ABSTRACT a Study of the Life History of a Population of Nereis Virensat

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT a Study of the Life History of a Population of Nereis Virensat · '.' -\ ABSTRACT A study of the life history of a population of Nereis virensat Brandy Cove, St. Andrews, New Brunswick, indica-6es that these worms may live for 12-15 years, maturing at the earliest in their fourth year. The majority, however, do not mature until their fifth or sixth year. At the onset of maturity 'gonadal' clumps are found either floating free in the coelom or embedded in the parenchymal tissue at the bases of the parapodia. Eggs were observed to arise froIn these 'gonadal' clumps during every month of theyear and took 1-2 years to mature. 'Sperm plates' were only produced froID 'gonadal' clUlnps at the end of July to the beginning of' August and mature sperrn \'lere observed by the follovIing May. The ratio of males: females in the spawning population was found to be 3:1. It was also observed that this population did not undergo extensive epi tol;:al metamorphosis and that the worms "l:;herefore spawned in an atokous .condi tian. These worms did no-t; show an extensive swarming behaviour at the sea surface p in fact only the males were observed swimrning close to the surface of the mud p on the incomming tide, releasing a continuous stream of sperm froIn thelr pygidial papillae. What the females do in the field i8 still uncertain. Larval develop­ ment followed very closely that described for other nereids an0. was observed to be non-pelagic. · ",' History of Nereis virens at Brandy Cove, St. Andrews, N.B. Doreen Snow ',\ Some Aspects of the Life History of the Nereid Worm. Nereis virens (Sars), on an Inter­ tidal Mudflat at Brandy Cove, St. Andrews, N.B. by Doreen Rosemary Snow, B.Sc. (Hons.) A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science Department of Biology McGill University lVIarch 1972 @ Doreen Rosemary Snm'l 1972 · '.' Frontispiece 1 - Size range in the N. virens population at Brandy Cove, st Andrews, N.B. a) This worm is about O.5gm. in weight and according to this study, about one year old. b) These worms are about 25-)Ograms. • ~. t '.\ . 1111 ~IIIIIIII li IllIlllllllll,l, Il,llll J 111'l111~111 1111111~11 l Il.1 ~~TlMETE~S ' ., : ,', '.' 1 • 1 ' . 1 1111 1 )':NTlMETERS 2' '~, '. 4. 5,111 III 1 1III · ,.1 Frontispiece 2 - Colour differentiation in N. virens. The upper individual is immature with the typical orange-reddish-green colour, whereas the bottom individual has green eggs about 100-120u in the coelom which make the bases of the parapodia green. ".' ..' '.' · '.' Frontispiece 3 - Pale green 3-segment larvae of N. virens (approximately 330u) with the red pigment spots at the sides of the head. • t~ f , . ',' ",,{. TABLE OF CONTENTS ACKNOWLEDGElV.lENTS. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i LIST OF TABLES ••••••• 0 • 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ii LIST OF FIGURES ••••••••••••••••• ~ ••••••••••••••••••••••••• iii CIASSIFICATION •••••••••••••••••••••••••••••••••••••••••••• vii ll'ITRODUCTI ON •••••••••••••••••••••••••••••••••••••••••••••• 1 lV.lETHODS AND lVlATERIALS ••••••••••••••••••••••••••••••••••••• 6 Samplillg' Area •••••••.••. ., 0 •••••••••••••••••••••••••• 6 Samplillg' technique •••••••••••••••••••••••••••••••••• 6 Maintenance in the laboratory....................... 13 Measurement of worm size ••••• .. 14 Examination of Coelomic Fluid •••••••••••••••••• ..... 15 Histological treatment.............................. 16 Observations on Spawning............................ 16 Artificial Fertilizations and Rearillg' of Larvae..... 16 Collections of Larvae in the Field.................. 17 Photographs •••••.•••.••..••... 0 •••••••••••• QI • • • • • • • • 18' SIZE DISTRIBUTION Growth Pattern••••••• •••••••••••••••••••••• 0 ........ .. 19 Age Cl.asses •••••••••• 0 •••••• 0 • • • • • • • • • • • • • • • • • • • • • • • 22 Age at Maturity..................................... 36 REPRODUCTION Development of the Coelomic Fluid ••••••••••••••••••• 47 "'~' TABLE OF CONTENTS (Cont'd) 1) Small c oe lomocyte S·y •••••••••••••••••••••• 0 • 2) Mature trephocytes and the formation of 'parenchymal' tissue........................ 48 J) Gonadal clumps............................. 49 4) Phagocytic cells and later changes......... 51 Maturation and Structure of the Oocytes............ 