Acquisition of Space Systems, Volume 7: Past Problems and Future Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Acquisition of Space Systems, Volume 7: Past Problems and Future Challenges YOOL KIM, ELLIOT AXELBAND, ABBY DOLL, MEL EISMAN, MYRON HURA, EDWARD G. KEATING, MARTIN C. LIBICKI, BRADLEY MARTIN, MICHAEL E. MCMAHON, JERRY M. SOLLINGER, ERIN YORK, MARK V. A RENA, IRV BLICKSTEIN, WILLIAM SHELTON ACQUISITION OF SPACE SYSTEMS PAST PROBLEMS AND FUTURE CHALLENGES VOLUME 7 C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/MG1171z7 Library of Congress Control Number: 2015933393 ISBN: 978-0-8330-8895-6 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2015 RAND Corporation R® is a registered trademark. Cover image: United Launch Alliance Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface Space systems deliver critical capability to warfighters; thus, acquiring and deploying space systems in a timely and affordable manner is important to U.S. national secu- rity. However, many Department of Defense (DoD) space programs experienced large cost growth, schedule delays, and unanticipated technical problems for years, raising concerns about potential operational gaps in some critical space capabilities, because satellites were not being delivered as scheduled to replace the aging legacy systems in orbit. The difficulties faced during development of these systems may have been mostly resolved, because the systems have been delivered or are entering the production phase, but as DoD plans for the next-generation space systems in increasingly challenging fiscal and security environments, it is important to apply lessons learned from the past DoD space acquisition experience. RAND was asked to identify key factors that con- tributed to the difficulties in DoD space acquisition. This report should interest policymakers concerned with military acquisition and related issues. It was sponsored by the Office of the Secretary of Defense (OSD) Performance Assessments and Root Cause Analysis (PARCA) office and conducted within the Acquisition and Technology Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by the Office of the Secretary of Defense, the Joint Staff, the Unified Combatant- Com mands, the Navy, the Marine Corps, the defense agencies, and the defense Intelligence Community. Other RAND research sponsored by PARCA includes: • Irv Blickstein et al., Root Cause Analyses of Nunn-McCurdy Breaches, Volume 1: Zumwalt-Class Destroyer, Joint Strike Fighter, Longbow Apache, and Wideband Global Satellite, Santa Monica, Calif.: RAND Corporation, MG-1171/1-OSD, 2011. • Irv Blickstein et al., Root Cause Analyses of Nunn-McCurdy Breaches, Volume 2: Excalibur Artillery Projectile and the Navy Enterprise Resource Planning Program, with an Approach to Analyzing Complexity and Risk, Santa Monica, Calif.: RAND Corporation, MG-1171/2-OSD, 2012. iii iv Acquisition of Space Systems, Volume 7: Past Problems and Future Challenges • Irv Blickstein et al., Root Cause Analyses of Nunn-McCurdy Breaches, Volume 3: Joint Tactical Radio System, P-8A Poseidon, and Global Hawk Modifications, Santa Monica, Calif.: RAND Corporation, MG-1171/3, 2013. • Mark Arena et al., Management Perspectives Pertaining to Root Cause Analyses of Nunn-McCurdy Breaches, Volume 4: Program Manager Tenure, Oversight of Acqui- sition Category II Programs, and Framing Assumptions. Santa Monica, Calif.: RAND Corporation, MG1171/4, 2013. For more information on the RAND Acquisition and Technology Policy Center, see http://www.rand.org/nsrd/ndri/centers/atp.html or contact the director (contact information is provided on the web page). Contents Preface ................................................................................................. iii Figures and Tables ...................................................................................vii Summary .............................................................................................. ix Acknowledgments ..................................................................................xiii Abbreviations .........................................................................................xv CHAPTER ONE Introduction ........................................................................................... 1 Long-Standing Concerns about Space Acquisition ................................................ 1 Overview of Past Literature ........................................................................... 2 Purpose and Tasks ..................................................................................... 4 Research Approach and Scope ........................................................................ 5 How the Report Is Organized ........................................................................ 5 CHAPTER TWO Review of Selected DoD Space Programs ........................................................ 7 Space-Based Infrared System ......................................................................... 7 Global Positioning System IIF .......................................................................12 Advanced Extremely High Frequency Program ...................................................15 Wideband Global SATCOM ........................................................................19 Global Positioning System III ...................................................................... 