Megacollybia (Agaricales)

Total Page:16

File Type:pdf, Size:1020Kb

Megacollybia (Agaricales) Rep. Tottori Mycol. Inst. 45 : 1–57, 2007. Megacollybia (Agaricales) KAREN W. HUGHES1, RONALD H. PETERSEN1, JUAN LUIS MATA2, NADEZHDA V. PSURTSEVA3, ALEXANDER E. KOVALENKO3, OLGA V. MOROZOVA3, EDGAR B. LICKEY 4, JOAQUIN CIFUENTES BLANCO5, DAVID P. LEWIS6, EIJI NAGASAWA7, ROY E. HALLING8, SEIJI TAKEHASHI9, M. CATHERINE AIME10, TOLGOR BAU11, TERRY HENKEL12 Abstract The genus Megacollybia, originally proposed for M. (Collybia) platyphylla, has traditional- ly been treated as monotaxic. A phylogenetic reconstruction based on ITS rDNA sequences indicates that several species are involved, with strong phylogeographic signal. Although morphological characters are largely qualitative, examination of basidiomata suggests that specimens included in discrete clades can be distinguished at the species level. On these bases (phylogenetic, morphological), several new taxa are proposed: M. clitocyboidea, M. texensis, M. fusca, M. subfurfuracea, M. rodmani (with f. murina) and M. marginata. Tricholomopsis fallax is transferred to Megacollybia; M. platyphylla remains the type species of the genus but appears to be restricted to Europe, Scandinavia and western and central Russia. Key words: Taxonomy, systematics, biogeography, phylogeny, phylogeography 1 Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1100 USA. 2 Department of Biology, University of South Alabama, Mobile, AL 36688 USA 3 Komarov Botanical Institute, 2 Prof. Popov Street, St Petersburg, 197376 Russia 4 Department of Biology, Bridgewater College, Bridgewater, VA 22812 USA 5 Herbario FCME, Facultad de Ciencias UNAM, AP 86-95, C.P. 14391, Tlalpan, Mexico D.F., Mexico 6 262 CR 3062, Newton, TX 75966-7003 USA 7 Tottori Mycological Institute, 211 Kokoge, Tottori 689-1125, Japan 8 New York Botanical Garden, Bronx, NY 10458-5126, USA 9 1-3-10-3 Kanayama, Teine-ku, Sapporo, Hokkaido 006-0041, Japan 10 Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 USA 11 Institute of Mycology, Jilin Agricultural University, 2888 Xincheng St., Changhun City, Peoples’ Republic of China 12 Department of Biological Sciences, Humboldt State University, Arcata, CA 95521 USA 1 K.H. HUGHES et al. Introduction Moncalvo, et al. (2002), in which Tricholomop- sis rutilans is found in a poorly supported clade By the time Kotlaba and Pouzar (1972) (24, /tricholomopsis) with Clavaria fusiformis, segregated Megacollybia, Collybia (Tricho- Marasmius rhyssophyllus and Collybia aurea, of lomopsis, Oudemansiella, Megacollybia) which all of the latter three can find more com- platyphylla had become a popular name in use fortable morphogeneric placements. Mega- throughout Europe and eastern North collybia platyphylla, conversely, is in a clade America. As long as workers from these (27, /hydropoid) with three Gerronema taxa, regions did not seriously collect in each oth- Clitocybula oculus, two Hydropus taxa and a ers’ territory this single name seemed applica- Porotheleum and these findings have recently ble for what was considered to be a been confirmed by the six-locus analyses of transAtlantic organism. The name was also Matheny et al. (2006). Tricholomopsis fallax applied to far east-Asian basidiomata which ITS sequences are most closely related to seemed to resemble those from Europe. Megacollybia platyphylla by blast search, then Comparing photos by Phillips (1981: 44, as to Clitocybula and Gerronema but not to Tricholomopsis platyphylla) of the mushroom Tricholomopsis sensu stricto. from Europe, by Phillips (1991: 46 under the Petersen and Gordon (1994) reported that same name) for the mushroom in North eastern North American Megacollybia had not America, and Halling and Mueller (2005: 151, yielded to monokaryon culture, while spores as M. platyphylla) for the mushroom in Costa from EuroScandinavian collections not only Rica, it is a wonder that the same epithet has underwent in vitro spore germination, but been applied for such disparate morphological crossed in culture and exhibited a tetrapolar forms. The photo from Huffman et al. (1989: mating system. Combining these data with Fig. 93) may show yet another taxon from the morphology, it was suggested that a more thor- midsection of North America. ough investigation of Megacollybia sensu lato Singer (1986) and Smith (1960) considered could be profitable. Any study of Megacolly- that Tricholomopsis sheltered a complex of bia, whether morphological