52 Maturation and Structure of the Spermatozoan....... 62 Differentiation of the Sexes....................... 70 Sex Ratio.......................................... 71 Spawning 1) Field observations ••••••••••••••••••••••••• 7J 2) Laboratoryobservations •••••••••••••••••••• 74 J) Release of Spermatozoa ••••••••••••••••• ~ ••• 76 4) Release of oocytes ••••••••••••••••••••••••• 79 5) Conditions governing the time of spawning •• 80 URVAL DEVELOPMENT Early Development.................................. 85 Larvae with J-Chaetigerous Segments................ 98 Later Larval Stages................................ 106 GENERAL DISCUSSION... • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 121 CONCLUSIONS •• 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 124 REFERANCES CITED APPENDIX · '.' -i- ACKNOWLEDGEMENTS l am deeply indebted to the Fisheries Research Board of Canada, Biological Station, St. Andrews, New Brunswick, who graciously provided facilities, such as laboratory space and equipment, in conjunction with the Huntsman Marine Laboratory; and to aIl members of the Biological Station for their kind co-operation and advice. l am grateful to my supervisor, Dr. Joan Marsden, for her support during this project; to Dr. Dorothy Pocock for her help and use fuI advice, especially at the beginning of this project; to John Patterson who aided in collecting the worms; to A~ Sreeharen for help with the statistics involved in this project; to Bill McMullon and Frank Cunningham of the Biological Station, F.R.B., for their help with the photographie work; to Dr. F. A. Aldrich who offered advice during the writing of this thesis; to my brother Hugh, who stuck on the stacks of photographs; to Miss Cynthia Long who helped edit the thesis and to my father who helped to type the final copy. Finally, l wish to thank the National Research Council of Canada, for their support during this project. ".~' . -ii- LIST OF TABLES TABLE I. Time and duration of each collection period, showing as well the number of worms collected in each •••••..•...•.•••••..•.•...•...••.......•..•. 12 TABLE II The mean weight for each possible age class for each month, as determined from figure 5 •... showing some approximate ages, in terms of years, for worms of a certain weight •••••••••••••••••••• 32 TABLE III. Coelomic fluid categories for N. virens....... 38 TABLE IV. Ratio of males to females from January to May 1969 .•.•..••...•••..••.•.••••..•.••...••.. & • • 72 .-.... -iii- LIST OF FIGURES FIGURE 1. Map o~ St. Croix River and Passamaquoddy Bay showing the positions of Oak Bay, Brandy Cove, Bocabec Bay and St. Andrews Point ••••••••••• 8 FIGURE 2. Map of Brandy Cove, New Brunswick showing the collection site, Area A ••••••••••••••••••••••• 10 FIGURE 3. a) Relationship between segment number and weight in M. virens. b) Relationship between length and weight in N. virens. c) Relationship between width and weight in N. virens •...... I!' ••••••••••••••••••••••••••••••••• 21 FIGURE 4. Weight/frequency diagrams ~or Mereis virens ~rom September 1968 to September 1969 ••••••••••••• 25 FIGURE 5. Graphs o~ the logarithmic dif~erences of the class ~requencies plotted against the Iudpoint o~ the class ~or N. virens from September 1968 to September 1969 (excluding Dec. 1968) ••••••••••• 28-30 FIGURE 6. Weight/frequency distributions for the total sample of N. virens in each coelomic fluid category from September 1968 to September 1969.... 40 FIGURE 7. Coelomic fluid of M. virens with only small coelomocytes, Coelomocytes I ••••••• o............. 42 FIGURE 8. Coelomic fluid of N. virens with both small coelomocytes and large coelomocytes or parenchymal cells, Coelomocytes II.oooooooooooooo 42 FIGURE 9. Coelomic fluid o~ N. virens with small coelomocytes, parenchymal cells and gonadal clumps, Gonadal Clumps ••••••••• o................. 44 FIGURE 10. Coelomic fluid of a spent male, with sperm and phagocytic cells (cells, 15-20~. containing green crystalloid granules)....................... 44 FIGURE 11. Coelomic fluid o~ N. virens with small coelomocytes, parenchymal cells, gonadal clumps and small eggs, Females I ••• o.. o................. 55 -iv- FIGURE 12. Mean oocyte diameters for each female examined over the period of September 1968 to September 1969................................. 57 FIGURE 13. Coelomic fluid of N. virens during the early stages of Females II. Eggs containing numerous oil droplets and measuring 120-14o~............... 