22 Summary .............................................................................................. 26 CHAPTER THREE Effects of the 1990s’ Space Acquisition Environmental Factors on the Programs ......29 Shift in Requirements Increased Complexity ......................................................29 Acquisition Reform ...................................................................................32 Commercial Space Market ...........................................................................35 Summary .............................................................................................. 36 v vi Acquisition of Space Systems, Volume 7: Past Problems and Future Challenges CHAPTER FOUR Space Acquisition Challenges and Space Enterprise Management Issues.................39 Space Acquisition Challenges ........................................................................39 Space Enterprise Management Issues .............................................................. 44 Summary ...............................................................................................53 CHAPTER FIVE Recent Progress and Future Challenges in DoD Space Acquisition .......................55 Recent Progress in Space Acquisition ...............................................................55 Future Challenges and Potential Implications for Future Space Acquisition Programs ..... 60 Lessons Learned from the 1990s ...................................................................61 Summary ...............................................................................................63 CHAPTER SIX Conclusions ...........................................................................................65 APPENDIXES A. List of Interviews .................................................................................67 B. Projecting Defense Space System Budget Growth: Issues of Inflation Index Selection ..........................................................................................69 Bibliography ..........................................................................................89 Figures and Tables Figures 1.1. Sources of Space Systems Growth ...................................................... 3 2.1. SBIRS Program Cost Growth History ................................................. 8 2.2. SBIRS Program Schedule Overrun History ..........................................11 2.3. History of GPS IIF Cost Growth ......................................................13 2.4. GPS IIF Program Schedule Overrun History ........................................15 2.5. AEHF Program Cost Growth History ................................................17 2.6. AEHF Program Schedule Delay History .............................................19 2.7. History of the WGS Program Cost Growth......................................... 20 2.8. WGS Program Schedule Delay History .............................................. 23 2.9. GPS III Cost Growth History ........................................................ 26 4.1. Long Gaps Between Orders and Unpredictable Buy Schedule .................... 40 4.2. Vicious Circle Between Satellite High Reliability
Recommended publications
  • Lockheed Martin Space Systems Company NASA SBIR Overview
    Lockheed Martin Space Systems Company NASA SBIR Overview and Engagement Craig Owens Program Manager, SBIR Lockheed Martin Aeronautics Space Systems Company Portfolio Special Strategic & Missile Defense Civil Space Programs NASA Human Adv Programs Strategic Missiles Missile Defense Planetary Weather & Exploration Exploration Environment Military Space Mission Solutions Protected Narrowband Navigation Weather Early Space End-to-End Geospatial Comms Comms Warning Protection Mission Systems Technologies Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments LM SBIR Team Mission 1. Collaborate with small businesses to get advanced technology to our customers 2. Build strategic, long term relationships with small businesses by leveraging Gov’t SBIR/STTR R&D funding 3. Understand what small business technologies are potentially coming to the market 4. Align discriminating small business technologies to LM programs and future opportunities to reduce cost and win new business 5. Complement our small business supply chain and support the Gov’t initiative to leverage small businesses © 2016 Lockheed Martin Corporation, All Rights Reserved LM SBIR Engagement • Strong engagement in the SBIR/STTR Program – Seeking technology maturation supporting program needs – 5-10 year outlook – TRL 6 needed for potential LM investment – Expect small businesses to be informed on LM • Benefits to LM – Innovation & Affordability – Strategic partnerships – Complements LM investments – Help drive innovation into next generation systems © 2016 Lockheed Martin Corporation, All Rights Reserved LMSSC Endorsement Process • LM SME’s assess all concepts • Leadership aware of engagements • Process allows for relationship building © 2016 Lockheed Martin Corporation, All Rights Reserved 5 6.
