Against Fetal Infection After Challenge of Pregnant Ewes with Border Disease Virus
    Article Vaccination of Sheep with Bovine Viral Diarrhea Vaccines Does Not Protect against Fetal Infection after Challenge of Pregnant Ewes with Border Disease Virus Gilles Meyer 1,* , Mickael Combes 2, Angelique Teillaud 1, Celine Pouget 3, Marie-Anne Bethune 4 and Herve Cassard 1 1 Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31100 Toulouse, France; [email protected] (A.T.); [email protected] (H.C.) 2 Groupement Vétérinaire Saint Léonard, 87400 Saint Léonard de Noblat, France; [email protected] 3 Fédération des Organismes de Défense Sanitaire de l’Aveyron, 12000 Rodez, France; [email protected] 4 RT1 Port Laguerre, BP 106, Païta, 98890 Nouvelle Calédonie, France; [email protected] * Correspondence: [email protected]; Tel.: +33-5-61-19-32-98 Abstract: Border Disease (BD) is a major sheep disease characterized by immunosuppression, congen- ital disorders, abortion, and birth of lambs persistently infected (PI) by Border Disease Virus (BDV). Control measures are based on the elimination of PI lambs, biosecurity, and frequent vaccination which aims to prevent fetal infection and birth of PI. As there are no vaccines against BDV, farmers use vaccines directed against the related Bovine Viral Diarrhea Virus (BVDV). To date, there is no published evidence of cross-effectiveness of BVDV vaccination against BDV infection in sheep. We Citation: Meyer, G.; Combes, M.; tested three commonly used BVDV vaccines, at half the dose used in cattle, for their efficacy of Teillaud, A.; Pouget, C.; Bethune, protection against a BDV challenge of ewes at 52 days of gestation. Vaccination limits the duration of M.-A.; Cassard, H.
    [Show full text]