A Monograph of the Burmanniaceae

Total Page:16

File Type:pdf, Size:1020Kb

A Monograph of the Burmanniaceae A monograph of the Burmanniaceae BY F.P. Jonker (Published December 5th 1938) CONTENTS. Page I. Introduction 1 II. General Part 4 History of the Family 4 Place of the Family in the System of Monocotyledons 4 Subdivision of the 7 Family . Geographical Distribution 10 Habitat and Plant-Community 12 Use 14 III. Critical Part 15 Tribus I, Burmannieae 17 Subtribus 1, Euburmannieae 17 1. Campylosiphon Benth 17 2. Hexapterella Urb 17 3. Burmannia L 18 Taxonomy 18 Sect. 1, Foliosa Jonk 20 Sect. 2, Euburmannia Malme 21 Geography 25 Subtribus 2, Apterieae 26 4. Cymbocarpa Miers 26 5. Gymnosiphon B1 27 Limits of the Genus 27 Taxonomy 30 Sect. I, Eugymnosiphon Urb 30 Sect. II, Ptychomeria (Benth.) Urb 31 Subsect, 1, Inappendiculati Jonk 32 Subsect. 2, Appendiculati Jonk 32 PAGE 6. Apteria Nutt 35 Taxonomy 35 Geography 36 7. Marthella Urb 36 8. Dictyostega Miers 38 Taxonomy 38 Geography 38 9. Miersiella Urb 40 Tribus II, Thismieae 41 Subtribus 1, Euthismieae 41 10. Afrothismia Schltr 41 11. Triscyphus Taub 42 12. Glaziocharis Taub 42 13. Thismia Griff 42 14. Geomitra Becc 46 15. Scaphiophora Schltr 46 Subtribus 2, Oxygyneae 47 16. Oxygyne Schltr 47 IV. Taxonomical Part. 49 Burmanniaceae 51 Key to the tribes 52 Tribus I, Burmannieae Miers 52 Subtribus 1, Euburmannieae Benth. et Hook 53 1. Campylosiphon Benth 53 2. Hexapterella Urb 55 3. Burmannia L 57 Sect. I, Foliosa Jonk 58 Sect. II, Euburmannia Malme 67 Subtribus 2, Apterieae Miers 164 4. Cymbocarpa Miers 165 5. Gymnosiphon B1 168 Sect. I, Eugymnosiphon Urb 169 Sect. II, Ptychomeria (Benth.) Urb 177 Subsect. 1, Inappendiculati Jonk 177 PAGE Subsect. 2, Appendiculati Jonk 184 Appendix 202 6. Apteria Nutt 203 7. Marthella Urb 212 8. Dictyostega Miers 213 9. Miersiella Urb 218 Tribus II, Thismieae Miers 221 Subtribus 1, Euthismieae Jonk 222 10. Afrothismia Schltr 222 11. Triscyphus Taub. ex Warm 225 12. Glaziocharis Taub. ex Warm 226 13. Thismia Griff 227 Sect. I, Myostoma (Miers) Jonk 231 Sect. II, Ophiomeris (Miers) Jonk 232 Sect. Ill, Euthismia Schltr 237 Subsect. Odoardoa Schltr 237 Subsect. Brunonithismia Jonk 242 Sect. IV, Rodwaya Schltr 248 Sect. V, Sarcosiphon (Bl.) Jonk 251 14. Geomitra Becc 254 15. Scaphiophora Schltr 256 Subtribus 2, Oxygyneae Jonk 260 16. Oxygyne Schltr 260 List of collectors’ numbers 263 Index 275 . I. INTRODUCTION. The be present publication is intended to a monograph on the family of Burmanniaceae. It is divided into three parts: General Part, Critical Part and Taxonomical Part. The first part, General Part, contains general remarks on the the taxonomy, distribution and use of family. The second part, Critical Part, contains general and geobotanical remarks on the of the whereas the third the Taxonomical genera family, part, Part, gives the determination keys to the tribes, subtribes, gene- and of these ra, sections, subsections species, the description with literature, distribution and the indications of groups the New and descri- types. varieties, species larger groups are bed in the taxonomical part in foot-notes. All mentioned specimens and literature have been personally further about studied unless particulars are given. Remarks colour, odour etc. and vernacular names are from collector’s notes on labels or from the literature. The author’s work was made possible by studying the materials of the following herba- these herbaria this ria, are indicated in monograph by the following abbreviations, proposed by the Standing Committee for Urgent Taxonomic Needs of the International Botanical Congresses for the planned Index Herbariorum. As this work is still in preparation and not yet all the herbaria have agreed with their proposed abbreviation, the list of abbreviations given below will possibly be changed. 