Antibiotics from Basidiomycetes. Ix"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Hydropus Mediterraneus</I>
ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.393 Volume 121, pp. 393–403 July–September 2012 Laccariopsis, a new genus for Hydropus mediterraneus (Basidiomycota, Agaricales) Alfredo Vizzini*, Enrico Ercole & Samuele Voyron Dipartimento di Scienze della Vita e Biologia dei Sistemi - Università degli Studi di Torino, Viale Mattioli 25, I-10125, Torino, Italy *Correspondence to: [email protected] Abstract — Laccariopsis (Agaricales) is a new monotypic genus established for Hydropus mediterraneus, an arenicolous species earlier often placed in Flammulina, Oudemansiella, or Xerula. Laccariopsis is morphologically close to these genera but distinguished by a unique combination of features: a Laccaria-like habit (distant, thick, subdecurrent lamellae), viscid pileus and upper stipe, glabrous stipe with a long pseudorhiza connecting with Ammophila and Juniperus roots and incorporating plant debris and sand particles, pileipellis consisting of a loose ixohymeniderm with slender pileocystidia, large and thin- to thick-walled spores and basidia, thin- to slightly thick-walled hymenial cystidia and caulocystidia, and monomitic stipe tissue. Phylogenetic analyses based on a combined ITS-LSU sequence dataset place Laccariopsis close to Gloiocephala and Rhizomarasmius. Key words — Agaricomycetes, Physalacriaceae, /gloiocephala clade, phylogeny, taxonomy Introduction Hydropus mediterraneus was originally described by Pacioni & Lalli (1985) based on collections from Mediterranean dune ecosystems in Central Italy, Sardinia, and Tunisia. Previous collections were misidentified as Laccaria maritima (Theodor.) Singer ex Huhtinen (Dal Savio 1984) due to their laccarioid habit. The generic attribution to Hydropus Kühner ex Singer by Pacioni & Lalli (1985) was due mainly to the presence of reddish watery droplets on young lamellae and sarcodimitic tissue in the stipe (Corner 1966, Singer 1982). -
LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005. -
Megacollybia (Agaricales)
Rep. Tottori Mycol. Inst. 45 : 1–57, 2007. Megacollybia (Agaricales) KAREN W. HUGHES1, RONALD H. PETERSEN1, JUAN LUIS MATA2, NADEZHDA V. PSURTSEVA3, ALEXANDER E. KOVALENKO3, OLGA V. MOROZOVA3, EDGAR B. LICKEY 4, JOAQUIN CIFUENTES BLANCO5, DAVID P. LEWIS6, EIJI NAGASAWA7, ROY E. HALLING8, SEIJI TAKEHASHI9, M. CATHERINE AIME10, TOLGOR BAU11, TERRY HENKEL12 Abstract The genus Megacollybia, originally proposed for M. (Collybia) platyphylla, has traditional- ly been treated as monotaxic. A phylogenetic reconstruction based on ITS rDNA sequences indicates that several species are involved, with strong phylogeographic signal. Although morphological characters are largely qualitative, examination of basidiomata suggests that specimens included in discrete clades can be distinguished at the species level. On these bases (phylogenetic, morphological), several new taxa are proposed: M. clitocyboidea, M. texensis, M. fusca, M. subfurfuracea, M. rodmani (with f. murina) and M. marginata. Tricholomopsis fallax is transferred to Megacollybia; M. platyphylla remains the type species of the genus but appears to be restricted to Europe, Scandinavia and western and central Russia. Key words: Taxonomy, systematics, biogeography, phylogeny, phylogeography 1 Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1100 USA. 2 Department of Biology, University of South Alabama, Mobile, AL 36688 USA 3 Komarov Botanical Institute, 2 Prof. Popov Street, St Petersburg, 197376 Russia 4 Department of Biology, Bridgewater College, Bridgewater, -
The Biosynthesis of Plant and Fungal Sesquiterpenoids in Ustilago Maydis and Discovery of a Bioactive Compound from Fistulina Hepatica