or molecular, must about 30 species [T. rutilans (typus generis), T. start with knowledge of western European decora, etc.] of brightly colored, centrally stipi- Megacollybia platyphylla since the epithet was tate agarics fruiting on wood, but included, adopted from Persoon. Material from west-cen- sometimes as a separate section Platyphyllae tral Germany should serve as the foundation for (Singer, 1986: 253), T. platyphylla (typus sec- comparison of other collections. In the litera- tionis). Singer (1986) listed several names ture, good descriptions of the western European under sect. Platyphyllae, most of which he con- organism have been furnished by Boekhout (in sidered to belong in other genera or were Bas et al., 1999), Breitenbach and Kränzlin unpublished. Oblique reference to South (1991) and Gulden (in Hansen and Knudsen, American species of Platyphyllae, “...confirm- 1992). ing the position of the whole group within Our project had the following objectives: 1) Tricholomopsis” (Singer 1986: 252, ftnt) fur- to investigate whether a single species epithet nished no data. could accommodate many collections of The conjecture that Tricholomopsis and Megacollybia platyphylla from across its pur- Megacollybia are separate entities has been sup- ported range; 2) to determine infrageneric ported by molecular data, most convincingly by clades and their relationships within 2 Megacollybia (Agaricales) Megacollybia; 3) to explore whether phylogeo- Other herbarium acronyms are from Index graphic signal was present in a phylogenetic Herbariorum (http://sciweb.nybg.org/sci- reconstruction of the genus; 4) to propose and ence2/IndexHerbariorum.asp). TFB = number describe whatever additional taxa might be from Tennessee fieldbooks assigned to speci- necessary as a result of the study; and 5) to mens for documentation (i.e. notes, photos, explore the relationship of Megacollybia with etc.), supplanted by TENN numbers when Tricholomopsis fallax , a closely related accessioned into TENN herbarium. GSMNP = species reported from the North American Great Smoky Mountains National Park, strad- temperate western coast (British Columbia, dling the border between Tennessee and North Washington, Idaho, Oregon) and the dry Carolina, USA. In species descriptions, char- southwest (Arizona) . acters in Italics are considered diagnostic for Macro- and micromorphology were com- the taxon. bined with an ITS-based phylogenetic recon- Abbreviations of basidiospore statistics are struction to investigate collections from eastern as follows: x = number of spores measured; Q and western North America, Scandinavia, west- = spore length divided by spore width; Qm = ern and eastern Europe, western, central and far median Q value over the spore population; Lm = eastern Russia, east Asia, Central America and median spore length over the spore population. northern South America. Using the western Collections from which DNA sequences European organism as prototype, results were obtained are listed in Table 1. Specimens include: 1) the eastern North American organ- examined morphologically are listed under ism requires a new species epithet (M. each taxon in “Specimens examined.” rodmani); 2) temperate east Asia shelters a Basidiomata used for both purposes appear in species (M. marginata) closely related to but both places. distinct from the northern and western European organism; 3) northern South America Molecular protocols produces yet another species (M. fusca); and 4) Procedures for DNA extractions were there are at least three lineages represented described in Mata et al. (2007). PCR amplifica- across North America. Tricholomopsis fallax tion of the ribosomal ITS1-5.8S-ITS2 region falls within Megacollybia and transfer to was carried out with primers ITS1F and ITS4. Megacollybia is proposed. Thus, reflected in DNA sequencing followed manufacturer’s the ITS-based phylogeny, Megacollybia must directions for Big Dye Terminator mix (ABI) include at least seven species, with more to with forward primer ITS5 and reverse primer come as additional geographic areas are ITS4. Intermediate sequencing primers ITS2 explored. and ITS3 were used as necessary. Primers ITS2, ITS3, ITS4 and ITS5 are described in White et Materials and Methods al. (1990); primer ITS1F is described in Gardes and Bruns (1993). Cloning was accomplished Color notations in quotation marks are from with a Promega pGem-T vector and JM109 Ridgway (1912); those cited alphanumerically competent cells (Promega Corp., Madison, WI) (i.e. 7B3) are from Kornerup and Wanscher following manufacturer’s instructions when (1967). BF = bright field microscopy; PhC = direct sequencing did not resolve a sequence. phase contrast microscopy. TENN = herbarium Five clones per collection were sequenced. of the University of Tennessee, Knoxville. Restriction sites were determined by the GCG 3 K.H. HUGHES et al. Table 1 — GenBank Numbers for collections used in this study 4 Megacollybia (Agaricales) 5 K.H. HUGHES et al. 6 Megacollybia (Agaricales) 7 K.H. H UGHES 8 et al. crefers to clone number; ss refers to single