1. Botanischer Garten und Botanisches Museum, Berlin-Dahlem. B 2. British Museum (Natural History), London. BM 3. Jardin Botanique de 1’Etat, Bruxelles. BR 4. Botanisches Museum der Universitat, Breslau. BRSL 5. ’s Lands Plantentuin, Herbarium, Buitenzorg. BZ 6. Universitetets Botaniske Museum, Copenhagen. C 1 2 7. Royal Botanic Gardens, Sibpur, Calcutta. CA 8. Field Museum of Natural History, Department of Botany, Chicago. F 9. Institute Botanico dell' Universita e R. Erbario Coloniale, Firenze. FI 10. Institut de Botanique Systematique de 1’Univer- site, Herbier Boissier, Geneve. G-BOIS 11. Institut de Botanique Systematique de 1’Univer- site, Herbier Delessert, Geneve. G-DEL 12. Gray Herbarium, Harvard University, Cam- bridge (Mass.), U.S.A. GH 13. Botanisches Institut und Botanischer Garten der Universitat, Gottingen. GoTT 14. Hortus Botanicus en Botanisch Laboratorium van de Rijksuniversiteit, Groningen. GRO 15. Royal Botanic Gardens, Kew. K 16. Rijksherbarium, Leiden. L 17. Laboratoire de Botanique de la Faculte des Sciences, Lyon. LY 18. Botanisches Museum, Miinchen. M 19. Missouri Botanical Garden, St. Louis (Mo.), U.S.A. MIS 20. New York Botanical Garden, New York (NY.), U.S.A. NY 21. Museum d’Histoire Naturelle, Phanerogamic, Paris. P 22. id., Herbier Drake. P-DR 23. Jardim Botanico, Rio de Janeiro. R 24. Naturhistoriska Riksmuseum, Botaniska Avdel- ningen, Stockholm. S 25. Botanisch Museum en Herbarium van de Rijks- universiteit, Utrecht. U 26. United States National Museum, Herbarium, Washington (DC.), U.S.A. US 27. Naturhistorisches Museum, Botanische Abtei-, lung, Wien. W 3 Here I wish to thanks to the directors express my grateful for their I of these herbaria generous help. Especially am in- debted to the directors and staff of the herbaria and libraries which I have personally visited, for the hospitality and great the herbaria of assistance given during my stay, viz. Brussels, Kew, Leyden, British Museum (Natural History) London, the Linnean Society of London, and Paris. I indebted the Dr. F. A. W. am also highly to „Prof. Miquel- fonds” which enabled me to stay in London for three weeks. I wish thanks Prof. Dr. Finally to express my most sincere to P A. A, u 11 e. Director of the “Botanisch Museum en Herba- rium” of Utrecht, under whose direction the present work was completed, for his assistance, advice and continual interest. II. GENERAL PART. HISTORY OF THE FAMILY. The Burmannia Linnaeus genus is founded by and inserted later authors different by in places in Monocotyledons e.g. by Jussieu in Bromeliaceae and by Rob. Brown in Juncaceae. Sprengel in Syst. Veg. I (1825) for the first time disting- Sonerila uished a group of Burmanniae, related with (Melastoma- taceae). B 1 PI. the the u m e, Enum. Jav. (1830) for first time Called he knew 3 Burmannia, family Burmanniaceae, genera: Gonyanthes and Gymnosiphon. Miers in 1841 also inserted Thismia and Ophiomeris into Burmanniaceae. he divided the family into 2 tribes. The family of Corsiaceae, founded in 1877 by B e c c a r i had been transferred by Bentham and Hooker also to Burmanniaceae as a third tribe. A number of authors however continued to consider this group as a separate family. Fossil Burmanniaceae unknown. The however is are family very the of related Ame- old, according to occurrence closely species in and M 1 rica, Africa Asia as a m e (1896) has already pointed out. Of the uniform Foliosa of the Burmannia, section genus 4 species are South-American and 1 Asiatic. The American Burmannia bicolor is hardly distinguishable from the African B. latialata and the Asiatic B. coelestis, while the saprophytic South-American Burmannia tenella finds its closest relative in the Malayan Bur- mannia lutescens. PLACE OF THE FAMILY IN THE SYSTEM OF MONOCOTYLEDONS. somewhat derived and As Burmanniaceae are a undoubtedly old the difficulties. very group, its place in system always gave 5 All authors in the that agree opinion it is a monocotyledonous family but within this classis the family is classified in different L i places. n d 1 e y in his Introd. Nat. Syst. (1830) considered the Burmannia related genus to be to Haemodoraceae, just as B a r t- 1 his Ord. Nat. Plant. who his order i n g in (1830) placed it in Ensatae. E d 1 h Gen. the between n i c e r, (1837), placed genus Hydrocharidaceae and Iridaceae in his classis Ensatae. In his Enchiridion (1841) he pointed out relationship with Iridaceae and Haemodoraceae. L i d 1 n e y, Veg. Kingd. (1846) on the other hand placed it in the order Orchidales in which he distinguished the series Apostasiaceae ■— Burmanniaceae — Orchidaceae. he too pointed out a relationship to Iridaceae. The still difficult after the of problem grew more discovery the reduced of the and other saprophytic, more species genus sapro- of the The of Thismieae phytic genera family. genera especially made the question more complicated. Yet older authors nearly B 11 always accepted relationship to Hydrocharidaceae: a i o n still said: 'Les H ydrocharidacéees qu’on pourrait considerer comme forme une des Burmanniacéees , etc.” aquatique . Karstenin Nov. Act.Leopold.-Carol.XXVI (1858) examined American of the some species genera Gymnosiphon and Dictyo- He could find thus classified stega. not any endosperm and the the inferior family in endospermless Monocotyledons with ovary. In this he 3 classis: Orchi- group distinguished Gynandrae (fam. daceae and Apostasiaceae), Burmanniae (fam. Burmanniaceae) and Limnobiae (fam. Hydrocharidaceae). h E i c 1 e r (1875) united Burmanniaceae. Triuridaceae, Orchi- daceae and Apostasiaceae together into the order Gynandrae. h B e n t a m und Hooker (1883) placed Hydrocharidaceae, Burmanniaceae and Orchidaceae together into the series Micro- characterized the corolline spermae. by perianth, inferior, usually 1-celled ovary and numerous, minute seeds without endosperm. Baillon (1895) dealt with Burmanniaceae between Tacca- ceae and Hydrocharidaceae. Engler in Engler und P r a n 11 and his Syllabus inserted the family in his “Reihe” Microspermae. This “Reihe” he divided 6 “Unterreihen ": Burmanniineae with Burman- into two one family niaceae and Gynandrae with one family Orchidaceae.