    [Show full text]
  • Lockheed Martin Space Advanced Programs
    Lockheed Martin Space Advanced Programs Requirements in NASA Science Missions © 2019 Lockheed Martin. All Rights Reserved Performance and Operational Measurement Requirements Emitted radiance Detect photons; Convert to e- Calibrate Data Science Data Quantized Photons Electrons Science Data Radiances § Orbit § Wavelength band § Detection § Science question § Signal photons § Integration time § Navigation analysis § Background scene § Quantum efficiency § Radiometric calibration § Field of View § Dark current § Resolution § Read noise § Solar intrusion Mission Requirements Performance Requirements • Duration • Environment • Electrical • Mechanical Iterate • Reliability • Operational • Thermal • Structural Evolve Requirements Constraints Resource Requirements • Spacecraft • Mass • Thermal interface • Power • Data rate • Launch vehicle • Size • Alignment Concept Design 2 Example Requirements Tree Implementing NASA Level 1s Institution/NASA Center Level 1 Reqts Program Level 2 Launch Environmental Mission Assurance Mission Reqts Doc Project Vehicle IRD Reqts Requirements (MAR) Flight System Level 3 Mission Ops & Element- Payload Spacecraft Flight to Ground Payload Reqts to SC ICDs Ground Developed, Requirements Doc ICD System Reqts Project Approved Payload/ Level 4 Spacecraft Ground Instrument Testbeds Element-Controlled Subsystems Subsystems Subsystems 3 Mars Atmosphere and Volatile EvolutioN (MAVEN) v Objective: Characterize Mars’ atmospheric escape v PI: Dr. Bruce Jakosky, CU LASP v Implementing Institution: NASA Goddard Space Flight Center v Spacecraft and Mission Ops: Lockheed Martin v Instruments: UCB SSL, CU/LASP, NASA GSFC, CNES v Mars relay: Jet Propulsion Laboratory v Launched November 18th 2013 v MOI September 22nd 2014 v Currently in third mission extension Image Credit: NASA/B. Ingalls 5 Science Missions Across the Solar System 6 © 2019 Lockheed Martin. All Rights Reserved.
    [Show full text]
  • MSM Feb2020 Review2
    SATCOM for Net-Centric Warfare MilsatMagazineFebruary 2020 issue This issue... SMC: Year of Success Kratos: Countering Threats from Space Maxar: Leveraging Commercial Innovation WTA: Hacking the Hacker Dispatches United States Space Command Kratos Defense L3Harris Get SAT 2nd SOPS Orbit Communications Comtech EF Data Maxar Technologies Booz Allen Hamilton Raytheon Schriever AFB Cover image is courtesy of Kratos Defense and Security Cover SNIPE Ad Publishing Operations Features Silvano Payne, Publisher + Executive Writer Dispatches Simon Payne, Chief Technical Officer Hartley G. Lesser, Editorial Director United States Space Command .................................................................................4 Pattie Lesser, Executive Editor Kratos Defense & Security Solutions .........................................................................6 Donald McGee, Production Manager Andy Bernard, Sales Director L3Harris................................................................................................................7 + 9 Teresa Sanderson, Operations Director Get SAT .....................................................................................................................8 Sean Payne, Business Development Director Space & Missile Systems Center...............................................................................10 Dan Makinster, Technical Advisor 2nd SOPS .................................................................................................................11 Wendy Lewis, Contributing Editor
    [Show full text]
  • AIRLIFT RODEO a Brief History of Airlift Competitions, 1961-1989
    "- - ·· - - ( AIRLIFT RODEO A Brief History of Airlift Competitions, 1961-1989 Office of MAC History Monograph by JefferyS. Underwood Military Airlift Command United States Air Force Scott Air Force Base, Illinois March 1990 TABLE OF CONTENTS Foreword . iii Introduction . 1 CARP Rodeo: First Airdrop Competitions .............. 1 New Airplanes, New Competitions ....... .. .. ... ... 10 Return of the Rodeo . 16 A New Name and a New Orientation ..... ........... 24 The Future of AIRLIFT RODEO . ... .. .. ..... .. .... 25 Appendix I .. .... ................. .. .. .. ... ... 27 Appendix II ... ...... ........... .. ..... ..... .. 28 Appendix III .. .. ................... ... .. 29 ii FOREWORD Not long after the Military Air Transport Service received its air­ drop mission in the mid-1950s, MATS senior commanders speculated that the importance of the new airdrop mission might be enhanced through a tactical training competition conducted on a recurring basis. Their idea came to fruition in 1962 when MATS held its first airdrop training competition. For the next several years the competition remained an annual event, but it fell by the wayside during the years of the United States' most intense participation in the Southeast Asia conflict. The airdrop competitions were reinstated in 1969 but were halted again in 1973, because of budget cuts and the reduced emphasis being given to airdrop operations. However, the esprit de corps engendered among the troops and the training benefits derived from the earlier events were not forgotten and prompted the competition's renewal in 1979 in its present form. Since 1979 the Rodeos have remained an important training event and tactical evaluation exercise for the Military Airlift Command. The following historical study deals with the origins, evolution, and results of the tactical airlift competitions in MATS and MAC.