The biosynthesis of plant and fungal sesquiterpenoids in Ustilago maydis and discovery of a bioactive compound from Fistulina hepatica Inaugural-Dissertation Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Jungho Lee aus Daegu Düsseldorf, September 2020 aus dem Institut für Mikrobiologie der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Michael Feldbrügge Korreferent : Prof. Dr. Julia Frunzke Tag der mündlichen Prüfung: 26. Oktober 2020 Eidesstattliche Erklärung Ich versichere an Eides Statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Die Dissertation wurde in ihrer jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht. Ich habe zuvor keine erfolglosen Promotionsversuche unternommen. Ort, Datum Unterschrift Die Untersuchungen zur vorliegenden Arbeit wurden von Oktober 2016 bis September 2020 in Düsseldorf an der Heinrich-Heine-Universität in dem Institut für Mikrobiologie unter der Betreuung von Herrn Prof. Dr. Michael Feldbrügge durchgeführt. Teile dieser Arbeit wurden veröffentlicht in: Lee, J., Hilgers, F., Loeschke, A., Jaeger, K. E., Feldbrügge, M., 2020, Ustilago maydis serves as a novel production host for the synthesis of plant and fungal sesquiterpenoids. Frontiers in Microbiology 11, 1655. Lee, J., Shi, Y., Grün, P., Gube, M., Feldbrügge, M., Bode, H. B., Hennicke, F., 2020, Identification of feldin, an antifungal polyine from the beefsteak fungus Fistulina hepatica. Biomolecules 10, 1502. Summary Summary Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. -
New Data on the Occurence of an Element Both
Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif. -
Comparison of the Decay Behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions
microorganisms Article Comparison of the Decay Behavior of Two White-Rot Fungi in Relation to Wood Type and Exposure Conditions Ehsan Bari 1,* , Geoffrey Daniel 2, Nural Yilgor 3 , Jong Sik Kim 4, Mohammad Ali Tajick-Ghanbary 5, Adya P. Singh 6 and Javier Ribera 7,* 1 Department of Wood Sciences and Engineering, Section of Wood Microbiology and Genetic, Technical Faculty of No. 1, Mazandaran Branch, Technical and Vocational University (TVU), Sari 4816831168, Iran 2 Department of Biomaterial and Technology/Wood Science, Swedish University of Agricultural Sciences, P.O. Box 7008, 75007 Uppsala, Sweden; geoff[email protected] 3 Department of Forest Products Chemistry and Technology Division, Forest Industry Engineering, Forestry Faculty, Istanbul University Cerrahpa¸sa,34473 Istanbul, Turkey; [email protected] 4 Department of Wood Science and Engineering, Chonnam National University, Gwangju 61186, Korea; [email protected] 5 Department of Mycology and Plant Pathology, College of Agronomic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818166996, Iran; [email protected] 6 Scion, Rotorua 3046, New Zealand; [email protected] 7 Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland * Correspondence: [email protected] (E.B.); [email protected] (J.R.); Tel.: +98-9354367572 (E.B.); +41-587657607 (J.R.) Received: 9 November 2020; Accepted: 3 December 2020; Published: 4 December 2020 Abstract: Fungal wood decay strategies are influenced by several factors, such as wood species, moisture content, and temperature. This study aims to evaluate wood degradation characteristics of spruce, beech, and oak after exposure to the white-rot fungi Pleurotus ostreatus and Trametes versicolor. -
Strobilurus Stephanocystis
Strobilurus stephanocystis Pilzportrait Fungi, Dikarya, Basidiomycota, Agaricomycotina, Agaricomycetes, Agaricomycetidae, Agaricales, Physalacriaceae Strobilurus stephanocystis Milder Nagelschwamm, Milder Zapfenrübling Strobilurus stephanocystis Strobilurus stephanocystis (Kühner & Romagnesi ex Hora) Singer 1962 Marasmius esculentus subsp. pini Singer 1943 Pseudohiatula stephanocystis Kühner & Romagnesi ex Hora 1960 Strobilurus stephanocystis (Kühner & Romagnesi ex Hora) Singer 1962 Von Strobilurus tenacellus und Baeospora myosura nur mikroskopische sicher unterscheidbar. olfaktorisch / organoleptisch Geschmack Mild botanisch / ökologisch Standort Auf Zapfen von Pinus mugo mikroskopisch Hutdeckschicht Birnenförmige, dickwandige Zellen, bräunlich pigmentiert mit gelblichem Inhalt Cheilozystiden Dickwandig, apikal inkrustiert Pleurozystiden Mit sehr starken gut ausgeprägten schopfartigen Inkrustationen. chemisch Melzers-Reagenz Jod Sporen negativ (inamyloid) Gattung/en: Strobilurus https://www.mycopedia.ch/pilze/1086.htm Siehe auch Baeospora https://www.mycopedia.ch/pilze/4270.htm Strobilurus esculentus https://www.mycopedia.ch/pilze/4810.htm Strobilurus tenacellus https://www.mycopedia.ch/pilze/5796.htm STROBILURUS_STEPHANOCYSTIS www.mycopedia.ch - T. Flammer© 07.09.2021 Seite 1 Strobilurus stephanocystis Pilzportrait Fungi, Dikarya, Basidiomycota, Agaricomycotina, Agaricomycetes, Agaricomycetidae, Agaricales, Physalacriaceae Strobilurus stephanocystis Milder Nagelschwamm, Milder Zapfenrübling Cheilozystiden Flammer, T© 3418 18.11.2012 -