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Conference Series
    Jurnal Biosains Vol. 6 No. 2 Agustus 2020 ISSN 2443-1230 (cetak) DOI: https://doi.org/10.24114/jbio.v6i2.17608 ISSN 2460-6804 (online) JBIO: JURNAL BIOSAINS (The Journal of Biosciences) http://jurnal.unimed.ac.id/2012/index.php/biosains email : [email protected] IDENTIFICATION OF MYCOHETEROTROPHIC PLANTS (Burmanniaceae, Orchidaceae, Polygalaceae, Tiuridaceae) IN NORTH SUMATRA, INDONESIA 1Dina Handayani, 1Salwa Rezeqi, 1Wina Dyah Puspita Sari, 2Yusran Efendi Ritonga, 2Hary Prakasa 1Department of Biology, FMIPA, State University of Medan, North Sumatra, Indonesia. Jl. Willem Iskandar/ Pasar V, Kenangan Baru, Medan, Sumatera Utara, Indonesia 2Biologi Pecinta Alam Sumatera Utara (BIOTA SUMUT), Gg. Obat II No.14, Sei Kera Hilir II, Kec. Medan Perjuangan, Kota Medan, Sumatera Utara 20233 Email korespondensi: [email protected] Received: Februari 2020; Revised: Juli 2020; Accepted: Agustus 2020 ABSTRACT The majority of mycoheterotrophic herbs live in shady and humid forest. Therefore, the types of mycoheterotrophic plant are very abundant in tropical areas. One of the areas in Indonesia with the tropics is North Sumatera province. Unfortunately, the information about the species of mycoheterotrophic in North Sumatra is still limited. The objective of the research was to figure out the types of mycoheterotrophic plants in North Sumatra. The study was conducted in August until October 2019 in several areas of the Natural Resources Conservation Hall (BBKSDA) of North Sumatra province, the nature Reserve and nature Park. The research sites covered Tinggi Raja Nature Reserve, Dolok Sibual-Buali Nature Reserve, Sibolangit Tourist Park and Sicike-Cike Natural Park. In conducting sampling, the method used was through exploration or cruising method.
    [Show full text]
  • Bulletin Biological Assessment Boletín RAP Evaluación Biológica
    Rapid Assessment Program Programa de Evaluación Rápida Evaluación Biológica Rápida de Chawi Grande, Comunidad Huaylipaya, Zongo, La Paz, Bolivia RAP Bulletin A Rapid Biological Assessment of of Biological Chawi Grande, Comunidad Huaylipaya, Assessment Zongo, La Paz, Bolivia Boletín RAP de Evaluación Editores/Editors Biológica Claudia F. Cortez F., Trond H. Larsen, Eduardo Forno y Juan Carlos Ledezma 70 Conservación Internacional Museo Nacional de Historia Natural Gobierno Autónomo Municipal de La Paz Rapid Assessment Program Programa de Evaluación Rápida Evaluación Biológica Rápida de Chawi Grande, Comunidad Huaylipaya, Zongo, La Paz, Bolivia RAP Bulletin A Rapid Biological Assessment of of Biological Chawi Grande, Comunidad Huaylipaya, Assessment Zongo, La Paz, Bolivia Boletín RAP de Evaluación Editores/Editors Biológica Claudia F. Cortez F., Trond H. Larsen, Eduardo Forno y Juan Carlos Ledezma 70 Conservación Internacional Museo Nacional de Historia Natural Gobierno Autónomo Municipal de La Paz The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel: +1 703-341-2400 www.conservation.org Cover Photos: Trond H. Larsen (Chironius scurrulus). Editors: Claudia F. Cortez F., Trond H. Larsen, Eduardo Forno y Juan Carlos Ledezma Design: Jaime Fernando Mercado Murillo Map: Juan Carlos Ledezma y Veronica Castillo ISBN 978-1-948495-00-4 ©2018 Conservation International All rights reserved. Conservation International is a private, non-proft organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of Conservation International or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Co2 Emissions from Commercial Aviation, 2018
    A40-WP/560 International Civil Aviation Organization EX/237 10/9/19 Revision No. 1 WORKING PAPER 20/9/19 (Information paper) English only ASSEMBLY — 40TH SESSION EXECUTIVE COMMITTEE Agenda Item 16: Environmental Protection – International Aviation and Climate Change — Policy and Standardization CO2 EMISSIONS FROM COMMERCIAL AVIATION, 2018 (Presented by the International Coalition for Sustainable Aviation (ICSA)) EXECUTIVE SUMMARY To better understand carbon emissions associated with commercial aviation, this paper develops a bottom-up, global aviation carbon dioxide (CO2) inventory for calendar year 2018. Using historical data from an