Recommended publications
  • <I>Hydropus Mediterraneus</I>
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.393 Volume 121, pp. 393–403 July–September 2012 Laccariopsis, a new genus for Hydropus mediterraneus (Basidiomycota, Agaricales) Alfredo Vizzini*, Enrico Ercole & Samuele Voyron Dipartimento di Scienze della Vita e Biologia dei Sistemi - Università degli Studi di Torino, Viale Mattioli 25, I-10125, Torino, Italy *Correspondence to: [email protected] Abstract — Laccariopsis (Agaricales) is a new monotypic genus established for Hydropus mediterraneus, an arenicolous species earlier often placed in Flammulina, Oudemansiella, or Xerula. Laccariopsis is morphologically close to these genera but distinguished by a unique combination of features: a Laccaria-like habit (distant, thick, subdecurrent lamellae), viscid pileus and upper stipe, glabrous stipe with a long pseudorhiza connecting with Ammophila and Juniperus roots and incorporating plant debris and sand particles, pileipellis consisting of a loose ixohymeniderm with slender pileocystidia, large and thin- to thick-walled spores and basidia, thin- to slightly thick-walled hymenial cystidia and caulocystidia, and monomitic stipe tissue. Phylogenetic analyses based on a combined ITS-LSU sequence dataset place Laccariopsis close to Gloiocephala and Rhizomarasmius. Key words — Agaricomycetes, Physalacriaceae, /gloiocephala clade, phylogeny, taxonomy Introduction Hydropus mediterraneus was originally described by Pacioni & Lalli (1985) based on collections from Mediterranean dune ecosystems in Central Italy, Sardinia, and Tunisia. Previous collections were misidentified as Laccaria maritima (Theodor.) Singer ex Huhtinen (Dal Savio 1984) due to their laccarioid habit. The generic attribution to Hydropus Kühner ex Singer by Pacioni & Lalli (1985) was due mainly to the presence of reddish watery droplets on young lamellae and sarcodimitic tissue in the stipe (Corner 1966, Singer 1982).
    [Show full text]
  • Antibiotics from Basidiomycetes. Ix"
    1112 THE JOURNAL OF ANTIBIOTICS NOV. 1979 ANTIBIOTICS FROM BASIDIOMYCETES. IX" OUDEMANSIN, AN ANTIFUNGAL ANTIBIOTIC FROM OUDEMANSIELLA MUCIDA (SCHRADER ex FR.) HOEHNEL (AGARICALES) TIMM ANKE, HANS JURGEN HECHT*, GEORG SCHRAMM** and WOLFGANG STEGLICH** Institut fur Biologic I der Universitat, Auf der Morgenstelle 1, D-74 Tubingen, FRG *Forschergruppe Rontgenstrukturanalyse Biologischer Makromolekiile , Universitat Wiirzburg, Am Hubland, D-87 Wurzburg, FRG **Institut fur Organische Chemie and Biochemie der Universitat , Gerhard-Domagk-Str. 1, D-53 Bonn, FRG (Received for publication July 2, 1979) From mycelial cultures of Oudemansiella mucida a crystalline optically active antibiotic, oudemansin (2), has been isolated; its structure is closely related to strobilurin A (1). The relative configuration of oudemansin have been determined by X-ray analysis. The antibiotic exhibits strong antifungal properties and inhibits respiration in fungi, cells of the ascitic form of EHRLICHcarcinoma, and rat liver mitochondria. Recently we elucidated the structures of two antifungal antibiotics from cultures of Strobi/urus tenace1/us2'31. Strobilurin A (1) has the same molecular formula Cs,;H,903 as mucidin, an antifungal compound isolated from Oudemansie/la mucida by VONDRACEK et a/.4'51 However, in contrast to oily, achiral 1, mucidin is crystalline (m.p. 51-53°C) and optically active ([x]546 +33')". In this publication we describe the isolation and structural elucidation of oudemansin (2), a new antibiotic from Oudemansiella mucida showing similar biological activity to 1. Results and Discussion 1. Fermentation, Isolation, and Physico-Chemical Properties Mycelial cultures of Oudemansie/la mucida obtained from spore prints were grown on yeast extract- malt extract-glucose (YMG) medium as described in the experimental section.