And White-Rot in Wood-Decay -Omics Data of Two Armillaria Species
microorganisms Article Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species Neha Sahu 1,2, Zsolt Merényi 1, Balázs Bálint 1, Brigitta Kiss 1, György Sipos 3,4 , Rebecca A. Owens 5 and László G. Nagy 1,6,* 1 Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; [email protected] (N.S.); [email protected] (Z.M.); [email protected] (B.B.); [email protected] (B.K.) 2 Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary 3 Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary; [email protected] 4 Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland 5 Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland; [email protected] 6 Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary * Correspondence: [email protected] Abstract: Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using tran- scriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. -
Gwent-Glamorgan Recorders' Newsletter Issue 20
Gwent-Glamorgan Recorders’ Newsletter Issue 20 Spring 2019 Contents Clubtail Dragonflies along the River Wye at Llandogo 3 Hawfinch at Fforestganol Local Nature Reserve 2018 4 Willow Tit Survey 5 Taf Fechan: My favourite species of 2018 6-7 Severn Estuary Bird Counts: Now and Then 8-10 A winters recording at Taf Fechan: macro to micro 11 Cover photo:Cover Redshank ( The Importance of Fungi 12-13 Nest Recording Volunteers Required 14-15 Early male Clubtail SEWBReC Update 16-17 SEWBReC Membership & Governance 18 Clubtail Dragonflies along the River Wye at Llandogo Clubtail Count 2019 18 Tringa totanus) Colin Titcombe The Vegetative Key to Wetland Plants 19 In the world of British dragonfly recording, a lot of interest in recent years has focussed on the Common Clubtail (Gomphus vulga- tissimus). I first came across this species after moving into Llandogo in 1998. In the following years I noted their presence at various Glamorgan Bird Club Swift Project Update 19 localities between Llandogo and Lower Penallt on the Gwent side of the river. I haven’t extended my searches beyond this. © Chris Hatch Living Levels: Wild Watch 20 It is generally accepted that the typical flight period for Gomphus vulgatissimus extends from May into early July. In my experience, along the Wye, they first appear about mid-May (24th May in 2016 and 15th May in 2017) and can then be seen on and off through A response to Colin Titcombe’s article on mistletoe hosts 21 June and into early July. I say ‘on and off’ because, once emerged, they vacate the river until they become sexually mature. -
Activity of Armillarisin B in Vitro Against Plant Pathogenic Fungi
Activity of Armillarisin B in vitro against Plant Pathogenic Fungi Jin-Wen Shena, Bing-Ji Mab,*, Wen Lib, Hai-You Yua, Ting-Ting Wua, and Yuan Ruanb a College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, P. R. China b Department of Traditional Chinese Medicine, Agronomy College of Henan Agricultural University, Zhengzhou 450002, P. R. China. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 64 c, 790 – 792 (2009); received August 6, 2009 The methanolic extract of the fruiting bodies of the mushroom Armillariella tabescens was found to show antifungal activity against Gibberella zeae. The active compound was isolated from the fruiting bodies of A. tabescens by bioassay-guided fractionation of the ex- tract and identifi ed as armillarisin B. Armillarisin B eventually corresponds to 2-hydroxy-2- phenylpropanediamide and its structure was confi rmed on the basis of spectroscopic studies including 2D NMR experiments. Key words: Armillariella tabescens, Armillarisin B, Antifungal Activity Introduction by bioassay-guided fractionation of the extract and identifi ed as armillarisin B. In this report, we Research during the last decade has convinc- describe the isolation, structural elucidation, and ingly shown that natural products isolated from antifungal activity of armillarisin B. mushrooms play an important role, not only in pharmacology, but also in agriculture, as a rich Results and Discussion source of bioactive components that can be used in crop protection (Wink, 1993; Luo et al., 2005). The MeOH extract of A. tabescens showed Strobilurin A and oudemansin A are fungicidal fungitoxic activity against Gibberella zeae, Col- natural products found in the basidiomycete fungi letotrichum ophiopogonis and Gloesporum fructi- Strobilurus tenacellus (Pers. -