aviation operations data provider, national governments, international agencies, and aircraft emissions modelling software, this paper details a global, transparent, and geographically allocated CO2 inventory for commercial aviation. Our estimates of total global carbon emissions, and the operations estimated in this study in terms of revenue passenger kilometers (RPKs) and freight tonne kilometers (FTKs), agree well with aggregate industry estimates. Strategic This working paper relates to Strategic Objective – Environmental Protection. Objectives: Financial Does not require additional funds implications: References: A40-WP/58, Consolidated Statement of Continuing ICAO Policies and Practices Related to Environmental Protection - Climate Change A40-WP/277, Setting a Long-Term Climate Change Goal for International Aviation 1. INTRODUCTION 1.1 Despite successive Assembly resolutions calling on the Council
    [Show full text]
  • The Natural Communities of South Carolina
    THE NATURAL COMMUNITIES OF SOUTH CAROLINA BY JOHN B. NELSON SOUTH CAROLINA WILDLIFE & MARINE RESOURCES DEPARTMENT FEBRUARY 1986 INTRODUCTION The maintenance of an accurate inventory of a region's natural resources must involve a system for classifying its natural communities. These communities themselves represent identifiable units which, like individual plant and animal species of concern, contribute to the overall natural diversity characterizing a given region. This classification has developed from a need to define more accurately the range of natural habitats within South Carolina. From the standpoint of the South Carolina Nongame and Heritage Trust Program, the conceptual range of natural diversity in the state does indeed depend on knowledge of individual community types. Additionally, it is recognized that the various plant and animal species of concern (which make up a significant remainder of our state's natural diversity) are often restricted to single natural communities or to a number of separate, related ones. In some cases, the occurrence of a given natural community allows us to predict, with some confidence, the presence of specialized or endemic resident species. It follows that a reasonable and convenient method of handling the diversity of species within South Carolina is through the concept of these species as residents of a range of natural communities. Ideally, a nationwide classification system could be developed and then used by all the states. Since adjacent states usually share a number of community types, and yet may each harbor some that are unique, any classification scheme on a national scale would be forced to recognize the variation in a given community from state to state (or region to region) and at the same time to maintain unique communities as distinctive.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Diversification of Myco-Heterotrophic Angiosperms: Evidence From
    BMC Evolutionary Biology BioMed Central Research article Open Access Diversification of myco-heterotrophic angiosperms: Evidence from Burmanniaceae Vincent Merckx*1, Lars W Chatrou2, Benny Lemaire1, Moses N Sainge3, Suzy Huysmans1 and Erik F Smets1,4 Address: 1Laboratory of Plant Systematics, K.U. Leuven, Kasteelpark Arenberg 31, P.O. Box 2437, BE-3001 Leuven, Belgium, 2National Herbarium of the Netherlands, Wageningen University Branch, Generaal Foulkesweg 37, NL-6703 BL Wageningen, The Netherlands, 3Centre for Tropical Forest Sciences (CTFS), University of Buea, Department of Plant & Animal Sciences, P.O. Box 63, Buea, Cameroon and 4National Herbarium of the Netherlands, Leiden University Branch, P.O. Box 9514, NL-2300 RA, Leiden, The Netherlands Email: Vincent Merckx* - [email protected]; Lars W Chatrou - [email protected]; Benny Lemaire - [email protected]; Moses N Sainge - [email protected]; Suzy Huysmans - [email protected]; Erik F Smets - [email protected] * Corresponding author Published: 23 June 2008 Received: 25 February 2008 Accepted: 23 June 2008 BMC Evolutionary Biology 2008, 8:178 doi:10.1186/1471-2148-8-178 This article is available from: http://www.biomedcentral.com/1471-2148/8/178 © 2008 Merckx et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Myco-heterotrophy evolved independently several times during angiosperm evolution. Although many species of myco-heterotrophic plants are highly endemic and long- distance dispersal seems unlikely, some genera are widely dispersed and have pantropical distributions, often with large disjunctions.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Specificity of Assemblage, Not Fungal Partner Species, Explains