60 FIGURE 14. Coelomic fluid of N. virens during the late stage of Females II. Eggs very dense, pale green in colour and measuring 180-220~............ 60 FIGURE 15. Coelomic fluid of male N. virens in November and October, containing 'sperm plates', 50-90p.... 64 FIGURE 16. Coelomic fluid of male N. virens with 'sperm plates' breaking up into secondary spermatocytes which then undergo meiosis to produce spermatids.. 64 FIGURE 17. Coelomic fluid of male N. virens with spermatids breaking up into sperm............................ 67 FIGURE 18. Coelomic fluid of male N. virens in May with mature sperm possessing an acrosome, a nucleus, mitochrondrial spheres and a tail................. 67 FIGURE 19. Average sea water temperatures for Brandy Cove,
Recommended publications
  • Title the Intertidal Biota of Volcanic Yankich Island (Middle
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository The Intertidal Biota of Volcanic Yankich Island (Middle Kuril Title Islands) Author(s) Kussakin, Oleg G.; Kostina, Elena E. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 201-225 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176267 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 201-225, 1996 201 The Intertidal Biota of Volcanic Y ankich Island (Middle Kuril Islands) 0LEG G. KUSSAKIN and ELENA E. KOSTINA Institute of Marine Biology, Academy of Sciences of Russia, Vladivostok 690041, Russia Abstract A description of the intertidal biota of volcanic Yankich Island (Ushishir Islands, Kuril Islands) is given. The species composition and vertical distribution pattern of the intertidal communities at various localities are described in relation to environmental factors, such as nature of the substrate, surf conditions and volcanic vent water. The macrobenthos is poor in the areas directly influenced by high tempera­ ture (20-40°C) and high sulphur content. There are no marked changes in the intertidal communities in the areas of volcanic springs that are characterised by temperature below 10°C and by the absence of sulphur compounds. In general, the species composi­ tion and distribution of the intertidal biota are ordinary for the intertidal zone of the middle Kuril Islands. But there are departures from the typical zonation of the intertidal biota. Also, mass populations of Balanus crenatus appear.
    [Show full text]
  • Chaetal Type Diversity Increases During Evolution of Eunicida (Annelida)
    Org Divers Evol (2016) 16:105–119 DOI 10.1007/s13127-015-0257-z ORIGINAL ARTICLE Chaetal type diversity increases during evolution of Eunicida (Annelida) Ekin Tilic1 & Thomas Bartolomaeus1 & Greg W. Rouse2 Received: 21 August 2015 /Accepted: 30 November 2015 /Published online: 15 December 2015 # Gesellschaft für Biologische Systematik 2015 Abstract Annelid chaetae are a superior diagnostic character Keywords Chaetae . Molecular phylogeny . Eunicida . on species and supraspecific levels, because of their structural Systematics variety and taxon specificity. A certain chaetal type, once evolved, must be passed on to descendants, to become char- acteristic for supraspecific taxa. Therefore, one would expect Introduction that chaetal diversity increases within a monophyletic group and that additional chaetae types largely result from transfor- Chaetae in annelids have attracted the interest of scientist for a mation of plesiomorphic chaetae. In order to test these hypoth- very long time, making them one of the most studied, if not the eses and to explain potential losses of diversity, we take up a most studied structures of annelids. This is partly due to the systematic approach in this paper and investigate chaetation in significance of chaetal features when identifying annelids, Eunicida. As a backbone for our analysis, we used a three- since chaetal structure and arrangement are highly constant gene (COI, 16S, 18S) molecular phylogeny of the studied in species and supraspecific taxa. Aside from being a valuable eunicidan species. This phylogeny largely corresponds to pre- source for taxonomists, chaetae have also been the focus of vious assessments of the phylogeny of Eunicida. Presence or many studies in functional ecology (Merz and Edwards 1998; absence of chaetal types was coded for each species included Merz and Woodin 2000; Merz 2015; Pernet 2000; Woodin into the molecular analysis and transformations for these char- and Merz 1987).