    [Show full text]
  • Unclassified Unclassified
    UNCLASSIFIED Exhibit R-2, RDT&E Budget Item Justification: PB 2020 Air Force Date: February 2019 Appropriation/Budget Activity R-1 Program Element (Number/Name) 3600: Research, Development, Test & Evaluation, Air Force / BA 5: System PE 1206433F / Wideband Global SATCOM (SPACE) Development & Demonstration (SDD) Prior FY 2020 FY 2020 FY 2020 Cost To Total COST ($ in Millions) Years FY 2018 FY 2019 Base OCO Total FY 2021 FY 2022 FY 2023 FY 2024 Complete Cost Total Program Element - 6.535 3.970 1.920 0.000 1.920 0.000 0.000 0.000 2.973 0.000 15.398 657102: Command & Control - 4.011 3.970 1.920 0.000 1.920 0.000 0.000 0.000 2.973 0.000 12.874 Sys-Consolidated (CCS-C) 657107: WGS Space Systems - 2.524 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.524 Resiliency Upgrade A. Mission Description and Budget Item Justification The Military Satellite Communications (MILSATCOM) Command and Control System-Consolidated (CCS-C) system provides integrated launch and on-orbit command and control (C2) functionality at Schriever AFB and Vandenberg AFB for MILSATCOM satellites. Schriever AFB is used for primary operations and Vandenberg AFB is used for backup operations. CCS-C uses modified commercial off the shelf hardware/software to control emerging and legacy MILSATCOM systems including Milstar, Defense Satellite Communications System (DSCS), Wideband Global SATCOM (WGS) and Advanced Extremely High Frequency (AEHF) satellites. The CCS-C project 657102 funds system architecture evolution to provide increased performance for additional satellites and to comply with DoD, Air Force, and Air Force Space Command (AFSPC)-directed standards for Information Assurance, Satellite Control Standardization, and Net-Readiness.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S
    5 Years Later Shades of Blue Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S. 2014) Heritage High School (Class of 2008) A LITTLE ABOUT ME › Born June 11th 1990 in Englewood CO › K-12 (Littleton Public Schools) – Runyon Elementary – Powell Middle School – Heritage High School › Clubs and Activities – Littleton Rotary/Interact Club – Destination Imagination – Club Inline Hockey – Varsity Lacrosse – Yearbook (Sports Editor) – National Honor Society MR. WARREN › Math teacher at Heritage H.S. – Advanced Algebra and Calculus › Key Lessons – “Use your imagination” – “Be creative” – “Think outside the box” › I chose to major in aerospace engineering my senior year THE LAST FIVE YEARS › University of Colorado at Boulder › Bachelors in Aerospace Engineering Sciences (ASEN) in May 2013 › Masters in ASEN/Structures and Materials in May 2014 • Clubs and Activities • Student Leadership Council • Student Success Center • Men’s Club Lacrosse • Zeta Beta Tau Fraternity WHAT IS ENGINEERING? SCIENCE IS THE WHAT/WHY ENGINEERING IS THE HOW Karman vortex sheet: repeating swirling vortices Boundary layer injection: injecting fluid into the caused by unsteady separation of flow of a fluid airstream to create turbulence such that more lift around blunt bodies. is generated along the wing. More lift means less fuel. Less fuel means more efficient airplanes. AEROSPACE ENGINEERING IS A BROAD FIELD AERONAUTICS ASTRODYNAMICS LAUNCH VEHICLES • Aircraft technologies • Spacecraft • Space Shuttle • Military and civilian technologies
    [Show full text]
  • The Market for Military Satellites