However, It Is the Affinity of These Type Species, Conception 1962, There
PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 2, 3, pp. 407-415 (1962) New genera of Fungi—VIII Rolf Singer Universidad de Buenos Aires The based structure of with genus Pseudohiatula, on hymeniform epicutis interspersed dermatocystidia or trichodermial-palisadic structure without all in tribus dermatocystidia, contains species, belonging the same (Marasmieae), but does not seem to be sufficiently homogeneous to be restricted maintained sensu lato. It is now to the type species (P. cyatheae), and P. is united with in the callistosporioides Cyptotrama macrobasidium genus Cyptotrama; P. irrorata and P. panamensis (perhaps also P. ohshimae) are referable to Hydropus (where species with projecting dermatocystidia and with muricate pleurocystidia should be admitted); P. conigenoides, esculenta, and tenacella in and stephanocystis, are placed a new genus, Strobilurus, P. cinnamomea in another new genus, Physocystidium. The Pseudohiatula is characterized of the genus by a very specific structure epicutis which consists of a corticate hymeniform layer of rather broad elements, with larger dermatocystidia interspersed. On the basis of the species known formerly and under of the characters of the until consideration type species known recently, the species ofMarasmieae (Tricholomataceae) with this particular cuticular structure appeared to form a fairly homogeneous group corresponding to an emended concept of the Pseudohiatula such circumscribed in modern genus as in my book 'Agaricales taxonomy', 2nd ed., C. Cramer, Weinheim/Bergstr., Germany, 1962. A revision of the type element of the genus Pseudohiatula has become possible because ofthe discovery of the respective species in Brazil (Singer in Vellozia,i962), but the corresponding readjustment in the generic taxonomy of the Tricholo- the affinities mataceae—Marasmieae has been postponed until more data on of the other species entering Pseudohiatula in the classification of 1962 became available. -
Grzyby Babiej Góry
ISBN 978-83-64423-86-4 Grzyby Babiej Góry Babiej Grzyby Grzyby Babiej Góry Grzyby Babiej Góry 1 Grzyby Babiej Góry 2 Grzyby Babiej Góry Redaktorzy: Wiesław Mułenko Jan Holeksa 3 Grzyby Babiej Góry Grzyby Babiej Góry Redaktorzy: Wiesław Mułenko Jan Holeksa Recenzent: Prof. dr hab. Wiesław Mułenko Fotografia na okładce: Opieńka miodowa [Armillaria mellea (Vahl) P. Kumm. (s.l.)]. Fot. Marta Piasecka Redakcja techniczna: Maciej Mażul Reprodukcja dzieła w celach komercyjnych, w całości lub we fragmentach jest zabroniona bez pisemnej zgody posiadacza praw autorskich © by Babiogórski Park Narodowy, 2018 PL 34-222 Zawoja, Zawoja Barańcowa 1403 tel. +48 33 8775 110, +48 33 8776 702 fax. +48 33 8775 554 www: bgpn.pl Wrocław-Zawoja 2018 ISBN 978-83-64423-86-4 Wydawca: Grafpol Agnieszka Blicharz-Krupińska Projekt, opracowanie graficzne, skład, łamanie: Grafpol Agnieszka Blicharz-Krupińska ul. Czarnieckiego 1, 53-650 Wrocław, tel. +48 507 096 545 www.argrafpol.pl 4 Spis treści Przedmowa ................................................................................................................................................................7 Grzyby i ich rola w środowisku naturalnym. Wprowadzenie do znajomości grzybów Babiej Góry ......9 Fungi and their role in natural environment. Introduction to the knowledge of fungi at Babia Góra Mt. Monika Kozłowska, Małgorzata Ruszkiewicz-Michalska Mikroskopijne grzyby pasożytujące na roślinach, owadach i grzybach z Babiej Góry ..........................21 Microfungal parasites of plants, insects and fungi