    [Show full text]
  • Nereis Vexillosa Class: Polychaeta, Errantia
    Phylum: Annelida Nereis vexillosa Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A large mussel worm Family: Nereididae, Nereidinae Taxonomy: One may find several subjective third setiger (Hilbig 1997). Posterior notopo- synonyms for Nereis vexillosa, but none are dial lobes gradually change into long strap- widely used currently. like ligules (Fig. 6), with dorsal cirrus inserted terminally (most important species characte- Description ristic). The parapodia of epitokous individuals Size: Individuals living in gravel are larger are modified for swimming and are wide and than those on pilings and sizes range from plate-like (Kozloff 1993). 150–300 mm in length (Johnson 1943; Rick- Setae (chaetae): Notopodia bear ho- etts and Calvin 1971; Kozloff 1993) and up mogomph spinigers anteriorly (Fig. 8d) that to 12 mm in width (Hartman 1968). gradually transition to few short homogomph Epitokous adults are much larger than sex- falcigers posteriorly (Fig. 8a). Both anterior ually immature individuals. For example, and posterior neuropodia have homo- and one year old heteronereids were at least 560 heterogomph spinigers (Fig. 8c, d) and heter- mm in length (Johnson 1943). ogomph falcigers (Fig. 8b) (Nereis, Hilbig Color: Body color grey and iridescent green, 1997). Acicula, or heavy internal black blue and red body color. Females have spines, are found on all noto- and neuropodia more a reddish posterior than males (Kozloff (Figs. 6). 1993). Eyes/Eyespots: Two pairs of small ocelli are General Morphology: Thick worms that are present on the prostomium (Fig. 2). rather wide for their length (Fig. 1). Anterior Appendages: Prostomium bears Body: More than 100 body segments are two small antennae and two massive palps normal for this species (Hartman 1968), the each with small styles.
    [Show full text]
  • Neanthes Limnicola Class: Polychaeta, Errantia
    Phylum: Annelida Neanthes limnicola Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A mussel worm Family: Nereididae, Nereidinae Taxonomy: Depending on the author, Ne- wider than long, with a longitudinal depression anthes is currently considered a separate or (Fig. 2b). subspecies to the genus Nereis (Hilbig Trunk: Very thick segments that are 1997). Nereis sensu stricto differs from the wider than they are long, gently tapers to pos- genus Neanthes because the latter genus terior (Fig. 1). includes species with spinigerous notosetae Posterior: Pygidium bears two, styli- only. Furthermore, N. limnicola has most form ventrolateral anal cirri that are as long as recently been included in the genus (or sub- last seven segments (Fig. 1) (Hartman 1938). genus) Hediste due to the neuropodial setal Parapodia: The first two setigers are unira- morphology (Sato 1999; Bakken and Wilson mous. All other parapodia are biramous 2005; Tusuji and Sato 2012). However, re- (Nereididae, Blake and Ruff 2007) where both production is markedly different in N. limni- notopodia and neuropodia have acicular lobes cola than other Hediste species (Sato 1999). and each lobe bears 1–3 additional, medial Thus, synonyms of Neanthes limnicola in- and triangular lobes (above and below), called clude Nereis limnicola (which was synony- ligules (Blake and Ruff 2007) (Figs. 1, 5). The mized with Neanthes lighti in 1959 (Smith)), notopodial ligule is always smaller than the Nereis (Neanthes) limnicola, Nereis neuropodial one. The parapodial lobes are (Hediste) limnicola and Hediste limnicola. conical and not leaf-like or globular as in the The predominating name in current local in- family Phyllodocidae. (A parapodium should tertidal guides (e.g.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Alitta Virens (M