    The ISME Journal (2021) 15:1614–1627 https://doi.org/10.1038/s41396-020-00874-x ARTICLE Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants 1 1 2 3,4 2 Zhongtao Zhao ● Xiaojuan Li ● Ming Fai Liu ● Vincent S. F. T. Merckx ● Richard M. K. Saunders ● Dianxiang Zhang 1 Received: 9 July 2020 / Revised: 29 November 2020 / Accepted: 7 December 2020 / Published online: 6 January 2021 © The Author(s) 2021. This article is published with open access Abstract Mycoheterotrophic plants (MHPs) growing on arbuscular mycorrhizal fungi (AMF) usually maintain specialized mycorrhizal associations. The level of specificity varies between MHPs, although it remains largely unknown whether interactions with mycorrhizal fungi differ by plant lineage, species, and/or by population. Here, we investigate the mycorrhizal interactions among Burmannia species (Burmanniaceae) with different trophic modes using high-throughput DNA sequencing. We characterized the inter- and intraspecific dynamics of the fungal communities by assessing the composition and diversity of fungi among sites. We found that fully mycoheterotrophic species are more specialized in their 1234567890();,: 1234567890();,: fungal associations than chlorophyllous species, and that this specialization possibly results from the gradual loss of some fungal groups. In particular, although many fungal species were shared by different Burmannia species, fully MHP species typically host species-specific fungal assemblages, suggesting that they have a preference for the selected fungi. Although no apparent cophylogenetic relationship was detected between fungi and plants, we observe that evolutionarily closely related plants tend to have a greater proportion of shared or closely related fungal partners. Our findings suggest a host preference and specialization toward fungal assemblages in Burmannia, improving understanding of interactions between MHPs and fungi.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • State and Trends of Carbon Pricing 2017 Washington DC November 2017
    Public Disclosure Authorized State and Trends of Carbon Pricing Public Disclosure Authorized 2017 Washington DC November 2017 Public Disclosure Authorized Public Disclosure Authorized State and Trends of Carbon Pricing 2017 Washington DC November 2017 This report was prepared jointly by the World Bank, Ecofys and Vivid Economics. The World Bank team included Richard Zechter, Alexandre Kossoy, Klaus Oppermann, and Céline Ramstein. The Ecofys team included Long Lam, Noémie Klein, Lindee Wong, Jialiang Zhang, Maurice Quant, Maarten Neelis, and Sam Nierop. The Vivid Economics team included John Ward, Thomas Kansy, Stuart Evans, and Alex Child. © 2017 International Bank for Reconstruction and Translations—If you create a translation of this work, Development / The World Bank please add the following disclaimer along with the attribution: This translation was not created by The World 1818 H Street NW, Washington DC 20433 Bank and should not be considered an official World Bank Telephone: 202-473-1000; Internet: www.worldbank.org translation. The World Bank shall not be liable for any content Some rights reserved or error in this translation. 1 2 3 4 20 19 18 17 Adaptations—If you create an adaptation of this work, This work is a product of the staff of The World Bank with please add the following disclaimer along with the external contributions. The findings, interpretations, and attribution: This is an adaptation of an original work by The conclusions expressed in this work do not necessarily World Bank. Responsibility for the views and opinions expressed reflect the views of The World Bank, its Board of Executive in the adaptation rests solely with the author or authors of Directors, or the governments they represent.
    [Show full text]