    The Market for Military Satellites Product Code #F678 A Special Focused Market Segment Analysis by: Space Systems Forecast - Satellites & Spacecraft Analysis 3 The Market for Military Satellites 2010 - 2019 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................3 Trends..........................................................................................................................................................................3 Competitive Environment.....................................................................................................................................13 Market Statistics .....................................................................................................................................................14 Table 1 - The Market for Military Satellites Unit Production by Headquarters/Company/Program 2010 - 2019 ................................................16 Table 2 - The Market for Military Satellites Value Statistics by Headquarters/Company/Program 2010 - 2019.................................................19 Figure 1 - The Market for Military Satellites Unit Production 2010 - 2019 (Bar Graph) ...............................................................................22 Figure 2
    [Show full text]
  • 2008 STELLAR AWARD NOMINEES - MIDDLE Rotary National Award for Space Achievement
    2008 STELLAR AWARD NOMINEES - MIDDLE Rotary National Award for Space Achievement Tech. Sgt. Jesse A. Arbour of the USAF, 45th Space Wing, and provide information to ensure the safety of extravehicular 45th Launch Support Squadron - Successful launch site crewmembers from this hazard. integration leadership on the first Wideband SATCOM launch and formulation of new mission assurance processes for the J. Derek Hassmann of NASA Johnson Space Center - 45th Launch Support Squadron, resulting in selection as the Exceptional professionalism, outstanding leadership and lead for future Wideband SATCOM spacecraft missions. technical expertise in the preparation and execution of complex International Space Station assembly mission operations. Dan R. Bell of The Boeing Company - Outstanding leadership of the orbiter thermal protection system technical community Michael T. Henry of ATK Launch Systems - Visionary including leadership of the On-orbit Debris Assessment Team leadership in creating an exceptionally strong safety and mission during each mission. assurance team of proactive, collaborative problem solvers that continues to lead innovation and improvements for shuttle, Ares, Roger E. Berenson of Pratt & Whitney Rocketdyne - and next-generation launch vehicles. Outstanding leadership in the development of the RS-68A engine system and major contributions to the development of Lara E. Kearney of NASA Johnson Space Center - Visionary multiple rocket engine systems. leadership and management expertise in establishing the EVA systems project for
    [Show full text]
  • Beyond the Paths of Heaven the Emergence of Space Power Thought
    Beyond the Paths of Heaven The Emergence of Space Power Thought A Comprehensive Anthology of Space-Related Master’s Research Produced by the School of Advanced Airpower Studies Edited by Bruce M. DeBlois, Colonel, USAF Professor of Air and Space Technology Air University Press Maxwell Air Force Base, Alabama September 1999 Library of Congress Cataloging-in-Publication Data Beyond the paths of heaven : the emergence of space power thought : a comprehensive anthology of space-related master’s research / edited by Bruce M. DeBlois. p. cm. Includes bibliographical references and index. 1. Astronautics, Military. 2. Astronautics, Military—United States. 3. Space Warfare. 4. Air University (U.S.). Air Command and Staff College. School of Advanced Airpower Studies- -Dissertations. I. Deblois, Bruce M., 1957- UG1520.B48 1999 99-35729 358’ .8—dc21 CIP ISBN 1-58566-067-1 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited. ii Contents Chapter Page DISCLAIMER . ii OVERVIEW . ix PART I Space Organization, Doctrine, and Architecture 1 An Aerospace Strategy for an Aerospace Nation . 3 Stephen E. Wright 2 After the Gulf War: Balancing Space Power’s Development . 63 Frank Gallegos 3 Blueprints for the Future: Comparing National Security Space Architectures . 103 Christian C. Daehnick PART II Sanctuary/Survivability Perspectives 4 Safe Heavens: Military Strategy and Space Sanctuary . 185 David W. Ziegler PART III Space Control Perspectives 5 Counterspace Operations for Information Dominance .
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]