    Alitta virens (M. Sars, 1835) Nomenclature Phylum Annelida Class Polychaeta Order Phyllodocida Family Nereididae Synonyms: Nereis virens Sars, 1835 Neanthes virens (M. Sars, 1835) Nereis (Neanthes) varia Treadwell, 1941 Superseded combinations: Nereis (Alitta) virens M Sars, 1835 Synonyms Nereis (Neanthes) virens Sars, 1835 Distribution Type Locality Manger, western Norway (Bakken and Wilson 2005) Geographic Distribution Boreal areas of northern hemisphere (Bakken and Wilson 2005) Habitat Intertidal, sand and rock (Blake and Ruff 2007) Description From Hartman 1968 (unless otherwise noted) Size/Color: Large; length 500-900 mm, width to 45 mm for up to 200 segments (Hartman 1968). Generally cream to tan in alcohol, although larger specimens may be green in color. Prostomium pigmented except for white line down the center (personal observation). Body: Robust; widest anteriorly and tapering posteriorly. Prostomium: Small, triangular, with 4 eyes of moderate size on posterior half. Antennae short, palps large and thick. Eversible proboscis with sparse paragnaths present on all areas except occasionally absent from Area I (see “Diagnostic Characteristics” section below for definition of areas). Areas VII and VIII with 2-3 irregular rows. 4 pairs of tentacular cirri, the longest extending to at least chaetiger 6. Parapodia: First 2 pairs uniramous, reduced; subsequent pairs larger, foliaceous, with conspicuous dorsal cirri. Chaetae: Notochetae all spinigers; neuropodia with spinigers and heterogomph falcigers. Pygidium: 2 long, slender anal cirri. WA STATE DEPARTMENT OF ECOLOGY 1 of 5 2/26/2018 Diagnostic Characteristics Photo, Diagnostic Illustration Characteristics Photo, Illustrations Credit Marine Sediment Monitoring Team 2 pairs of moderately-sized eyes Prostomium and anterior body region (dorsal view); specimen from 2015 PSEMP Urban Bays Station 160 (Bainbridge Basin, WA) Bakken and Wilson 2005, p.
    [Show full text]
  • The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny
    © Copyright Australian Museum, 1999 Records of the Australian Museum, Supplement 25 (1999). ISBN 0-7313-8856-9 The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny CHRISTOPHER J. GLASBY National Institute for Water & Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand [email protected] ABSTRACT. A cladistic analysis and taxonomic revision of the Namanereidinae (Nereididae: Polychaeta) is presented. The cladistic analysis utilising 39 morphological characters (76 apomorphic states) yielded 10,000 minimal-length trees and a highly unresolved Strict Consensus tree. However, monophyly of the Namanereidinae is supported and two clades are identified: Namalycastis containing 18 species and Namanereis containing 15 species. The monospecific genus Lycastoides, represented by L. alticola Johnson, is too poorly known to be included in the analysis. Classification of the subfamily is modified to reflect the phylogeny. Thus, Namalycastis includes large-bodied species having four pairs of tentacular cirri; autapomorphies include the presence of short, subconical antennae and enlarged, flattened and leaf-like posterior cirrophores. Namanereis includes smaller-bodied species having three or four pairs of tentacular cirri; autapomorphies include the absence of dorsal cirrophores, absence of notosetae and a tripartite pygidium. Cryptonereis Gibbs, Lycastella Feuerborn, Lycastilla Solís-Weiss & Espinasa and Lycastopsis Augener become junior synonyms of Namanereis. Thirty-six species are described, including seven new species of Namalycastis (N. arista n.sp., N. borealis n.sp., N. elobeyensis n.sp., N. intermedia n.sp., N. macroplatis n.sp., N. multiseta n.sp., N. nicoleae n.sp.), four new species of Namanereis (N. minuta n.sp., N. serratis n.sp., N. stocki n.sp., N.