    [Show full text]
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
    [Show full text]
  • The Biosynthesis of Plant and Fungal Sesquiterpenoids in Ustilago Maydis and Discovery of a Bioactive Compound from Fistulina Hepatica
    The biosynthesis of plant and fungal sesquiterpenoids in Ustilago maydis and discovery of a bioactive compound from Fistulina hepatica Inaugural-Dissertation Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Jungho Lee aus Daegu Düsseldorf, September 2020 aus dem Institut für Mikrobiologie der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Michael Feldbrügge Korreferent : Prof. Dr. Julia Frunzke Tag der mündlichen Prüfung: 26. Oktober 2020 Eidesstattliche Erklärung Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die Dissertation wurde in ihrer jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht. Ich habe zuvor keine erfolglosen Promotionsversuche unternommen. Ort, Datum Unterschrift Die Untersuchungen zur vorliegenden Arbeit wurden von Oktober 2016 bis September 2020 in Düsseldorf an der Heinrich-Heine-Universität in dem Institut für Mikrobiologie unter der Betreuung von Herrn Prof. Dr. Michael Feldbrügge durchgeführt. Teile dieser Arbeit wurden veröffentlicht in: Lee, J., Hilgers, F., Loeschke, A., Jaeger, K. E., Feldbrügge, M., 2020, Ustilago maydis serves as a novel production host for the synthesis of plant and fungal sesquiterpenoids. Frontiers in Microbiology 11, 1655. Lee, J., Shi, Y., Grün, P., Gube, M., Feldbrügge, M., Bode, H. B., Hennicke, F., 2020, Identification of feldin, an antifungal polyine from the beefsteak fungus Fistulina hepatica. Biomolecules 10, 1502. Summary Summary Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • New Data on the Occurence of an Element Both
    Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif.
    [Show full text]
  • Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
    Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F.
    [Show full text]
  • Newsletter of Jun
    V OMPHALINISSN 1925-1858 Vol. V, No 6 Newsletter of Jun. 21, 2014 OMPHALINA OMPHALINA, newsletter of Foray Newfoundland & Labrador, has no fi xed schedule of publication, and no promise to appear again. Its primary purpose is to serve as a conduit of information to registrants of the upcoming foray and secondarily as a communications tool with members. Issues of OMPHALINA are archived in: is an amateur, volunteer-run, community, Library and Archives Canada’s Electronic Collection <http://epe. not-for-profi t organization with a mission to lac-bac.gc.ca/100/201/300/omphalina/index.html>, and organize enjoyable and informative amateur Centre for Newfoundland Studies, Queen Elizabeth II Library mushroom forays in Newfoundland and (printed copy also archived) <http://collections.mun.ca/cdm4/ description.php?phpReturn=typeListing.php&id=162>. Labrador and disseminate the knowledge gained. The content is neither discussed nor approved by the Board of Directors. Therefore, opinions expressed do not represent the views of the Board, Webpage: www.nlmushrooms.ca the Corporation, the partners, the sponsors, or the members. Opinions are solely those of the authors and uncredited opinions solely those of the Editor. ADDRESS Foray Newfoundland & Labrador Please address comments, complaints, contributions to the self-appointed Editor, Andrus Voitk: 21 Pond Rd. Rocky Harbour NL seened AT gmail DOT com, A0K 4N0 CANADA … who eagerly invites contributions to OMPHALINA, dealing with any aspect even remotely related to mushrooms. E-mail: info AT nlmushrooms DOT ca Authors are guaranteed instant fame—fortune to follow. Authors retain copyright to all published material, and BOARD OF DIRECTORS CONSULTANTS submission indicates permission to publish, subject to the usual editorial decisions.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Omphalina Sensu Lato in North America 3: Chromosera Gen. Nov.*
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Beihefte Jahr/Year: 1995 Band/Volume: 10 Autor(en)/Author(s): Redhead S. A., Ammirati Joseph F., Norvell L. L. Artikel/Article: Omphalina sensu lato in North America 3: Chromosera gen. nov. 155-164 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.zobodat.at Omphalina sensu lato in North America 3: Chromosera gen. nov.* S. A. Redhead1, J. F Ammirati2 & L. L. Norvell2 Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada, K1A 0C6 department of Botany, KB-15, University of Washington, Seattle, WA 98195, U.S.A. Redhead, S. A. , J. F. Ammirati & L. L. Norvell (1995).Omphalina sensu lato in North America 3: Chromosera gen. nov. -Beih. Sydowia X: 155-167. Omphalina cyanophylla and Mycena lilacifolia are considered to be synonymous. A new genus Chromosera is described to acccommodate C. cyanophylla. North American specimens are described. Variation in the dextrinoid reaction of the trama is discussed as is the circumscription of the genusMycena. Peculiar pigment corpuscles are illustrated. Keywords: Agaricales, amyloid, Basidiomycota, dextrinoid, Corrugaria, Hydropus, Mycena, Omphalina, taxonomy. We have repeatedly collected - and puzzled over - an enigmatic species commonly reported in modern literature under different names: Mycena lilacifolia (Peck) Smith in North America (Smith, 1947, 1949; Smith & al., 1979; Pomerleau, 1980; McKnight & McKnight, 1987) or Europe (Horak, 1985) and Omphalia cyanophylla (Fr.) Quel, or Omphalina cyanophylla (Fr.) Quel, in Europe (Favre, 1960; Kühner & Romagnesi, 1953; Kühner, 1957; Courtecuisse, 1986; Krieglsteiner & Enderle, 1987).
    [Show full text]