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • A New Cryptic Species of Neanthes (Annelida: Phyllodocida: Nereididae)
    RAFFLES BULLETIN OF ZOOLOGY 2015 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 31: 75–95 Date of publication: 10 July 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:A039A3A6-C05B-4F36-8D7F-D295FA236C6B A new cryptic species of Neanthes (Annelida: Phyllodocida: Nereididae) from Singapore confused with Neanthes glandicincta Southern, 1921 and Ceratonereis (Composetia) burmensis (Monro, 1937) Yen-Ling Lee1* & Christopher J. Glasby2 Abstract. A new cryptic species of Neanthes (Nereididae), N. wilsonchani, new species, is described from intertidal mudflats of eastern Singapore. The new species was confused with both Ceratonereis (Composetia) burmensis (Monro, 1937) and Neanthes glandicincta Southern, 1921, which were found to be conspecific with the latter name having priority. Neanthes glandicincta is newly recorded from Singapore, its reproductive forms (epitokes) are redescribed, and Singapore specimens are compared with topotype material from India. The new species can be distinguished from N. glandicincta by slight body colour differences and by having fewer pharyngeal paragnaths in Areas II (4–8 vs 7–21), III (11–28 vs 30–63) and IV (1–9 vs 7–20), and in the total number of paragnaths for all Areas (16–41 vs 70–113). No significant differences were found in the morphology of the epitokes between the two species. The two species have largely non-overlapping distributions in Singapore; the new species is restricted to Pleistocene coastal alluvium in eastern Singapore, while N. glandicinta occurs in western Singapore as well as in Malaysia and westward to India. Key words. polychaete, new species, taxonomy, ragworm INTRODUCTION Both species are atypical members of their respective nominative genera: N.
    [Show full text]
  • Family Nereididae Marine Sediment Monitoring
    Family Nereididae Marine Sediment Monitoring Puget Sound Polychaetes: Nereididae Family Nereididae Family-level characters (from Hilbig, 1994) Prostomium piriform (pear-shaped) or rounded, bearing 2 antennae, two biarticulate palps, and 2 pairs of eyes. Eversible pharynx with 2 sections, the proximal oral ring and the distal maxillary ring which possesses 2 fang-shaped, often serrated terminal jaws; both the oral and maxillary rings may bear groups of papillae or hardened paragnaths of various sizes, numbers, and distribution patterns. Peristomium without parapodia, with 4 pairs of tentacular cirri. Parapodia uniramous in the first 2 setigers and biramous thereafter; parapodia possess several ligules (strap-like lobes) and both a dorsal cirrus and ventral cirrus. Shape, size, location of ligules is distinctive. They are more developed posteriorly, so often need to see ones from median to posterior setigers. Setae generally compound in both noto- and neuropodia; some genera have simple falcigers (blunt-tipped setae)(e.g., Hediste and Platynereis); completely lacking simple capillary setae. Genus and species-level characters The kind and the distribution of the setae distinguish the genera and species. The number and distribution of paragnaths on the pharynx. Unique terminology for this family Setae (see Hilbig, 1994, page 294, for pictures of setae) o Homogomph – two prongs of even length where the two articles of the compound setae connect. o Heterogomph – two prongs of uneven length where the two articles of the compound setae connect. o Spinigers - long articles in the compound setae. o Falcigers – short articles in the compound setae. o So, there can be homogomph falcigers and homogomph spinigers, and heterogomph falcigers and heterogomph spinigers.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Annelids, Platynereis Dumerilii In: Boutet, A
    Annelids, Platynereis dumerilii In: Boutet, A. & B. Schierwater, eds. Handbook of Established and Emerging Marine Model Organisms in Experimental Biology, CRC Press Quentin Schenkelaars, Eve Gazave To cite this version: Quentin Schenkelaars, Eve Gazave. Annelids, Platynereis dumerilii In: Boutet, A. & B. Schierwater, eds. Handbook of Established and Emerging Marine Model Organisms in Experimental Biology, CRC Press. In press. hal-03153821 HAL Id: hal-03153821 https://hal.archives-ouvertes.fr/hal-03153821 Preprint submitted on 26 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annelids, Platynereis dumerilii Quentin Schenkelaars, Eve Gazave 13.1 History of the model 13.2 Geographical location 13.3 Life cycle 13.4 Anatomy 13.4.1 External anatomy of Platynereis dumerilii juvenile (atoke) worms 13.4.2 Internal anatomy of Platynereis dumerilii juvenile (atoke) worms 13.4.2.1 Nervous system: 13.4.2.2 Circulatory system 13.4.2.3 Musculature 13.4.2.4 Excretory system 13.4.2.5 Digestive system 13.4.3 External and internal anatomy of Platynereis dumerilii
    [Show full text]